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Abstract

The neurobiological study of reward was launched by the discovery of intracranial
self-stimulation (ICSS). Subsequent investigation of this phenomenon provided the
initial link between reward-seeking behavior and dopaminergic neurotransmission. We
re-evaluated this relationship by psychophysical, pharmacological, optogenetic, and
computational means. In rats working for direct, optical activation of midbrain
dopamine neurons, we varied the strength and opportunity cost of the stimulation and
measured time allocation, the proportion of trial time devoted to reward pursuit. We
found that the dependence of time allocation on the strength and cost of stimulation
was similar formally to that observed when electrical stimulation of the medial forebrain
bundle served as the reward. When the stimulation is strong and cheap, the rats devote
almost all their time to reward pursuit; time allocation falls off as stimulation strength
is decreased and/or its opportunity cost is increased. A 3D plot of time allocation
versus stimulation strength and cost produces a surface resembling the corner of a
plateau (the “reward mountain”). We show that dopamine-transporter blockade shifts
the mountain along both the strength and cost axes in rats working for optical
activation of midbrain dopamine neurons. In contrast, the same drug shifted the
mountain uniquely along the opportunity-cost axis when rats worked for electrical MFB
stimulation in a prior study. Dopamine neurons are an obligatory stage in the dominant
model of ICSS, which positions them at a key nexus in the final common path for
reward seeking. This model fails to provide a cogent account for the differential effect of
dopamine transporter blockade on the reward mountain. Instead, we propose that
midbrain dopamine neurons and neurons with non-dopaminergic, MFB axons constitute
parallel limbs of brain-reward circuitry that ultimately converge on the final-common
path for the evaluation and pursuit of rewards.

Author summary

To succeed in the struggle for survival and reproductive success, animals must make
wise choices about which goals to pursue and how much to pay to attain them. How
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does the brain make such decisions and adjust behaviour accordingly? An animal model
that has long served to address this question entails delivery of rewarding brain
stimulation. When the probe is positioned appropriately in the brain, rats will work
indefatigably to trigger such stimulation. Dopamine neurons play a crucial role in this
phenomenon. The dominant model of the brain circuitry responsible for the
reward-seeking behavior treats these cells as a gateway through which the
reward-generating brain signals must pass. Here, we challenge this idea on the basis of
an experiment in which the dopamine neurons were activated selectively and directly.
Mathematical modeling of the results argues for a new view of the structure of brain
reward circuitry. On this view, the pathway(s) in which the dopamine neurons are
embedded is one of a set of parallel channels that process reward signals in the brain.
To achieve a full understanding of how goals are evaluated, selected and pursued, the
full set of channels must be identified and investigated.

Introduction 1

We and our cohabitants are fortunate winners. We have enjoyed reproductive 2

success due to a combination of luck and an array of skills among which acumen in 3

cost/benefit decision making is of paramount importance. Rudimentary ability in this 4

domain can be implemented simply, as is evident from the behavior of animals whose 5

nervous systems comprise only hundreds of neurons [1]. In the multi-million-cell nervous 6

systems of mammals, the foundations of more sophisticated cost/benefit decision 7

making are thought to have been heavily conserved [2, 3]. If so, the rodent species so 8

widely studied in neurobiological laboratories are equipped with variants of 9

decision-making circuitry that continues to shape our own choices and actions. 10

A seminal moment in the study of the neural foundations of cost/benefit decision 11

making was the discovery that rats would work vigorously and indefatigably for focal 12

electrical stimulation of sites in the basal forebrain and midbrain [4]. Despite the 13

artificial spatiotemporal distribution of the evoked neural activity, the rats behaved as if 14

procuring a highly valuable, natural goal object, such as energy-rich food. This striking 15

phenomenon, dubbed “intracranial self-stimulation” (ICSS), has been investigated 16

subsequently by means of perturbational, pharmacological, correlational, computational, 17

and behavioral methods that have seen dramatic recent improvements in precision, 18

specificity, and power. For example, the electrical stimulation employed originally 19

activates neurons near the electrode tip with relatively little specificity, whereas 20

contemporary optogenetic methods restrict activation to genetically defined neural 21

populations. Currently employed pharmacological agents are far more selective than the 22

drugs employed in the early studies. Whereas the crude response counts used initially to 23

measure behavioral output are confounded by inherent non-linearity as well as by 24

disruptive side-effects of drugs and motoric activation, contemporary psychophysical 25

methods support inference of the strength and subjective cost of the induced reward as 26

well as the form and parameters of the functions that map observable inputs and 27

outputs into the variables that determine behavioral-allocation decisions. In the current 28

study, we combine, for the first time, direct, specific optical activation of midbrain 29

dopamine neurons, modulation of dopaminergic neurotransmission with a highly 30

selective dopamine-reuptake blocker, psychophysical inference of benefits and costs, 31

computational modeling of the processes that intervene between the optical activation 32

of the dopamine neurons and the consequent behavioral output, and simulation of 33

model output. 34
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The role of midbrain dopamine neurons in ICSS 35

Performance for rewarding brain stimulation has long been known to depend on 36

dopaminergic neurotransmission. Drugs that boost dopamine signaling decrease the 37

strength of the stimulation required to support a given level of ICSS, whereas drugs 38

that decrease dopamine signaling necessitate a compensatory increase in stimulation 39

strength at lower doses and eliminate responding at higher ones [5, 6]. It was believed 40

initially that these effects are due to direct activation of dopaminergic neurons by the 41

electrical stimulation. However, dopaminergic fibers are very fine and unmyelinated [7]. 42

Consequently, they have very high thresholds to excitation by extracellular currents. 43

Robust ICSS of sites along the medial forebrain bundle (MFB) is observed using 44

stimulation parameters too weak to produce substantial recruitment of dopaminergic 45

fibers [8]. Moreover, estimates of recovery of refractoriness, conduction velocity, and 46

frequency-following fidelity in the directly activated fibers underlying the rewarding 47

effect implicate fibers that are myelinated and far more excitable than those of 48

dopamine neurons [9–14]. To reconcile these observations with the pharmacological 49

evidence for dopaminergic modulation of ICSS, a “series-circuit” model was 50

proposed [10–12,15,16]. According to this model, myelinated fibers of non-dopaminergic 51

neurons transsynaptically activate midbrain dopamine neurons, thus generating the 52

rewarding effect. This model of brain reward circuitry, which has remained virtually 53

unchallenged for nearly forty years, fails to provide a cogent account for the new data 54

and simulations we report here. We thus propose a fundamental revision. 55

The roots of the current study 56

The roots of the current experiment on the rewarding effect produced by optical 57

activation of midbrain dopamine neurons lie in earlier work in which electrical 58

stimulation of the MFB served as the reward. We use the acronyms, eICSS and oICSS, 59

to refer to operant performance for electrical and optical brain stimulation, respectively 60

(Tab 1). Four lines of work on eICSS gave rise to the current oICSS study: 61

1. characterization of spatiotemporal integration in the underlying neural circuitry, 62

2. measurement of how the intensity of the rewarding effect grows as a function of 63

the aggregate rate of induced firing in the directly activated neurons, 64

3. measurement and modeling of how performance for the electrical reward depends 65

on its strength and cost, and 66

4. determination of the stage of processing at which perturbation of dopaminergic 67

neurotransmission alters eICSS. 68

The counter model 69

According to the “counter model” of spatiotemporal integration in the neural 70

circuitry underlying eICSS [17–19], the neural signal that gives rise to the rewarding 71

effect reflects the aggregate rate of induced firing produced by a pulse train of a given 72

duration. Neither the number of activated neurons nor the rate at which they fire 73

matter per se; it is their product that determines the intensity of the rewarding effect. 74

The counter model is well supported empirically [20–23]. An analogous coding principle 75

has been proposed by Murasugi, Salzman & Newsome [24] to account for the effect of 76

electrical microstimulation of cortical area V5 on visual-motion perception. 77

The growth of reward intensity as a function of the aggregate rate of firing 78

An analogy may help convey what we mean by “reward intensity.” Imagine that a 79

rat tastes a sucrose solution. The rat’s gustatory system is thought to provide two 80
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different kinds of information: a) sensory data indicating the concentration and identity 81

of the tastant and b) evaluative data indicating what the sucrose is worth to the rat in 82

its current physiological and ecological state [25, 26]. These two signals could diverge, 83

for example when an overfed rat encounters increasingly concentrated solutions. In that 84

case, the sensory “sweetness” signal may continue to increase while the evaluative 85

