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11 Abstract

12 Class I Major Histocompatibility Complex (MHC) binds short antigenic peptides with the 

13 help of Peptide Loading Complex (PLC), and presents them to T-cell Receptors 

14 (TCRs) of cytotoxic T-cells and Killer-cell Immunglobulin-like Receptors (KIRs) of 

15 Natural Killer (NK) cells. With more than 10000 alleles, the Human Leukocyte Antigen 

16 (HLA) chain of MHC is the most polymorphic protein in humans. This allelic diversity 

17 provides a wide coverage of peptide sequence space, yet does not affect the three-

18 dimensional structure of the complex. Moreover, TCRs mostly interact with pMHC in a 

19 common diagonal binding mode, and KIR-pMHC interaction is allele-dependent. With 

20 the aim of establishing a framework for understanding the relationships between 

21 polymorphism (sequence), structure (conserved fold) and function (protein interactions) 

22 of the MHC, we performed here a local frustration analysis on pMHC homology models 

23 covering 1436 HLA I alleles. An analysis of local frustration profiles indicated that (1) 

24 variations in MHC fold are unlikely due to minimally-frustrated and relatively conserved 

25 residues within the HLA peptide-binding groove, (2) high frustration patches on HLA 

26 helices are either involved in or near interaction sites of MHC with the TCR, KIR, or 

27 Tapasin of the PLC, and (3) peptide ligands mainly stabilize the F-pocket of HLA 

28 binding groove. 

29 Author Summary

30 A protein complex called the Major Histocompatibility Complex (MHC) plays a critical 

31 role in our fight against pathogens via presentation of antigenic peptides to receptor 

32 molecules of our immune system cells. Our knowledge on genetics, structure and 

33 protein interactions of MHC revealed that the peptide-binding groove of Human 
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34 Leukocyte Chain (HLA I) of this complex is highly polymorphic and interacts with 

35 different proteins for peptide-binding and presentation over the course of its lifetime. 

36 Although the relationship between polymorphism and peptide-binding is well-known, 

37 we still lack a proper framework to understand how this polymorphism affects the 

38 overall MHC structure and protein interactions. Here, we used computational 

39 biophysics methods to generate structural models of 1436 HLA I alleles, and quantified 

40 local frustration within the HLA I, which indicates energetic optimization levels of 

41 contacts between amino acids. We identified a group of minimally frustrated and 

42 conserved positions which may be responsible for the conserved MHC structure, and 

43 detected high frustration patches on HLA surface positions taking part in interactions 

44 with other immune system proteins. Our results provide a biophysical basis for 

45 relationships between sequence, structure, and function of MHC I.

46
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47 Introduction

48 The sequence-structure-function paradigm plays a central role in structural 

49 biology: the primary structure (i.e. amino acid sequence) of a protein dictates the three-

50 dimensional structure (fold), which in turn influences the function [1–3]. The close 

51 relationship between the structural architecture and function of a protein implies that 

52 disruptions to the native folded state can destabilize the protein structure, and 

53 eventually cause loss of function. In line with this perspective, several studies 

54 integrating sequence evolution with protein biophysics reported strong correlations 

55 between positional conservation levels or rates of synonymous/non-synonymous 

56 mutation and stability-related residue metrics such as solvent accessibility or hydrogen 

57 bonding patterns [4–11]. On the other hand, stability is not the main determinant of 

58 protein function. Residues that are not involved in forming the protein scaffold, such as 

59 the catalytic sites of an enzyme or binding hot spots located on protein surface, are 

60 important for protein function as well.

61 Protein evolution is thus driven by an interplay between functional and structural 

62 constraints [2,10,12,13]. With these constraints at play, mutations may occur via two 

63 alternative mechanisms: positive and negative selection [14]. In the negative (or 

64 purifying) selection, mutations leading to detrimental effects on protein stability or 

65 function are eliminated during the selection process, leading to increased levels of 

66 conservation at sites crucial for function or stability. In the positive selection model, the 

67 protein is under constant pressure to acquire “new-functions”, thus change/variation in 

68 the amino acid sequence is favored, especially at sites with direct relevance to protein 

69 function [15]. 
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70 From this perspective of molecular evolution and protein function, the human 

71 class I Major Histocompatibility Complex (MHC I) is an interesting system [16–19]. 

72 MHC I consists of heavy (H) and light (L) chains called Human Leukocyte Antigen 

73 (HLA I) and  -2 microglobulin (-2-m), respectively (Fig 1). Following assembly within 

74 the Endoplasmic Reticulum (ER), the MHC is unstable in the absence of a peptide 

75 ligand [20,21]. Intracellularly derived antigenic peptides originating from self or foreign 

76 proteins are loaded into the binding groove of the HLA chain of MHC with the help of a 

77 multiprotein complex called the Peptide Loading Complex (PLC). Here, the peptide 

78 contacts six different binding pockets (A,B,C,D,E and F) within the peptide binding 

79 groove of HLA [22]. Upon the formation of a stable peptide-loaded MHC (pMHC), the 

80 complex is transported to cell surface, and presents peptide ligands to immune cell 

81 receptors such as the T-Cell Receptor (TCR) of cytotoxic CD8+ T-cells, and Killer-cell 

82 Immunoglobulin-like Receptors (KIRs) of Natural Killer (NK) cells [23–26]. 

83 Fig 1. The three-dimensional structure of the pMHC. 

84 With more than 10000 identified protein alleles, HLA I is the most polymorphic 

85 protein in humans [27]. The HLA I protein is clearly undergoing a process of positive 

86 selection, where the acquisition of new variants modulate the function of antigen 

87 presentation via modifying the peptide ligand recognition specificities [16,28–31]. In 

88 other words, functional constraints require HLA to maintain a very high level of allelic 

89 diversity. This allelic diversity helps the immune system cover a large space of 

90 potential peptide binders, and thereby fight against pathogens effectively [16,19,24,32]. 

91 On the other hand, HLA genes are also strongly linked to infectious and autoimmune 

92 diseases due to high polymorphism levels [33].
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93 Despite this high sequence variation in HLA and the enormous diversity of 

94 peptide ligands, experimentally elucidated pMHC structures of different alleles display 

95 an “ultra-conserved” fold with minimal variation [34]. Moreover, most of the TCR-pMHC 

96 crystal structures display a conventional docking mode of TCR over the HLA chain 

97 [35,36]. On the other hand, HLA allelic diversity may affect interactions of the pMHC 

98 with other proteins as well. Only certain allele groups containing specific epitopes 

99 interact with KIR [25,37]. Structural details of the PLC-pMHC interaction were also only 

100 recently revealed [34,38–41].

101 HLA polymorphism should be taken into account in order to truly comprehend 

102 the mechanisms involved in the formation of stable pMHC and interactions with TCR 

103 and KIR molecules. However, incorporating such extreme levels of polymorphism into 

104 wet-lab experiments is unfeasible. Hence, computational biophysics methods are 

105 preferred in large-scale modeling studies. In particular, homology modeling was used 

106 to classify a high number of HLA alleles into distinct groups based on peptide 

107 interaction patterns [42], binding pocket similarities [43] and surface electrostatics [44]. 

108 These studies mainly focused on classifying HLA alleles based on their peptide-binding 

109 or protein interaction behaviors, and therefore only the peptide-binding groove was 

110 modeled. However, characterization of the relationship between HLA polymorphism 

111 and pMHC stability as well as TCR/KIR/PLC interactions requires the modeling of the 

112 whole complex and the use of proper methods for identifying residue-level effects on 

113 stability and protein interactions. To this end, quantification of local frustration in the 

114 structure can be utilized [45–49]. Local frustration analysis has already been applied 

115 successfully to perform similar sequence-structure-function studies on calmodulin 
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116 [50,51], repeat proteins [5,52], and TEM beta-lactamases [6].