“goodness” signal plateaus or declines. We use the term, “reward intensity,” by analogy 86

to the evaluative signal. Indeed, we have shown that rats can compare the 87

reward-intensity signals produced by MFB stimulation and intraoral sucrose so as to 88

determine which is larger and can combine them such that a compound 89

electrical-gustatory reward is worth more than either of its constituents delivered 90

singly [27]. 91

The reward-growth function translates the aggregate rate of stimulation-induced 92

firing into the intensity of the rewarding effect. Gallistel’s team used operant matching 93

to describe this function [21–23,28]. According to the matching law [29–32], subjects 94

partition their time between two concurrent variable-interval schedules in proportion to 95

the relative payoffs from the two schedules. If so, when two schedules are each 96

configured to deliver stimulation trains, the relative payoffs can be inferred from the 97

ratios of work times and reward rates. 98

Simmons and Gallistel [23] brought out a key feature of the reward-growth function: 99

given a sufficiently high current, reward intensity saturates at pulse frequencies well 100

within the frequency-following capabilities [8] of the directly stimulated substrate. In 101

other words, reward intensity levels off as pulse frequency increases even though the 102

output of the directly stimulated neurons continues to grow. The reward-growth 103

function they described is well fit by a logistic [33], a function that is S-shaped when 104

plotted on semi-logarithmic coordinates (reward intensity vs the logarithm of the pulse 105

frequency). 106

The reward-mountain model 107

The behavioral method employed in this study entails measurement of 108

time-allocation decisions [34] by laboratory rats. The method is based on a model 109

(Fig 1) of how time allocation is determined by the strength and cost of reward. 110

According to Herrnstein’s single-operant matching law [30,31,35], subjects performing 111

an operant response, such as lever pressing, to obtain an experimenter-controlled reward 112

partition their time between “work” (performance of the response required to obtain the 113

reward), and “leisure” (performance of alternate activities such as grooming, exploring, 114

and resting). The higher the benefit from the experimenter-controlled reward and the 115

lower its cost, the larger the proportion of time devoted to work. 116

Fig 1. Core components of the reward-mountain model. The self-stimulating
rat partitions its time between working for the rewarding stimulation and performing
alternate activities, such as grooming, exploring, and resting. The payoff from work
depends on the benefit it provides and the cost it entails. The benefit arises from the
induced neural activity (shown here to arise from electrical stimulation), whereas the
costs are of two different sorts: the intensity of the perceived effort entailed to meet the
response requirement and the opportunity cost of the time so expended. The ratio of
benefits to costs constitutes the payoff from the experimenter-controlled reward, which
is compared to the payoff from alternative activities by means of a behavioral allocation
function derived from Herrnstein’s single-operant matching law. The result of this
comparison determines allocation of the subject’s time.

The reward-mountain model [36–38] treats the rewarding stimulation as a fictive 117
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benefit; although it satisfies no known physiological need, the effect of the stimulation 118

mimics goal objects that do. Two types of costs are incorporated in the model. The 119

first is the intensity of the perceived effort entailed in meeting the response requirement, 120

which consists of holding down a lever for a duration determined by the experimenter. 121

While the rat works to hold down the lever, it cannot groom, rest, or explore. Thus, it 122

pays an opportunity cost [39], which consists of the benefits that would have been 123

obtained from the foregone alternative activities. 124

In the spirit of the expanded matching law [32], the reward-mountain model equates 125

the payoff from work to the ratio of its benefits and costs. A behavioral-allocation 126

function [37] derived from the generalized matching law [40] compares the payoffs from 127

work and leisure so as to determine the allocation of time to these two sets of activities. 128

The effect of perturbing dopamine neurotransmission on the reward 129

mountain 130

The curve-shift [41–43] or progressive-ratio [44] methods are typically regarded as 131

the “gold standards” for measuring drug-induced changes in the behavioral effectiveness 132

of brain-stimulation reward. These methods assess shifts in the functions relating 133

performance vigor to electrical pulse frequency (in the case of the curve-shift method) or 134

to the number of responses required to earn a reward (in the case of the progressive 135

ratio method). The reward-mountain model shows that these two-dimensional methods 136

yield fundamentally ambiguous results [36, 38]. Performance depends both on the 137

strength of the electrical reward (determined by the pulse frequency) and on response 138

cost (determined, in progressive-ratio testing, by the number of required responses per 139

reward). This dependence is described by a surface in a three-dimensional space 140

(reward-seeking performance versus pulse frequency and response cost (Fig 1)). When 141

the surface is shifted along one of the axes representing the independent variables, its 142

silhouette may also shift along the orthogonal axis [36–38]. An observer using either the 143

curve-shift or progressive-ratio methods views only the silhouette of the surface and 144

thus cannot determine in which way the surface itself (rather than its silhouette) has 145

been displaced. Did administration of a drug shift the reward-growth function, displace 146

the mountain along the cost axis, or both? An observer using either of these convention 147

methods cannot know. In contrast, an observer using the three-dimensional 148

reward-mountain model can answer definitively because the direction of displacement is 149

determined unambiguously [36–38]. 150

Shizgal’s team has used the reward-mountain model to assess the effects of 151

perturbing dopaminergic neurotransmission on performance for rewarding electrical 152

stimulation of the MFB [38,45,46]. They found that enhancement of dopaminergic 153

neurotransmission by means of dopamine-transporter blockade [38, 45] or attenuation by 154

means of dopamine-receptor blockade [46] shift the reward mountain almost uniquely 155

along the axis representing response cost. This implies that, contrary to what was long 156

believed [47,48], the contribution of dopaminergic neurotransmission to 157

brain-stimulation reward is brought to bear downstream (at, or beyond the output) of 158

the reward-growth function. 159

The empirical question and its significance 160

Rats [49] and mice [50, 51] will perform operant responses to obtain direct optical 161

stimulation of midbrain dopamine neurons. The specific empirical question posed in the 162

present study is whether the effect of dopamine-reuptake blockade on performance for 163

rewarding optical stimulation of midbrain dopamine neurons, as measured by shifts in 164

the reward mountain, mimics the effect of this manipulation on performance for 165
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rewarding electrical stimulation of the MFB [38,45]. The outcome matters in at least 166

two ways. First, it bears on the issue of how the output of midbrain dopamine neurons 167

contributes to reward pursuit. Second, it bears on the series-circuit model that, on 168

casual consideration, appears to integrate the findings obtained by means of direct, 169

specific, optical activation of dopamine neurons with the older findings obtained by 170

means of electrical stimulation that activates dopamine neurons indirectly. 171

Fig 2 illustrates the series-circuit model [10–12,15,16], which holds that the 172

rewarding effect produced by electrical stimulation of the MFB arises from the 173

transsynaptic activation of midbrain dopamine neurons. The left half of the figure 174

depicts the generation of the reward-intensity signal subserving eICSS. The observed 175

displacement of the reward mountain by perturbation of dopaminergic 176

neurotransmission [38,45,46] requires that the reward-growth function be positioned 177

upstream (to the left) of the input to the midbrain dopamine neurons. 178

Fig 2. The series-circuit model. According to this model, the rewarding effects
produced by both electrical stimulation of medial-forebrain-bundle (MFB) neurons and
optical stimulation of midbrain dopamine neurons have a common cause: activation of
midbrain dopamine neurons. This activation is due to transsynaptic excitation in the
case of eICSS and direct excitation in the case of oICSS. The results of prior eICSS
studies [38, 45, 46] require that drugs that perturb dopaminergic neurotransmission alter
the computation of reward intensity by actions downstream from the output of a logistic
reward-growth function (leftmost box containing an S-shaped curve). The results of the
present study require that a similar reward-growth function lies downstream from the
dopamine neurons (rightmost box containing an S-shaped curve). The boxed low-pass
filter symbols represent the frequency-following functions that map the electrical
pulse-frequency into the induced frequency of firing in the directly stimulated neurons
subserving eICSS or the optical pulse-frequency into the induced frequency of firing in
the dopamine neurons subserving oICSS. Kds (ds stands for “directly stimulated”)
scales the input to the reward-growth function for eICSS, whereas Kda scales the input
to the reward-growth function for oICSS. Krg scales the output of the reward-growth
functions.