117 Here, we provide an analysis of local frustration patterns of 1436 HLA I alleles. 

118 We explain how class I MHC retains a conserved fold while maintaining highly versatile 

119 ligand specificities using homology-modeled pMHC structures. Using the frustration 

120 data, we also show the existence of local frustration-based energetic footprints of 

121 polymorphism, providing a biophysical basis for the previously observed differences 

122 between molecular stabilities/cell surface expression levels of different allele groups 

123 and TCR/KIR/PLC interactions. Finally, we also provide a local frustration based 

124 explanation of how peptides stabilize peptide binding pockets.

125 Results and Discussion

126 Sequence variation in HLA binding groove

127 We began with an analysis of sequence variation in the HLA I peptide binding 

128 groove. A total of 8696 HLA I binding groove (-1 and -2 domains) sequences 

129 (including 2799, 3433 and 2464 alleles from HLA-A, -B, and -C gene loci, respectively) 

130 were included in the analysis. We identified amino acid variation at each respective 

131 position in the HLA peptide binding groove by constructing sequence logos (Fig 2A). 

132 In line with findings of a recent analysis [53], we detected high levels of variation at 

133 most binding groove positions.  However, some positions were relatively conserved, 

134 and dominated by a single amino acid. This dominance is due to the imbalance 

135 between the number of occurrences of the respective amino acid and those of the 

136 others. Glycine, phenylalanine, proline, tryptophan, leucine, aspartic acid and arginine 

137 were found to be the most conserved amino acid types. 
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138 Fig 2. Sequence conservation/variation and evolutionary importance of HLA I 

139 peptide-binding groove positions 

140 (A) Sequence logo of the HLA I peptide-binding groove (residues 1-180). Polar, 

141 neutral, basic, acidic and hydrophobic amino acids are colored green, purple, blue, 

142 red, and black, respectively. (B) real-value Evolutionary Trace (rvET) scores of binding 

143 groove positions. Low rvET scores indicate high evolutionary importance, and vice 

144 versa.

145 The sequence logos also display several “hyper-variable” positions as well 

146 (positions 9, 24, 45, 67, 97, 116, 138, 152, 156, and 163). This variation is expected, 

147 since all of these positions are located within the peptide binding pockets, and were 

148 previously shown to define allele-specific peptide ligand repertoires [42,43,54]. 

149 We also quantified the evolutionary importance of each position in the binding 

150 groove by computing the real-value Evolutionary Trace (rvET) ranks per position [55]. 

151 rvET is an absolute rank of a given position in terms of its evolutionary importance. 

152 Here, lower rvET ranks/scores indicate higher evolutionary importance and vice versa. 

153 The ET analysis here is based on both sequence variation/conservation and the 

154 closeness of sequence divergence to the root of the constructed phylogenetic three at 

155 a given sequence position. Thus, while conserved positions in a multiple sequence 

156 alignment tend to have low rvET scores, relatively less conserved positions may also 

157 obtain low rvET scores as well, provided that the sequence divergence occurs near 

158 the root of the tree and variation occurs within small rather than large branches of the 

159 tree [55–58]. In general, we observed higher rvET values at positions with the highest 

160 sequence variation and vice versa (Fig 2B). 
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161 Homology modeling of HLA alleles in the context of pMHC

162 Next, we investigated how binding groove sequence variation is reflected on the 

163 pMHC structure. As reported previously [34,43,44,59], the number of experimentally 

164 determined pMHC structures with different HLA alleles is significantly lower than the 

165 total allele number. Hence, a homology modeling approach is necessary. Moreover, 

166 homology models of the full pMHC, including the binding groove as well as distant -2-

167 m and -3 domains, are needed, since these domains make extensive contacts with 

168 each other as well as the rest of the structure, and were previously shown to be 

169 essential for peptide binding [60,61]. However, the -3 domain sequence is not 

170 available for many alleles. Moreover, it is also necessary model peptides within the 

171 binding groove as peptide ligand is an integral part of the pMHC structure. Similar to 

172 limitations in pMHC structures, the number of identified peptide ligands with binding 

173 affinity measurements for individual HLA alleles is limited as well, with some alleles 