The right half of Fig 2 depicts the generation of the reward-intensity signal 179

subserving oICSS. The four components to the right of the dopamine neurons represent 180

the hypothesis that reward-intensity signals subserving eICSS and oICSS are computed 181

in an analogous fashion. As we will show, this hypothesis is supported by the results of 182

the current study. 183

Dopamine-transporter blockade increases stimulation-induced dopamine release and 184

thus rescales the input to the reward-growth function shown in the right-hand portion 185

of Fig 2 (via the triangular amplifier symbol labeled “Kda”). Such an effect shifts the 186

reward-growth function leftward along the logarithmic pulse-frequency axis due to the 187

increased “bang for the buck,” dragging the reward mountain with it. The results 188

confirm this prediction. These shifts along the pulse-frequency axis are orthogonal to 189

those observed in the eICSS studies. We show below that the series-circuit model 190

founders on this discrepancy: it fails to provide a cogent, unified account of both the 191

prior eICSS and present oICSS data. Thus, we advocate abandoning the series-circuit 192

model that has figured so heavily in accounts of eICSS over the past four decades. In its 193

place, we develop a new account that can accommodate both the prior eICSS and the 194

present oICSS findings. 195
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The issues addressed by the simulations 196

Multiple non-linear functions intervene between the stimulation we deliver to the 197

brain and the behavioral consequences we observe. 198

1. The firing frequency of the activated neurons eventually rolls off as pulse 199

frequency is increased sufficiently [8]. 200

2. The intensity of the rewarding effect is an S-shaped function of the aggregate rate 201

of induced impulse flow [22,23,28]. 202

3. Subjective opportunity cost is a non-linear function of objective opportunity 203

cost [39]. 204

4. Although the form of the function has yet to be described empirically, subjective 205

effort cost is almost surely a non-linear function of the objective work requirement, 206

rising towards infinity as the physical capabilities of the subject are exceeded. 207

5. Allocation of behavior to eICSS or oICSS is an increasing sigmoidal function of 208

reward intensity and a decreasing sigmoidal function of subjective 209

cost [30, 31,36–38]. 210

Intuitive analysis and verbal reasoning rapidly come to grief when confronted with 211

multiple, interconnected non-linearities. To understand how such a set of non-linear, 212

interacting functions produces systematic behavior, it is necessary to capture the known 213

relationships in a quantitative model and to simulate its output in response to the 214

experimental inputs. This is what we have done to complement the empirical 215

experiment. These simulations are summarized here and reported in detail in the 216

accompanying Matlab® Live Script. 217

The modeling and simulations provide mathematical and logical support for the 218

proposed interpretation of the experimental results and their integration into an account 219

of both oICSS and eICSS. They provide a systematic means for working out the minimal 220

set of “moving parts” that determine reward pursuit, for making testable predictions 221

about the effects of future manipulations, for shedding new light on the role of dopamine 222

neurons in reward pursuit, and for guiding efforts to identify the non-dopaminergic 223

components of the neural circuitry in which the dopamine neurons are embedded. 224

Table 1. Definition of acronyms and symbols

Acronym
or Symbol Definition

a price-sensitivity exponent
AIC Akaike Information Criterion
BSR brain stimulation reward
Cr Conditioned reward value
DAPI 4′,6-diamidino-2-phenylindole
eICSS electrical intracranial self-stimulation
eYFP enhanced)yellow fluorescent protein
Ffiring firing frequency induced by electrical or optical stimulation
Ffiring

hm
firing frequency that generates a reward of half-maximal intensity

Fpulsehm
pulse frequency required to drive reward intensity to half its maximum
value

F ∗
pulsehm

estimated pulse frequency required to drive reward intensity to half its
maximum value if frequency-following fidelity were perfect

g exponent governing the steepness of reward-intensity growth
ICSS intracranial self-stimulation
Krg reward-intensity scalar
MFB medial forebrain bundle
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Table 1. Definition of acronyms and symbols

Acronym
or Symbol Definition

oICSS optical intracranial self-stimulation
Pobje

objective price at which time allocation is halfway between its minimum
and maximum values

P ∗
obje

estimated objective price at which time allocation is halfway between its
minimum and maximum values when frequency-following fidelity is perfect

Rbsr peak reward intensity achieved over the course of a stimulation train
Tmax maximal time allocation
Tmin minimal time allocation
TH tyrosine hydroxylase
YFP shorthand for eYFP

Results 225

Seven rats completed both phases of the study: the power-frequency trade-off and 226

the pharmacological experiment. The data are presented first in two dimensions. The 227

reward-mountain model is then applied to integrate the results of the pharmacological 228

experiment into a three-dimensional structure, to document the effects of dopamine- 229

transporter blockade on the position of the reward mountain, and to interpret these 230

displacements in terms of drug-induced changes in the values of the variables that 231

determine reward pursuit. 232

Power-frequency trade-off 233

The data in Fig 3 were obtained using the FR-1 task. The number of responses 234

emitted per 2-min trial by an exemplar rat (Bechr29) is shown as a function of pulse 235

frequency and optical power; the results for the remaining rats are shown in the 236

supporting-information file (Figs S1-S6 ). Response rates grew as the pulse frequency 237

was increased, in some cases (Bechr26-29) up to, or well beyond, optical pulse 238

frequencies of 40 pulses s-1. In rats Bechr14, 19, 21, and 27, maximum response rats 239

grew as a function of pulse frequency over the lower powers but approached asymptote 240

as the power was further increased. In the remaining rats, maximum response rates grew 241

as a function of pulse frequency over the entire range of tested powers. The position of 242

the rate-frequency curves generally shifted leftwards as optical power was increased. 243

Fig 3. Rate-frequency curves as a function of optical power. The number of
responses emitted per 2-min trial by an exemplar rat (Bechr29) is plotted as a function
of pulse frequency and optical power.

Time allocation as a function of reward strength and cost 244

The data in Fig 4 were obtained using the lever-hold-down task. The 245

two-dimensional views shown here were eventually combined (see below) to generate 246

three-dimensional reward mountains. The curves in Fig 4 plot time allocation as a 247

function of reward strength (“Pulse Frequency”) or opportunity cost (“Price”). The 248

results are from an exemplar rat (Bechr29). Panel A shows frequency-sweep results: 249

Time allocation increased as a function of optical pulse frequency. The time-allocation- 250

versus-pulse-frequency curve obtained following blockade of the dopamine transporter 251
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by GBR-12909 is shifted leftwards with respect to the curve obtained in the vehicle 252

condition. Panel B shows price-sweep results: Time allocation decreased as a function 253

of increases in opportunity cost (cumulative time that the lever had to be held down to 254

trigger a reward). The time-allocation-versus-price curve obtained following blockade of 255

the dopamine transporter is shifted rightwards with respect to the curve obtained in the 256

vehicle condition. Radial-sweep data were obtained by conjointly decreasing the pulse 257

frequency and increasing the price in stepwise fashion over consecutive trials. Panels C 258

and D show the same radial-sweep results from two orthogonal vantage points. Time 259

allocation is plotted against pulse frequency in panel C and against price in panel D. 260

Time allocation increased as a function of pulse frequency and decreased as a function 261

of price. The time-allocation curve obtained following blockade of the dopamine 262

transporter is shifted leftwards along the pulse-frequency axis with respect to the curve 263

obtained in the vehicle condition and rightwards along the price axis. Graphs for the 264

remaining rats are shown in the supporting-information file (Figs S7-S12 ). 265

Fig 4. Time allocation as a function of reward strength and cost. A: Time
allocation as a function of pulse frequency (reward strength) in the vehicle (upright
triangles) and drug (inverted triangles) conditions. B: Time allocation as a function of
price (opportunity cost) in the vehicle (squares) and drug (diamonds) conditions. In the
radial-sweep condition, the pulse frequency was decreased and the price decreased
concurrently, in stepwise fashion, over consecutive trials. Time allocation is plotted as a
function of pulse frequency in panel C: and as a function of price in panel D:. Data
from the vehicle condition are represented by circles, whereas data from the drug
condition are represented by Stars of David. The error bars represent 95% confidence
intervals. Data are from an exemplar rat (Bechr29).

The drug-induced shifts in the curves shown in Figs 4 and S7-S12 are inherently 266

ambiguous: displacement of these curves along a given axis could be due to any 267

combination of displacements of the underlying reward-mountain structure along the 268

price and/or pulse-frequency axes [37, 38,52]. This ambiguity is removed by fitting the 269

reward-mountain model, which expresses time allocation as a function of both the price 270

and strength of the rewarding stimulation. In the three-dimensional space of the 271

reward-mountain model, we can determine unambiguously the degree to which 272

dopamine-transporter blockade dispaces the mountain along the price and 273

pulse-frequency axes. 274

Model fitting and selection 275

The standard version of the reward-mountain model has six parameters: 276

{a, Fpulse
hm

, g, Pobje
, Tmax, Tmin}. The Fpulse

hm
and Pobje

parameters set the 277

location of the mountain along the pulse-frequency and price axes, respectively. 278

Fpulse
hm

is the pulse frequency at which reward intensity is half maximal, whereas 279

Pobje
is the price at which time allocation to pursuit of a maximal reward falls midway 280

between its minimal and maximal values, Tmin (minimum time allocation) and Tmax 281

(maximal time allocation). The slope of the mountain surface along the price axis is set 282

by the price-sensitivity exponent, a, whereas the slope along the pulse-frequency axis is 283

determined both by a and by the reward-growth exponent, g. 284

In previous studies ( [38, 45]), a seven-parameter version of the reward-mountain 285

model sometimes performed better than the standard six-parameter version. The added 286

parameter accommodates cases in which minimum time allocation is higher at low 287

prices than at higher ones. This parameter is called Cr and has been interpreted to 288

represent a reward value assigned to the lever and/or to the act of pressing it [38]. 289
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Both the six- and seven-parameter versions of the reward-mountain model are 290

derived in the supporting-information file. (See: Derivation of the reward-mountain 291

model.) 292

There is a trade-off between the number of parameters fit to a dataset and the 293

precision with which the value of each parameter can be estimated. In order to restrict 294

the number of fitted parameters, we forced common values of Tmax and Tmin to be fit 295

to the vehicle and drug data. The two location parameters were always free to vary 296

across the vehicle and drug conditions. Four variants of the six-parameter model were 297

fit. The variants are distinguished by whether either, both, or neither of the a and g 298

parameters were free to vary across the vehicle and drug condition. Eight variants of 299

the seven-parameter model were fit. These variants are distinguished by the 300

combinations of the a, Cr, and g parameters that were free to vary across the vehicle 301

and drug conditions. 302

The 12 candidate models (four variants of the six-parameter version and eight 303

variants of the seven-parameter version) are described in Tab S3. The Akaike 304

Information Criterion (AIC) [53] was used to identify the best-fitting model for each rat. 305

This statistic implements a trade-off between goodness of fit and simplicity. Thus, the 306

AIC penalizes models with large numbers of parameters in comparison to simpler ones. 307

The fits of all of the candidate models to the reward-mountain data from all seven rats 308

converged successfully. Detailed results for rat Bechr29 are shown in Tab S4, and results 309

for all rats are shown in Tabs S5,S6. 310

Fitted reward-mountain surfaces 311

The reward-mountain surfaces fit to the vehicle and drug data from rat Bechr29 are 312

shown in Fig 5, whereas those fit to the data from the remaining rats are shown in the 313

supporting-information file (Figs S17-S22). 314

Fig 5. Reward-mountain surfaces fit to the vehicle and drug data from rat
Bechr29 The surfaces of the reward-mountain shell are shown in gray. The thick black
line represents the contour mid-way between the minimal and maximal estimates of
time allocation (the estimated altitudes of the valley floor and summit). Mean
time-allocation values for the pulse frequency, price, and radial sweeps are denoted by
red pyramids, blue squares, and green polyhedrons, respectively.

To facilitate visualization of the drug-induced shift in the location of the reward 315

mountain in Fig 5, the surfaces have been re-plotted as contour graphs in Fig 6. 316

Horizontal comparison in Fig 6 shows that blockade of the dopamine transporter shifted 317

the mountain downwards along the pulse-frequency axis, whereas vertical comparison 318

shows that the mountain shifted rightwards along the price axis. The shifts are 319

summarized in the bar graph; dot-dash cyan lines show estimates corrected for changes 320

in frequency-following fidelity due to the drug-induced displacement of the mountain 321

along the pulse-frequency axis. The rationale for the correction and the details of its 322

implementation are described in the supporting-information file. (See sections 323

Parameters of the frequency-following function for oICSS and Correction 324

of the location-parameter estimates for changes in frequency-following 325

fidelity.) Contour and bar graphs for the remaining rats are shown in the 326

supporting-information file (Figs S23-S28). 327
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Fig 6. Contour graphs of the reward-mountain surfaces fit to the vehicle
and drug data from rat Bechr29. The values of the independent variables along
frequency sweeps are designated by red triangles, along price sweeps by blue squares,
and along radial sweeps by green circles. The values of the location parameters, Pobje

and Fpulsehm
, are indicated by blue vertical lines with diamond end points and red

horizontal lines with right-facing triangular end points, respectively. The shaded regions
surrounding the lines denote 95% confidence intervals. The vehicle data are shown twice,
once in the upper-left quadrant and once in the lower right. The dotted lines connecting
the panels designate the shifts in the common-logarithmic values of the location
parameters of the mountain, which are designated as {∆Pobje , ∆Fhm} and plotted in
the bar graph in the upper-right panel. The dot-dash cyan lines superimposed on the
bars show location-parameter estimates corrected for changes in frequency-following
fidelity due to the displacement of the mountain along the pulse-frequency axis. (See
section Correction of the location-parameter estimates for changes in

frequency-following fidelity in the supporting-information file.) The 95% confidence
intervals are shown in the bar graphs as vertical lines.

Location-parameter estimates 328

Fhm: The surface-fitting procedure returns the location-parameter value, Fpulse
hm

, 329

that positions the reward mountain along the pulse-frequency axis. In studies of eICSS 330

employing the reward-mountain model, it was assumed that this value corresponded to 331

the induced firing frequency in the directly activated neurons. This firing frequency is 332

the location parameter of the underlying reward-growth function. Given the exceptional 333

frequency-following fidelity of the directly activated neurons subserving eICSS of the 334

MFB [8], it is not unreasonable to assume that each pulse elicits an action potential in 335

most or all of the directly stimulated MFB neurons when the pulse frequency equals 336

Fpulse
hm

. In contrast, the findings reviewed in section Parameters of the 337

frequency-following function for oICSS of the supporting-information file argue 338

that such an assumption is untenable in the case of oICSS of channelrhodopsin-2 339

expressing midbrain dopamine neurons. We therefore used the data from the 340

rate-frequency curves obtained here (Figs 3 and S1-S6) and prior studies (e.g., [54]) to 341

estimate the firing frequencies corresponding to the Fpulse
hm

values. We label these as 342

F ∗
pulsehm

(rather than as Ffiring
hm

) because these values will be plotted along the 343

pulse-frequency axis, and we refer to them as “corrected” estimates of Fpulse
hm

. 344

Tab 2 shows the estimated drug-induced shifts in the location of the 345

reward-mountain core along the pulse-frequency axis. The shifts are the differences 346

between the common logarithms of the estimated firing frequencies (F ∗
pulsehm

) that 347

produced half-maximal reward intensities in the drug and vehicle conditions (Tab S7). 348

Also included are the differences between the estimates for the drug and vehicle 349

conditions and the 95% confidence intervals surrounding these differences. In all cases, 350

the confidence band excludes zero, thus meeting our criterion for a statistically reliable 351

effect. In six of seven cases, the sign of the difference is negative, indicating that the 352

drug shifted the reward mountain downwards along the pulse-frequency axis. Note that 353

the one discrepant shift (for Rat Bechr27) is the smallest. The values in the “Kdadrug
” 354

column give the proportional reduction in F ∗
pulsehm

produced by dopamine-transporter 355

blockade. 356
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Table 2. Drug-induced shifts of the reward mountain along the
pulse-frequency axis. The “log(F ∗

pulsehm
) Drg” and “log(F ∗

pulsehm
) Veh” columns

list the common logarithms of the values in the “F ∗
pulsehm

Drg” and “F ∗
pulsehm

Veh”

columns of Tab S7. The “diff” column shows the differences between the estimates for
the drug and vehicle conditions. The “diff Lo” and “diff Hi” columns designate the
lower and upper bounds of the 95% confidence interval surrounding these differences.
The “⋆” character in the “excl 0” column indicates that zero falls outside the 95%
confidence interval surrounding the estimates in the“diff” column. Differences so
designated meet our criterion for statistical reliability. The rightmost column lists the
value of Kda

drug
in Eqs S13,S14,S44 implied by the values in the “diff” column.

Rat log(F ∗
pulsehm

) log(F ∗
pulsehm

) diff diff diff excl 0 Kdadrug

Drg Veh Lo Hi

Bechr14 1.239 1.364 -0.126 -0.161 -0.100 ⋆ 1.335

Bechr19 1.015 1.160 -0.145 -0.206 -0.088 ⋆ 1.395

Bechr21 0.959 1.468 -0.508 -0.583 -0.449 ⋆ 3.224

Bechr26 1.195 1.339 -0.144 -0.165 -0.121 ⋆ 1.393

Bechr27 1.307 1.221 0.086 0.048 0.124 ⋆ 0.820

Bechr28 1.119 1.431 -0.313 -0.331 -0.295 ⋆ 2.055

Bechr29 1.260 1.420 -0.160 -0.179 -0.142 ⋆ 1.446

Pe: The estimates that locate the mountain along the price axis have also been 357

corrected so as to remove the contribution of the changes in frequency-following fidelity 358

due to the drug-induced displacement of the mountain along the pulse-frequency axis. 359

(In the supporting-information file, please see sections Correction of the 360

location-parameter estimates for changes in frequency-following fidelity, and Illustration 361

of the correction for imperfect frequency-following fidelity.) Tab 3 gives the common 362

logarithms of the corrected values (P ∗
obje

) listed in Tab S9 along with the differences 363

between the estimates for the drug and vehicle conditions and the 95% confidence 364

intervals surrounding these differences. In all cases, the confidence band excludes zero, 365

thus meeting our criterion for a statistically reliable effect. The signs of the differences 366

are all positive, indicating that under the influence of dopamine-transporter blockade, a 367

higher price was required to bring time allocated to pursuit of a maximal reward to its 368

middle value. With one exception (Rat Bechr27), the correction reduced the magnitude 369

of the drug-induced shift (as shown by the position of the dot-dash cyan lines in the 370

bar-graph panels of Fig 6 and S23-S28). 371
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Table 3. The location of the reward mountain along the price axis. The
“log(P ∗

e ) Drg” and “log(P ∗
e ) Veh” columns list the estimated values that the

log10 (Pobje) parameter would have attained in the drug and vehicle conditions,
respectively, had frequency following been perfect. The “diff” column shows the
differences between the estimates for the drug and vehicle conditions, whereas the
“diff Lo” and “diff Hi” columns designate the lower and upper bounds of the 95%
confidence interval surrounding these differences. The ⋆ character in the “excl 0”
column indicates that zero falls outside the 95% confidence interval surrounding the
estimates in the“diff” column. Differences so designated meet our criterion for
statistical reliability. The rightmost column lists the proportional drug-induced change

in the value of P ∗
e corresponding to the values in the “diff” column. (∆P ∗

e = 10
diff

)

Rat log(P ∗
e ) log(P ∗

e ) diff diff diff excl 0 ∆P ∗
e

Drg Veh Lo Hi

Bechr14 0.981 0.787 0.194 0.158 0.234 ⋆ 1.506

Bechr19 1.070 0.730 0.340 0.317 0.365 ⋆ 2.174

Bechr21 1.400 1.136 0.264 0.243 0.289 ⋆ 1.576

Bechr26 1.148 1.065 0.082 0.063 0.101 ⋆ 1.211

Bechr27 1.351 1.289 0.061 0.049 0.074 ⋆ 1.177

Bechr28 1.877 1.709 0.168 0.139 0.195 ⋆ 1.354

Bechr29 1.002 0.799 0.203 0.187 0.218 ⋆ 1.421

The corrected values of the two location parameters are shown in Fig 7.