174 having no peptide ligands identified so far [62]. Therefore, it is also necessary to 

175 predict peptide ligands using computational approaches. We thus selected 1436 HLA 

176 alleles (464, 689 and 283 from HLA-A, -B and -C loci, respectively) with complete HLA 

177 sequence (including all three domains -1, -2, and -3) for homology modeling (the 

178 complete list is given in Supplementary Table 1). The list of homology modelled alleles 

179 included 41 out of 42 core alleles representing the functionally significant sequence 

180 variation [53]. We predicted up to 10 strong binder peptides for each of the 1436 

181 alleles using netMHCpan 3.0 [63], and obtained homology models in the context of 

182 these peptides. 
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183 Integrating biophysics into HLA I evolution

184 After generating the homology models, we analyzed the local frustration within 

185 pMHC structures. Local frustration analysis is based on calculation of pairwise 

186 contacts between amino acids, and comparison of these contacts to possible 

187 alternative contacts made by other amino acid pairs at each site in the structure. A 

188 Single Residue Frustration Index (SRFI) is then obtained as a position-specific local 

189 frustration score: amino acids with optimized energetic contacts are minimally 

190 frustrated, where those that are the least preferred at their respective positions are 

191 highly frustrated. If neither, then the frustration is termed “neutral”. SRFI values thus 

192 indicate how ideal (minimally frustrated) the contacts of each position are or how much 

193 frustration is present (highly frustrated). 

194 We used the frustratometer2 tool [64] to quantify SRFI at each position in 

195 homology models. Since multiple peptides (and hence structures) were modeled for 

196 each allele, we calculated median SRFI per allele per position, and used these median 

197 SRFI values in further analyses. 

198 In order to get an overview of local frustration against evolutionary importance of 

199 each position, we first mapped position-specific median SRFI and rvET values onto 

200 the HLA I binding groove (Fig 3). SRFI distributions of several selected positions are 

201 also given in Fig 4A. Minimal frustration was observed at conserved positions located 

202 in the -sheet floor of the binding groove or in -1 and -2 domains contacting the -

203 sheet floor (5, 7, 8, 25, 27, 34, 36, 101, and 164) (Fig 4A). As expected, the top two 

204 minimally frustrated positions were cysteines responsible for forming the conserved 

205 disulfide bridge between positions 101 and 164. Mutations at these positions abolish 
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206 HLA expression [27,65]. Our observation of minimal frustration at conserved positions 

207 are in line with recent findings of Dib et al. [66], where co-evolving residues were 

208 shown to avoid residues important for protein stability. Haliloglu et al. previously 

209 analyzed several HLA structures using the Gaussian Network Model (GNM), and 

210 identified positions 6, 27, 101, 103, 113, 124 and 164 as “energetically active” and 

211 possibly important for stability [67]. Here, either the same positions or their sequential 

212 neighbors of were found to be minimally frustrated. 

213 Fig 3. Position-specific Single Residue Frustration Index (SRFI) and rvET scores 

214 mapped onto the HLA I binding groove. 

215 (A, B, C) SRFI mapped onto binding groove positions. (D, E, F) log(rvET) mapped 

216 onto binding groove positions. Selected positions are also shown on the structure. 

217 Fig 4. Box-plots of position-specific SRFI values. 

218 (A) SRFI box-plots of selected minimally and highly frustrated residues (B) SRFI box-

219 plots of positions with neutral frustration. (C) SRFI box-plots of peptide-binding pocket 

220 positions. Coloring according to log(rvET) values.

221 On the other hand, we also observed several positions on -1 and -2 helices 

222 with relatively high frustration levels (58, 61, 68, 80, 84, 141, 144, 145, 146, 155) (Fig 

223 3). Most of these positions are located within interfaces of interaction with either TCR 

224 or Tapasin of the PLC.