Fig 7. Drug-induced shifts in the location parameters of the reward
mountain. The ∆log10(F

∗
hm) values give the shifts of the reward-growth function and

reward mountain along the pulse-frequency axis, whereas the ∆log10
(

P ∗
obje

)

values give
the shifts along the price axis. These values have been corrected for the estimated
change in frequency-following fidelity due to the drug-induced displacement of the
reward mountain along the pulse-frequency axis. According to the reward-mountain
model, the ∆log10(F

∗
hm) values reflect action of the dopamine transporter blocker prior

to the input to the reward-growth function, whereas the ∆log10(P
∗
e ) values reflect drug

action at, or beyond, the output of the reward-growth function. ∆log10(F
∗
hm) is

shorthand for ∆log10

(

F ∗
pulse

hm

)

.

372

The corrected values of the location parameters are uncorrelated in both the vehicle 373

(ρ = 0.37, p = 0.41) and drug (ρ = −0.24, p = 0.60) conditions), as are the 374

drug-induced shifts in these values (ρ = −0.2830; p = 0.5385, Fig S29). 375

All parameters of the best-fitting models for each rat are shown in Tabs S10-S15 in 376

the supporting information. (The values of the location parameters in these tables are 377

uncorrected.) 378

Histology 379

Immunohistology and confocal microscopy (Fig 8) confirms that the tips of all 380

optical-fiber implants (heavy, angled black lines) were located close to transfected 381

midbrain-dopamine neurons and that ChR2 was selectively expressed in TH-positive 382

neurons. 383
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Fig 8. Images of viral construct expression from rat BeChr29. upper left:
Schematic representation of a coronal section at the approximate location of the
optical-implant tip (modified from [55]). Heavy angled black lines denote the
optical-fiber tracks. upper right: Representative immunohistochemical images. YFP
and TH staining is shown in the top and middle panels respectively. The bottom panel
shows the co-expression of YFP and TH (overlay) along with DAPI for anatomical
reference. The arrow indicates the approximate location of the tip of the optical implant
used for oICSS. bottom High magnification 3D reconstruction of the area below the
optical-fiber track. Left: YFP-positive neurons; Middle: TH-positive neurons; Right:
Overlay of YFP, TH and DAPI staining. Note that YFP is expressed in TH-positive
neurons.

Discussion 384

Decades of psychophysical research on eICSS have provided a detailed portrait of the 385

neuro-computational processes that translate a train of electrical current pulses into 386

subsequent reward-seeking behavior. The reward-mountain model [36–38] integrates 387

these findings so as to predict the allocation of behavior to eICSS from the strength and 388

cost of the rewarding stimulation. The Matlab® live script documented in the 389

supporting-information file simulates several of the principal validations studies, and 390

compares these simulations to empirical results. The simulations and empirical data 391

show that rescaling the input to the reward-growth function shifts the reward mountain 392

along the pulse-frequency axis, whereas rescaling performed at, or beyond, the output of 393

the reward-growth function shifts the reward mountain along the price axis. 394

Substitution of optical for electrical stimulation [49–51] offers significant advantages: 395

the resulting neural activation is confined to a known, genetically specified, neural 396

population, and the neurons that express the light-sensitive transducer molecule are 397

readily visualized. However, few psychophysical data have been reported concerning the 398

processes that translate the optical input into observable reward-seeking behavior. The 399

results of the present study demonstrate that the dependence of oICSS and eICSS on 400

the strength and cost of rewarding stimulation is formally similar. Nonetheless, boosting 401

dopaminergic neurotransmission by means of dopamine-transporter blockade alters 402

oICSS of midbrain dopamine neurons and eICSS of the MFB in strikingly different ways. 403

The reward-mountain model was developed to account for data from eICSS 404

experiments. We begin by considering what the current results tell us about 405

generalization of this model to oICSS. We then discuss the significance of the 406

location-parameter values that position the surfaces fitted to the vehicle data within the 407

space defined by the strength and cost of the optical reward. Next, we turn to the main 408

experimental question posed in this study: how does blockade of the dopamine 409

transporter alter the position of the reward mountain? Finally, we discuss the 410

implications of those drug-induced shifts, and we thereby show why a new way of 411

thinking about brain reward circuitry is required to integrate the results of the 412

pharmacological challenge with existing eICSS data. 413

The reward-mountain model generalizes successfully to oICSS 414

The shape of the reward-mountain surface fitted to the oICSS data (Figs 5, 415

S17-S22) resembles that of the surfaces fit to eICSS data reported 416

previously [8, 37–39,45,46,56,57]. Time allocation falls as pulse-frequency is decreased 417

and/or price is increased. The resemblance between the shapes of the surfaces fitted to 418

prior eICSS and current oICSS data suggests that the reward-mountain model 419
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generalized well to the case of oICSS and that pursuit of rewarding optical or electrical 420

stimulation depends similarly on the strength and cost of reward. 421

Embedded within the reward-mountain model derived in the context of eICSS 422

studies is the notion that reward intensity depends on the aggregate rate of firing 423

induced in the directly stimulated neurons by a pulse train of fixed duration [20–23,33]. 424

A definitive test of this “counter model” [19] has yet to be reported in the case of oICSS. 425

Nonetheless, there are indications that the counter model holds in this case as well. 426

Ilango and colleagues trained mice to press a lever to receive optical stimulation of 427

ChR2-expressing midbrain dopamine neurons [58]. They showed that lever-pressing 428

rates increased as a function of both pulse duration and optical power, two variables 429

that conjointly determine the number of neurons activated by the optical stimulation. 430

Lever-pressing also increased when an 8-pulse train was delivered at progressively higher 431

pulse frequencies. This latter result cannot be linked unambiguously to the counter 432

model because the train duration covaried with the pulse frequency; in the case of 433

eICSS, the formal relationships between these two variables and reward intensity 434

differ [33]. The frequency-sweep data reported here were obtained with train duration 435

held constant. Thus, they complement and extend the findings of Ilango and colleagues 436

while avoiding the complication of covariation between the pulse frequency and train 437

duration. Time allocation increased systematically as a function of pulse frequency, as 438

the reward-mountain model and the counter model embedded within it predict. 439

Ilango and colleagues also measured changes in lever-pressing rates during 440

performance of oICSS on fixed-interval or fixed-ratio schedules of reinforcement [58]. 441

Response rates declined as either the minimum inter-reward interval or the required 442

number of responses per reward was increased. 443

Fixed-interval schedules set the minimum inter-reward interval, but the subject 444

determines the physical effort expended in harvesting the reward. Although only a 445

single response is required to trigger reward delivery after the fixed interval has elapsed, 446

subjects typically begin responding much earlier and thus expend more effort than is 447

strictly necessary [59]. Fixed-ratio schedules set the number of responses required to 448

trigger reward delivery but cede control of the minimum inter-reward interval to the 449

subject, who can vary response rate so as to bring reward delivery closer (or further) in 450

time, as Ilango and colleagues observed. In contrast to these two classic schedules, the 451

cumulative handling-time schedule employed here fixes both the minimum inter-reward 452

interval and the rate of physical exertion required to secure a reward. This makes it 453

possible to vary the opportunity cost of the reward independently of the required rate of 454

physical exertion, as was done here and in previous experiments carried out in the 455

reward-mountain paradigm. As in the case of the eICSS experiments, increases in the 456

opportunity cost (price) of the reward decreased time allocation systematically (Figs 4, 457

S7-S12, 6, S23-S28). 458

Vehicle condition: location parameters and their significance 459

Pulse-frequency axis: In rats working for fixed-duration trains of rewarding, 460

electrical, MFB stimulation, the parameter that positions the reward mountain along 461

the pulse-frequency axis, Fpulsehm
, depends on the stimulation current [36]. This 462

variable, (in conjunction with the pulse duration [18,60]) determines the number of 463

directly stimulated neurons [19] in a manner dependent upon their excitability and 464

spatial distribution with respect to the electrode tip. By analogy, we expect the number 465

of midbrain dopamine neurons recruited by optical pulses and trains of fixed duration to 466

depend on the optical power, the level of ChR2 expression in the dopamine neurons, 467

and the spatial distribution of these neurons with respect to the tip of the optical probe. 468
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Given the inevitable variation in ChR2 expression and probe-tip location, it is not 469

surprising that that Fpulsehm
varied over a wide range in the vehicle condition, from 470

16.3 - 35.8 pulses s-1 (Tab S7). Even after correction for differences in 471

frequency-following fidelity, the estimated firing frequencies induced by the Fpulsehm
472

values (i.e., F ∗
pulsehm

) vary more than twofold. 473

Price axis: In principle (and in contrast to F ∗
pulsehm

), the corrected estimate of the 474

parameter that positions the eICSS reward mountain along the price axis, P ∗
obje

, can be 475

compared meaningfully across subjects and electrical stimulation sites. The validity of 476

this comparison rests on the assumption that both the value of alternate activities, such 477

as grooming, resting, and exploring, and the effort cost of performing the 478

lever-depression task do not vary substantially across subjects or stimulation sites. If so, 479

then the price at which a maximally intense, stimulation-generated reward equals the 480

value of alternate activities (P ∗
obje

) reflects the maximum intensity of the rewarding 481

effect, independent of the value of the stimulation parameters required to drive reward 482

intensity to its upper asymptote. On this view, the rat is willing to sacrifice more 483

leisure in order to obtain strong stimulation of a“good” eICSS site than a poorer one. 484

Could such a comparison extend meaningfully to different forms and targets of 485

stimulation? The current oICSS experiment was carried out in the same testing 486

chambers as previous eICSS studies. If the value of alternate activities in that 487

environment does not change systematically as a function of whether electrical 488

stimulation of the MFB or optical stimulation of midbrain dopamine neurons serves as 489

the reward, then it is of interest to compare the P ∗
obje

values of the current study to the 490

Pobje values obtained in prior eICSS experiments. (For reasons discussed in section 491

Correction of the location-parameter estimates for changes in frequency-following 492

fidelity of the supporting-information file, the Pobje estimates from the eICSS studies do 493

not typically require correction for imperfect frequency-following fidelity). The results of 494

this comparison are intriguing. 495

The median of the corrected P ∗
obje

values for the vehicle condition of the present 496

study, 11.8 s, is marginally greater than the median of the 54 values reported in 497

previous eICSS studies [8, 37–39,45,46,56,57], but the range is much more extreme. 498

Whereas Pobje values typically vary over a roughly twofold range in the eICSS studies, 499

the P ∗
obje

values vary over a more than a tenfold range in the current oICSS dataset. 500

The maximum (56.4) is much greater than any value obtained in the eICSS studies, 501

whereas the minimum (5.4) is smaller. 502

According to the reward-mountain model, the large magnitude of the maximum 503

P ∗
obje

value means that direct optical stimulation of midbrain dopamine neurons can 504

produce a much more potent rewarding effect than electrical stimulation of the MFB, at 505

least in an extreme case. Perhaps the maximal intensity of the rewarding effects 506

reported here varies so profoundly across subjects because the activation of different 507

subsets of dopamine neurons is rewarding for different reasons. If so, the large range of 508

P ∗
obje

values would add to the accumulating evidence for functional heterogeneity of 509

midbrain dopamine neurons [61–68]. 510

The reward mountain was measured in only seven subjects in the current study, and 511

the dispersion of the tips of the optical probes is modest. Given these limitations and 512

the uncertainly inherent in estimating the location of the optically activated dopamine 513

neurons from the position of the tip, we cannot provide a meaningful assessment of 514

whether the maximum intensity of the rewarding effect, as indexed by theP ∗
obje

value, is 515

correlated with the location of the optically activated dopamine neurons. It would be 516

interesting to pursue this issue in a larger number of subjects and across a larger region 517
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of the midbrain. Mice can be trained to perform oICSS for stimulation of sites arrayed 518

across much of the medio-lateral extent of dopaminergic cell bodies in the ventral 519

midbrain, from the lateral portion of the substantia nigra to the medial boder of the 520

ventral tegmental area [69]. Does P ∗
obje

vary systematically as a function of tip location 521

across the full extents of the midbrain region where dopaminergic cell bodies are 522

located? 523

The reader may be tempted to ascribe the large variation in P ∗
obje

values to variables 524

such as across-subject differences in ChR2 expression and the location of the 525

optical-fiber tip. If, as we argue below, the form of the reward-growth function 526

resembles a logistic, such differences would have contributed to the variation in F ∗
pulsehm

527

values and not to the P ∗
obje

values. That is so because across-subject differences in 528

ChR2 expression and tip location influence the input to the reward-growth function: 529

the aggregate firing rate induced by the optical stimulation in the midbrain dopamine 530

neurons. In contrast, the scalar that determines the maximum reward intensity (Krg) 531

alters the output of the reward-growth function (Fig 2), and is one of the components 532

of the P ∗
obje

parameter (Eq S30). Thus the reward-mountain model holds that the value 533

of P ∗
obje

reflects the maximum intensity of the rewarding effect. 534

According to the argument that the F ∗
pulsehm

values, but not P ∗
obje

values, should 535

depend on local conditions such as ChR2 expression and the spatial distribution of 536

dopamine neurons with respect to the probe tip, the values of these two location 537

parameters should be uncorrelated. The results are consistent with this expectation. 538

Drug-induced shifts in the position of the reward mountain 539

Tabs 2, S8, S9 show that the dopamine-transporter blocker, GBR-12909, shifted the 540

reward mountain reliably along the pulse-frequency and price axes in all 7 rats. (Only 541

one result is discrepant with those from the rest of the group: the direction of the shift 542

in the data from rat Bechr27, which is also the smallest of the shifts along the 543

pulse-frequency axis.) The magnitudes of the shifts along the two axes are uncorrelated. 544

These results have multiple implications: 545

1. The reward-growth function responsible for oICSS has independent input-scaling 546

and output-scaling parameters and resembles a logistic. 547

2. The shifts along the pulse-frequency axis are due to an effect of the drug at, or 548

prior to, the input to the reward-growth function. 549

3. The shifts along the price axis are due to an independent effect of the drug at, or 550

beyond, the output of the reward-growth function. 551

4. The shifts along the pulse-frequency axis create grave problems for the hypothesis 552

that the rewarding effect produced by electrical stimulation of the MFB arises 553

solely from transsynaptic activation of midbrain dopamine neurons (the 554

series-circuit model). 555

The reward-growth function for oICSS 556

The effects of dopamine-transporter blockade on the reward mountain powerfully 557

constrain the underlying reward-growth function, and the functional form implied by 558

these results has far-reaching implications concerning the structure of brain-reward 559

circuitry. We develop this argument by first analyzing the form of the reward-growth 560

function underlying the reward-mountain model, then by demonstrating how the data 561

support this form, and finally by deriving the implications of this functional form for 562

the structure of brain-reward circuity. 563

The cross-sectional shape of the reward-mountain is determined principally by the 564
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form of the reward-growth function. If frequency-following fidelity were perfect and 565

subjective prices were equal to objective ones, then the contour lines would have the 566

same form as the reward-growth function (flipped and rotated, as shown in Fig 10 567

of [39].) 568

The subjective-price function [8] bends the contour lines towards the horizontal at 569

very low prices but has no effect on the location of the reward mountain within the 570

coordinates defined by the independent variables (price and pulse frequency). As 571

estimated by Solomon et al. [39], this function converges on the objective price, and the 572

discrepancy between the subjective and objective values is within 1% once the objective 573

price exceeds 3.18 s. The subjective and objective prices can no longer be distinguished 574

once the objective price approaches the values of the P ∗
obje

location parameter (Tab S9). 575

Given the frequency-following function assumed here, frequency-following fidelity is 576

imperfect over much or all of the tested range of pulse frequencies. That said, firing 577

frequency falls only slightly short of the pulse frequency at pulse frequencies below the 578

Fpulsehm
values (Fig S13). The procedure for generating the corrected values of the 579

parameter that locates the reward mountain along the pulse-frequency axis (F ∗
pulsehm

) 580

is designed to remove the influence of imperfect frequency-following fidelity. We 581

emphasize that the correction procedure adjusts the estimates of the shifts but cannot 582

manufacture these out of whole cloth. The correction is driven by differences in the 583

location along the pulse-frequency axis of the surfaces fit to the vehicle and drug data. 584

Had the drug failed to displace the mountain surface, the correction would be zero. 585