225 The interaction between the TCR and pMHC I is a central event in adaptive 

226 immunity [26,68,69]. The TCR recognizes a peptide antigen only when presented by 

227 an MHC molecule (MHC restriction) [69,70]. TCR-pMHC structures determined to date 
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228 indicate a conserved diagonal binding geometry, where the hypervariable CDR3 loop 

229 of TCR contacts the peptide, and  germline-encoded variable  and  domains (V 

230 and V) contact HLA I -1 and -2 helices, respectively [71]. Although deviations from 

231 this conventional docking mode exist, including a reversed polarity docking mode 

232 [72,73], TCR signaling in such unconventional modes is limited [74]. The importance 

233 of the conventional docking mode for TCR signaling adds support to the germline-

234 encoded model of TCR-pMHC interaction, in which evolutionarily conserved TCR-

235 pMHC contacts were proposed to govern MHC restriction [75]. In this regard, previous 

236 analyses of TCR-pMHC structures highlighted the importance of contacts made by 

237 HLA -1 and -2 helix residues 69 and 158 [76] or 65, 69 and 155 as a “restriction 

238 triad” [77]. We observed high SRFI levels at or near these positions. 

239 Local frustration data can also provide a basis for PLC-MHC interactions. 

240 Tapasin is the main component of the PLC which contacts the HLA binding groove. 

241 Predicted Tapasin-MHC interactions [39,78] and a recently elucidated crystal structure 

242 of pMHC with TAPBPR (a Tapasin homolog) [79–81] indicated that Tapasin cradles 

243 the HLA molecule via contacts with -3 domain and 2-1 helix segment. Our 

244 observation of high SRFI levels at positions 141, 144, 145, and 146 located on the 2-1 

245 helix segment is in line with these findings. 

246 Median SRFI values of most binding groove positions were found to indicate 

247 neutral frustration (Fig 4B). On the other hand, HLA polymorphism at peptide binding 

248 pocket positions apparently caused significant drifts towards minimal or high 

249 frustration as well, even though the median SRFI remained within the neutral 

250 frustration range (-1 to 1). 
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251 Overall, these results suggest that the human MHC evolves to maintain its 

252 structural fold, as evidenced by the dominance of conserved core positions showing 

253 minimal frustration within the HLA peptide binding groove. Moreover, the presence of 

254 relatively higher frustration at or near TCR and Tapasin contact positions on -1 and 

255 -2 helices may also provide a biophysical basis for protein interactions of pMHC. 

256 Clustering of HLA alleles into distinct groups based on frustration data 

257 Next, we performed a hierarchical clustering analysis of allele-specific SRFI 

258 profiles. For simplification, we excluded positions with less than 0.5 SRFI variation 

259 from the analysis. Clustering results are shown in Fig 5A, and complete lists of alleles 

260 in each cluster are given in Supplementary Table 1. Strikingly, alleles from different 

261 gene loci were clustered into three separate groups based on frustration data of only 

262 14 positions (45, 66, 67, 69, 74, 76, 79, 80, 82, 116, 131, 152, 156, 163). An exception 

263 was the HLA-B*46 group, which was clustered along with the HLA-C alleles. This is 

264 not surprising, as alleles in this group share the KYRV motif at 66, 67, 69, and 76 with 

265 HLA-C [82]. 

266 Fig 5. Clustering of allele-specific SRFI profiles based on 14 binding groove 

267 positions. 

268 (A) SRFI cluster heatmap. Clustering was performed for all 1436 alleles included, yet 

269 not all of these alleles are indicated on axis label for clarity. (B) SRFI of three identified 

270 clusters corresponding to three HLA gene loci mapped onto the binding groove. 

271 Coloring as in Figure 3. 

272 Clustering of HLA alleles from distinct loci into separate groups has been 
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273 previously demonstrated based on peptide binding pocket similarities [43], peptide-

274 HLA contacts [42], surface electrostatics [44] and peptide binding repertoires [83]. 

275 Here, HLA-A, -B and –C alleles were clustered into distinct groups from a different 

276 perspective using local frustration data. Moreover, the structural energetics aspect 

277 provides an additional level of detail. 