Although the correction is likely imperfect, the estimated drug-induced displacement of 586

the reward mountain along the pulse-frequency axis (Tab 2) should be due largely to 587

the effect of the drug on the reward-growth function. 588

Unlike the case for eICSS [21–23,28], the reward-growth function for oICSS has not 589

yet been measured directly. The fact that a reward-mountain surface based on a logistic 590

reward-growth function fits the current data well provides one hint that this function 591

may indeed be logistic in form, or very similar. But there is a deeper sense in which the 592

results of the present study provide crucial new information about the reward-growth 593

function for oICSS: The displacement of the reward mountain along both the strength 594

and cost axes by dopamine-transporter blockade requires that the reward-growth 595

function for oICSS have independent location-scaling and output-scaling parameters, 596

like the logistic reward-growth function for eICSS. To explain why this is so, it is helpful 597

to reformat the logistic reward-growth equation (Eq S11), as follows: 598

Rbsr

Krg

=

(

Ffiring

Ffiring
hm

)g

(

Ffiring

Ffiring
hm

)g

+ 1

(1)

where

Ffiring = firing rate produced by a pulse frequency of Fpulse

pulses s-1

Ffiring
hm

= firing rate required to drive reward intensity to half its
maximum value

g = exponent that determines the steepness of reward-intensity
growth as a function of pulse frequency

Krg = reward-growth scalar

Rbsr = reward intensity produced by Ffiring
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This format makes clear that Krg scales the output of the logistic reward-growth 599

function (Rbsr), whereas Ffiringhm
scales the input (Ffiring). These two scalars act 600

independently, as Fig 9 illustrates: changes in Ffiringhm
shift the reward-growth 601

function in the log-log plot in the upper-left panel along the X (pulse-frequency) axis, 602

whereas changes in Krg shift the log-log plot of the reward-growth function in the 603

upper-right panel along the Y (reward-intensity) axis. The inserts in Fig 9 and the 604

contour and bar graphs in Figs S30, S31 show that these orthogonal shifts move the 605

reward mountain along the pulse-frequency and price axes, respectively. 606

Fig 9. Influence of input- and output-scaling parameters on reward-growth
functions. The upper panels show logistic reward-growth functions, whereas the lower
panels show power functions. Solid lines map the pulse frequency into the reward
intensity using the assumed frequency-following function (see: Parameters of the
frequency-following function for oICSS). FFmax is the maximum firing frequency
(Ffiringmax

) attainable given the form and parameters of the assumed
frequency-following function. The dashed lines map the firing frequency into the
reward intensity. (These lines are drawn assuming perfect frequency-following fidelity
(FFmax = ∞), and thus pulse frequency and firing frequency are equivalent.) In the
case of the logistic reward-growth functions in the upper panels, changing the values of
the input- and output-scaling parameters produces independent effects, shifting the
reward-growth function in orthogonal directions. In contrast, changing the values of the
input- and output-scaling parameters produces identical effects on the power-growth
functions plotted in the lower panels.

What would happen if frequency-following fidelity remained the same, but the 607

input-scaling and output-scaling parameters of the reward-growth function were no 608

longer independent? We can simulate such a case by replacing the logistic 609

reward-growth function in Eq 1 with a power function: 610

Rbsr

Kout

=

(

Ffiring

Kin

)g

(2)

where

Kin = the input-scaling parameter

Kout = the output-scaling parameter

This power-growth function can be rewritten as 611

Rbsr

Kout ×Kin
−g

= Ffiring
g

(3)

In contrast to the case of logistic growth, the two scaling constants act jointly, in an 612

inseparable manner, and exclusively on the output of the function. Changing either 613

scaling constant shifts the power-growth function along the Y axis but does not change 614

its position along the X axis (lower panels of Fig 9). In contrast to the logistic function 615

(upper panels), the two constants act as one. Fig S33 shows that changing the value of 616

the input-scaling parameter of the power-growth function moves the reward mountain 617

only along the price axis, and Fig S34 shows that changing the value of the 618

output-scaling parameter has the same effect. 619

The three power-growth functions in the lower panels of Fig 9 designated by solid 620

lines all bend at the same location along the X axis. This is because the 621

frequency-following function that translates pulse-frequency into firing frequency 622

(Eq S1, Fig S13) levels off after that point, truncating the input. However, despite this 623
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common landmark, these functions lack a true location parameter: as shown by the 624

dashed lines, the underlying reward-growth function, which maps the firing frequency 625

into reward intensity, rises continuously over the entire domain. In contrast, the logistic 626

curves in the upper-left panel of Fig 9 level off at different locations along the X axis, as 627

determined by their Ffiringhm
(and g) values. 628

A location parameter analogous to Ffiringhm
can be defined for any monotonic 629

growth function that has a saturation point, like the logistic reward-growth function for 630

eICSS described by the matching data obtained by Gallistel’s group [21–23,28]. Such 631

curves have an implicit threshold pulse frequency that just suffices to drive reward 632

intensity out of the baseline noise and a saturating pulse frequency beyond which 633

further increases cannot drive reward intensity higher. The growth of reward intensity is 634

constrained to occur over this interval. The width of the interval between the threshold 635

and saturating pulse frequencies is determined by the reward-growth exponent, g 636

(Eq S11), whereas the location of this growth region along the function’s domain is set 637

by the input-scaling parameter, Ffiring
hm

. In this study, dopamine-transporter 638

blockade shifted the reward mountain reliably along the pulse-frequency axis 639

(Tab 2, Figs 6, S23-S28). A reward-growth function that lacks independent input- and 640

output-scaling parameters cannot produce such results, as the lower panels of Fig 9) 641

and Figs S33, Fig S34 illustrate. Instead, a logistic-like function is required. 642

Shifts along the pulse-frequency axis 643

Blockade of the dopamine transporter by GBR-12909 increases the amplitude of 644

stimulation-induced dopamine transients recorded in the nucleus-accumbens terminal 645

field [70, 71]. It follows that in the current experiment, a lower pulse frequency will 646

suffice to drive peak dopamine concentration to a given level under the influence of the 647

drug than in the vehicle condition. Transporter blockade would thus rescale upwards 648

the input to the reward-growth function. Such an effect is illustrated in Fig S16. The 649

amplification of the stimulation-induced dopamine release by GBR-12909 is represented 650

by the triangle labelled “Kda.” The drug rescales upwards the impact of the phasic 651

stimulation-induced increase in the aggregate firing rate (“DA drive”) on the input to 652

the S-shaped reward-growth function, which is thus shifted leftwards along the 653

pulse-frequency axis (Fig 9), dragging the reward-mountain surface downward along this 654

axis (Fig 6). New optical methods [72,73] facilitate concurrent measurement of 655

dopamine concentrations and behavioral allocation to reward pursuit and could thus 656

provide a direct test of the proposed mechanism for the observed decreases in F ∗
pulsehm

. 657

Shifts along the price axis 658

In addition to increasing the amplitude of stimulation-induced dopamine transients, 659

blockade of the dopamine transporter by GBR-12909 also increases the baseline 660

(”tonic”) level of dopamine [45,70,71]. The increase in dopamine tone could rescale the 661

output of the reward-growth function upwards, reduce subjective effort costs and/or 662

diminish the value of activities that compete with pursuit of the optical reward. Such 663

effects could arise from increases in Krg and/or decreases in Kec or Kaa (Fig S16). 664

Any combination of these effects could account for the observed rightward shifts of the 665

reward mountain along the price axis (Figs 6,S23-S28). This can be seen by 666

reformatting Eq S30 and expressing it verbally as follows: 667

Psube =
maximum reward intensity

subjective effort cost× value of competing activities
(4)

(Reward probability has been omitted from Eq 4 because the probability of reward upon 668
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satisfaction of the response requirement was equal to one in the present study.) 669

Teasing apart the three alternative accounts of the drug-induced change in P ∗
obje

may 670

not be feasible on the basis of behavioral data alone; it will likely require identification 671

of the neural substrates underlying each of these influences and measurement of how 672

dopamine-transporter blockade influences signal flow within each of these circuits. 673