278 Unlike data used in previous studies, the SRFI may explain previously reported 

279 differences between HLA alleles in terms of pMHC stability and hence, the cell surface 

280 expression levels. Compared to HLA-A and HLA-B, lower cell surface expression 

281 levels were previously observed for HLA-C alleles [84–87]. Moreover, peptide 

282 repertoires of HLA-C alleles are known to be more limited [84,88]. KYRV motif was 

283 also shown to be responsible for intrinsic instability of HLA-C [86]. Relatively higher 

284 frustration in HLA-C group, especially at binding pocket positions of 66, 74 and 80, is 

285 in line with these findings: higher frustration may introduce a destabilizing effect into 

286 the binding pockets, lead to restrictions in peptide binding, and thereby reduce cell 

287 surface expression levels. Among these positions, 66 is a member of the B pocket and 

288 increased frustration in this position may indicate a less stable B pocket in HLA-C. 

289 Likewise, position 80 is a member of F pocket and a similar effect may be valid for the 

290 F pocket as well. Around position 80, positions 79 and 82 also display high frustration 

291 as well, further contributing to F pocket frustration. 

292 HLA-C additionally differs from HLA-B and HLA-A in terms of interactions with 

293 KIRs of NK cells [89,90]. The alleles in this group contain either the C1 or C2 epitopes 

294 with an arginine or lysine at position 80, respectively [91]. Moreover, HLA-C (and HLA-

295 B46, which is clustered alongside HLA-C) is distinguished by a KYRV motif at 
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296 positions 66, 67, 69 and 76 [88]. Previous crystal structures of HLA-C and KIR clearly 

297 show that the KIR contacts residues on α-1 helix of HLA near peptide C terminus 

298 [92,93]. High levels of frustration in this contact area of HLA-C (Figure 5B) may 

299 explain why HLA-C better interacts with the KIR than HLA-A and HLA-B alleles.

300 All in all, these results support the view that HLA-C is intrinsically less stable on 

301 the cell-surface via a post-translational mechanism [84,86]. This mechanism may 

302 simply involve a less than optimal packing in the binding groove of HLA-C. Our results 

303 also may also explain the limited diversity of HLA-C peptide ligands: higher frustration 

304 in ligand binding sites may indicate a lower peptide binding capability.

305 Effect of peptide binding on local frustration profiles

306 Peptide-free (empty) MHC does not have a well-defined 3D structure (no crystal 

307 structure of a peptide-free MHC could be obtained so far). Instead, empty MHC 

308 continuously switches between alternative conformations until a sufficiently stable 

309 peptide-HLA interaction is achieved [21]. Peptide binding to HLA occurs via six 

310 pockets in the binding groove named A, B, C, D, E and F [22]. For many alleles, A, B 

311 and F pockets are decisive for peptide binding (A/B and F pockets binding N- and C-

312 terminus of peptide ligands, respectively). Structural integrity of the F pocket of some 

313 alleles was previously shown to be more sensitive to peptide truncation in MD 

314 simulations than those of A and B pockets [41,94–96]. This implies that contacts 

315 between peptide C-terminus and HLA F pocket are highly important for molecular 

316 stability. We reasoned that, by comparing peptide-free and -loaded MHC frustration 

317 profiles, the positions that depend on peptide contacts least/most for stability can be 
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318 identified. Thus, we additionally quantified local frustration in peptide-free homology 

319 models, and calculated average changes in SRFI upon binding of the peptide ligands 

320 to each allele. In line with previous observations, SRFI increase (hence reduction in 

321 frustration) upon peptide binding was highest near the F-pocket (positions 81, 84, 95, 

322 142, and 147) (Fig 6).

323 Fig  6. Box-plots of SRFI change upon peptide binding. 

324 Positions are ordered according to decreasing SRFI change.  

325 Material and Methods

326 Sequence variation analysis

327 Aligned amino acid sequences of the -1 and -1 domains (i.e. the binding 

328 groove) of the HLA  were retrieved from the IMGT/HLA database [27]. The sequences 

329 included in this file were converted to FASTA format for further analysis using 

330 Biopython [97]. Seq2Logo 2.0 web server was used to generate sequence logos to 

331 indicate conservation/variation at specific sites [98] using Shannon’s Information 

332 Content (IC) [99] as follows:

333 𝐼 = ∑
𝑎

𝑝𝑎 ∙ 𝑙𝑜𝑔2𝑝𝑎 𝑞𝑎

334 Here,  denotes information content,  is the probability of observing amino acid 𝐼 𝑝𝑎

335  at the respective sequence position (calculated from input multiple sequence 𝑎

336 alignment) and  is the pre-defined (background) probability of observing amino acid 𝑞𝑎

337 at the given position. An equal probability was used for each amino acid type (1/20).

338 The Evolutionary Trace (ET) method is an improvement over the classical IC 
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339 approach described above [55,56]. In this method, the IE is calculated after 

340 constructing a phylogenetic tree of sequences and for each branch (node) of the tree. 

341 Then, the conservation/variation level at a given position is calculated using the 

342 following equation:

343 𝜌𝑖 = 1 +
𝑁 ‒ 1

∑
𝑛 = 1

1
𝑛

𝑛

∑
𝑔 = 1

{ ‒ ∑
𝑎

𝑝𝑎 ∙ 𝑙𝑜𝑔2𝑝𝑎 𝑞𝑎}
344 Here,  is the number of sequences in the alignment and  is the number of 𝑁 𝑁 ‒ 1

345 possible nodes in the phylogenetic tree. The final score  is also termed “real-value 𝜌𝑖

346 Evolutionary Trace” score (rvET), and denotes the rank of a position (i) with respect to 

347 all other positions. Hence, lower rvET values indicate a higher evolutionary importance 

348 and vice-versa.

349 Prediction of peptide binders to class I HLA alleles and homology modeling of 

350 pMHC structures

351 Due to the limited number of HLA alleles with structure information at the Protein 

352 Data Bank (PDB), homology modeling was used to generate pMHC structures for 

353 1436 alleles selected as follows. For selecting peptide ligands for homology modeling,  

354 a data-driven peptide-binding prediction tool (netMHCpan 3.0) was used [63] (stand-

355 alone version of netMHCpan 3.0 was downloaded from http://www.cbs.dtu.dk/cgi-

356 bin/nph-sw_request?netMHCpan). First, 25000 random nonamer peptide sequences 

357 were generated using equal probability for each of the twenty naturally occurring 

358 amino acids at each peptide position. Then, binding affinities of all generated peptide 

359 sequences were predicted for each HLA allele recognized by netMHCpan 3.0 and with 

360 identified -3 domain sequence. The results were then filtered to extract up to 10 
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361 peptides with the highest binding affinities (i.e. lowest binding free energies) and 

362 classified as strong binders by netMHCpan 3.0 for each allele. These peptides were 

363 then homology modelled in the context of HLA alleles as well as  -2-m using Modeller 

364 version 9.19 [100]. An X-ray structure of the HLA-B*53:01 allele was used as template 

365 (PDB ID: 1A1M).

366 Local frustration analysis

367 Local frustration analysis was performed on all produced homology models 

368 using frustratometer2 tool [64] (Stand-alone version available from 

369 https://github.com/gonzaparra/frustratometer2 was used). This tool uses the AWSEM 

370 (Associative Memory, Water Mediated, Structure and Energy Model) coarse-grained 

371 potential [101] to calculate residue-residue interaction energies. A sequence 

372 separation of 3 was used to calculate local amino acid densities, as defined by 

373 AWSEM. In addition to the interactions predicted by the AWSEM, long-range 

374 electrostatic interactions were also included - as offered by frustratometer2 - using a 

375 Debye-Hückel potential:

376 𝑉𝐷𝐻 = 𝐾𝑒𝑙𝑒𝑐𝑡∑
𝑖 < 𝑗

𝑞𝑖𝑞𝑗

𝜖𝑟
𝑒

‒ 𝑟𝑖𝑗
𝑙𝐷

377 where  and  are charges of residues i and j,  is the distance between residues i 𝑞𝑖 𝑞𝑗 𝑟𝑖𝑗

378 and j,  is the dielectric constant of the medium (in vacuum this value is 1) and  is 𝜖𝑟 𝑙𝐷

379 the Debye-Hückel screening length, which is calculated using physiological values of 

380 temperature (25 C), dielectric constant of water (80) and ionic strength of water (0.1 

381 M), yielding a  of 10 Å. Here, it is possible to define an electronic strength of the 𝑙𝐷

382 protein system using a parameter called electrostatic constant ( :𝑘)
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383 𝑘 =
𝐾𝑒𝑙𝑒𝑐𝑡

𝜖𝑟

384 Here, a  value of 4.15, which corresponds to an aqueous solution, was used. 𝑘

385 Once the energies are computed using the AWSEM potential, frustratometer2 

386 assesses the local frustration present in each residue-residue contact. Here, the 

387 contacts between two residues are compared to contacts in decoy structures or 

388 molten globule configurations. The tool can produce decoys by simultaneously 

389 mutating both residues to all other amino acids. A normalization is applied in order to 

390 compare the energies of the native structure to decoys. A “mutational frustration 

391 index” ( ) then captures how favorable the contacts of the residues present in the 𝐹𝑚
𝑖𝑗

392 native structure to decoys as follows:

393 𝐹𝑚
𝑖𝑗 =

𝐸𝑇,𝑁
𝑖,𝑗 ‒ 〈𝐸𝑇,𝑈

𝑖',𝑗' 〉 

1 𝑁∑𝑛

𝑘 = 1
(𝐸𝑇,𝑈

𝑖',𝑗' ‒ 〈𝑒𝑇,𝑈
𝑖',𝑗'〉)2

394 where  is the total energy of native protein and  is the average energy of decoy 𝐸𝑇,𝑁
𝑖,𝑗 𝐸𝑇,𝑈

𝑖',𝑗'

395 structures. By changing the amino acid identity at both positions simultaneously, not 

396 only the contact between the respective two residues are changed, but those contacts 

397 made by the two residues with other residues are changed as well. 

398 This index can also be calculated by changing the amino acid type of only one of 

399 the residues instead of applying simultaneous mutations at both positions. The index 

400 then represents how favorable the contacts made by a given amino acid are at a given 

401 position in the structure. When applied this way, the index is termed “Single Residue 

402 Frustration Index” (SRFI). 
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403 Frustration-based clustering of HLA class I alleles

404 Upon application of local frustration analysis on pMHC structures, SRFI profiles 

405 averaged over peptides per HLA allele are obtained. This is represented in the form of 

406 an “SRFI matrix” with rows corresponding to positions (residues) in pMHC structure 

407 and columns corresponding to HLA alleles. A column-wise agglomerative clustering 

408 was applied on this matrix to identify similarities and differences between different 

409 HLA alleles in terms of their local structural energetics. Distances between clusters 

410 were defined by the “single linkage” criteria, in which inter-cluster distances were 

411 taken as the shortest distance between any two points of a pair of clusters:

412 𝐿(𝑟,𝑠) = min (𝐷(𝑥𝑟𝑖,𝑥𝑠𝑗))

413 where  is the inter-cluster distance between clusters  and  and  is the 𝐿(𝑟,𝑠) 𝑟 𝑠 𝐷(𝑥𝑟𝑖,𝑥𝑠𝑗)

414 distance between points  and  of the two clusters. Here, each data point 𝑥𝑟𝑖 𝑥𝑠𝑗

415 represents the SRFI profile of each HLA allele. The distance between data points 

416 were computed using Manhattan distance:

417 𝐷(𝑥𝑟𝑖,𝑥𝑠𝑗) =
𝑛

∑
𝑘

|𝑥𝑟𝑖,𝑘 ‒ 𝑥𝑠𝑗,𝑘|

418 Here, the summation is performed over rows of data (k  n), which are actually 

419 positions in the pMHC structure.
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