Implications for the series-circuit model of brain-reward circuitry 674

According to the series-circuit model (Fig 2), the rewarding effects produced either 675

by electrical stimulation of the MFB or by optical stimulation of midbrain dopamine 676

neurons arise from a common cause: activation of the dopamine neurons. The optical 677

stimulation excites these neurons directly, whereas the electrical stimulation activates 678

them transsynaptically. We have explained above that a reward-growth function with 679

independent input-scaling and output-scaling parameters lies downstream from the 680

dopamine neurons responsible for oICSS. If so, boosting the peak stimulation-induced 681

dopamine concentration by means of transporter blockade should shift the contour map 682

of the reward mountain downwards along the pulse-frequency axis in both cases. It does 683

not. Whereas the predicted shift is seen in six of seven cases in the current oICSS results, 684

reliable shifts in this direction are absent in all eight cases reported in the analogous 685

eICSS study [45]. Similarly, reliable, downwards shifts were absent in seven of eight 686

eICSS subjects tested under the influence of AM-251, a cannabinoid CB-1 antagonist 687

that attenuates stimulation-induced dopamine release [57] and all six eICSS subjects 688

tested under the influence of the dopamine-receptor blocker, pimozide [46]. This sharp 689

discrepancy is highly problematic for the series-circuit model. If dopamine release in the 690

terminal fields of midbrain dopamine neurons is the sole and common cause of the 691

rewarding effect produced by electrical stimulation of the MFB and optical stimulation 692

of midbrain dopamine neurons, why does the reward mountain respond so differently to 693

perturbation of dopamine neurotransmission in the eICSS and oICSS studies? 694

Could the different mechanisms by which dopamine neurons are activated explain 695

why dopamine-transporter blockade fails to shift the reward mountain along the 696

pulse-frequency axis in rats working for electrical stimulation of the MFB but succeeds 697

in doing so in rats working for optical stimulation of the ventral midbrain? We doubt 698

that this is a viable explanation. To explain why we must first lay out in some detail 699

this argument for rescuing the series-circuit hypothesis. 700

Given that ChR2 is found throughout the excitable regions of the cell membrane and 701

that the optical probe is ∼10x larger than the soma of a dopamine neuron, the optically 702

generated spikes likely arise downstream from the somatodendritic region. If 703

dopamine-transporter blockade increased extracellular dopamine concentrations in the 704

somatodendritic region, this would increase binding of dopamine to D2 autoreceptors 705

and potentially decrease the sensitivity of these neurons to synaptic input. Such an 706

effect could well be bypassed in the case of oICSS due to the activation of the 707

ChR2-expressing neurons downstream from the somatodendritic region. 708

In order for such an explanation to account for the failure of GBR-12909 to shift the 709

reward mountain along the pulse-frequency axis in rats working for electrical 710

stimulation of the MFB, the putative autoreceptor-mediated inhibition would have to 711

exactly counteract the drug-induced enhancement of dopaminergic neurotransmission in 712

the terminal fields of those dopamine neurons that received sufficient excitatory 713

synaptic drive to overcome the influence of the D2 stimulation. (Recall that the reward 714

mountain was not shifted reliably along the pulse-frequency axis in either direction in 715

all eight subjects in the eICSS study.) Such exact counterbalancing seems unlikely. 716
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The impact of the dopamine transporter is very different in the somatodendritic and 717

terminal regions of dopamine neurons. The rate of dopamine reuptake is as much as 200 718

times higher [74] and dopamine-transporter expression from 3–10 times greater [74, 75] 719

in the terminal region than in the somatodendritic region. In a study carried out in 720

guinea-pig brain slices, GBR-12909 failed to increase electrically induced release of 721

dopamine in the VTA cell-body region [76], in contrast to its potent augmentation of 722

release in terminal regions. This drug greatly boosted the amplitude of dopamine 723

transients recorded voltammetrically in the nucleus accumbens terminal field of rats 724

working for rewarding electrical stimulation of the VTA [70]. A recent study [77] shows 725

very similar release of dopamine in the nucleus accumbens of rats working for electrical 726

stimulation of either the VTA or of the MFB site used in the eICSS study of the effect 727

of GBR on the reward mountain [45], suggesting that GBR-12909 would boost release of 728

dopamine in the nucleus accumbens in response to electrical stimulation of the MFB 729

site employed in the study of the effect of dopamine-transporter blockade on the 730

position of the reward mountain [45]. Moreover, cocaine, which also blocks the 731

dopamine transporter, greatly increased release of dopamine in the nucleus-accumbens 732

shell in response to transsynaptic activation of midbrain dopamine neurons by electrical 733

stimulation of the laterodorsal tegmental area [78,79]. Taken together, the evidence 734

makes it highly unlikely that in the reward-mountain study by Hernandez et al. [45], 735

autoreceptor-mediated inhibition prevented GBR-12909 from boosting phasic release of 736

dopamine in the terminal fields of midbrain dopamine neurons. Thus, the challenge 737

posed by the present data to the series-circuit model stands, and alternative accounts 738

must be explored. 739

Toward a new model of brain-reward circuitry 740

To account for both the eICSS and oICSS data in the simulations, we propose 741

development and exploration of models in which the reward-intensity signals evoked by 742

electrical stimulation of the MFB and by optical stimulation of midbrain dopamine 743

converge on a final common path. In such models, distinct reward-growth functions 744

translate aggregate firing rate in the MFB neurons and the dopamine neurons into 745

reward intensity. One such model is shown in Fig 10. The two reward-intensity signals 746

(the output of the two reward-growth functions) converge onto the final common path 747

underlying the behaviors entailed in approaching and holding down the lever. Thus, we 748

are proposing that reward-related signals flow in parallel through a portion of the brain 749

reward circuitry subserving ICSS and that the reward-intensity signal in the MFB limb 750

of the circuit bypasses the midbrain dopamine neurons en route to the final common 751

path.

Fig 10. Parallel pathways conveying reward-intensity signals to a final
common path. The directly activated neurons subserving eICSS of the MFB are
depicted at the left of the top row of symbols. The electrode also activates a second
population of fibers, with lower frequency-following fidelity [80], that project directly or
indirectly to midbrain dopamine neurons, which have yet lower frequency-following
fidelity. Optical stimulation of midbrain dopamine neurons activates only the lower limb
of the circuit. The outputs of the reward-growth functions in the two limbs converge
(Σ) on the final common path for reward evaluation and pursuit.

752

Convergence models face a seemingly daunting challenge: electrical stimulation of 753

the MFB activates midbrain dopamine neurons [71, 80–83]. If so, one would expect such 754

stimulation to drive signaling in both of the hypothesized converging pathways. 755

Wouldn’t this produce at least some displacement of the reward mountain along the 756
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pulse-frequency axis in response to dopamine-transporter blockade? The simulations 757

documented in the accompanying Matlab® Live Script show that this is not necessarily 758

the case. Indeed, the simulations show that given reasonable assumptions and values 759

drawn from the current data, a convergence model can replicate the findings reported 760

here. The following paragraphs explain how. 761

In the eICSS studies entailing measurement of the reward mountain under the 762

influence of drug-induced changes in dopamine neurotransmission, the train duration 763

was 0.5 s, whereas it was 1.0 s in the current oICSS study. Gallistel [18] and 764

Sonnenschein and colleagues [33] showed that the pulse frequency required to sustain 765

half-maximal eICSS performance is a rectangular hyperbolic function of train duration. 766

As shown in the Live Script, we used a rectangular hyperbolic function along with the 767

two sets of chronaxie values from those two papers (which are in remarkable agreement) 768

to estimate the change in Fpulse
hm

that would be expected from reducing the train 769

duration from 1 s to 0.5 s. The median Fpulse
hm

in the vehicle condition of the current 770

study was 27.1 pulses s-1 at a train duration of 1.0 s; the estimated and simulated value 771

at a train duration of 0.5 s for the vehicle condition is 37.6 pulses s-1. We then set 772

Fpulse
hm

for the upper (MFB) limb of the convergence model (Fig 10) to a value typical 773

of eICSS studies (∼77). The graphs in the upper row of Fig 11 were produced by 774

setting the MFB drive to a level equivalent to an optical pulse frequency of 40 pulses s-1 775

(a bit above the estimated Fpulse
hm

value for an oICSS train duration of 0.5 s). This 776

yields the green reward-growth curve shown in the upper-left graph in Fig 11. 777

Asymptotic reward intensity is quite low. One reason for this is that the lower-limb 778

Fpulse
hm

value is well within the roll-off range of the assumed frequency-following 779

function. Another is that frequency-following fidelity in the MFB neurons that generate 780

transsynaptic excitation of the midbrain dopamine neurons is poorer than in neurons 781

that produce the rewarding effect of electrical MFB stimulation [80]. The magenta 782

curve is the sum of the outputs of the upper (cyan curve) and lower (green curve) limbs. 783

The middle graph in the upper row of Fig 11 shows the simulated effect of 784

dopamine-transporter blockade, with Kda set to 1.4125 in the simulation (estimated 785

value in the current study: 1.3951). The simulated effect of the drug shifts the green 786

reward-intensity curve leftwards. Due to the improved frequency-following fidelity in the 787

drug condition, this boosts the upper asymptote of both the dashed green curve for the 788

lower limb and the dashed magenta curve for the summated output of the two limbs. As 789

a result, the reward mountain shifts rightward along the price axis (Fig S35). (In the 790

simulations, the correction for changes in frequency-following fidelity removes this 791

component of the shift along the price axis, as shown by the dashed cyan line in the bar 792

graph in Fig S35. The remaining component is due to simulated drug-induced reduction 793

in subjective effort costs.) 794

Fig 11. Reward growth in the convergence model The green curves show the
growth of reward intensity in the dopaminergic limb of the convergence model (Fig 10,
the cyan curves show the growth of reward intensity in the MFB limb, and the magenta
curves show the sum of the reward-intensity values in the two limbs. In the upper row,
the strength of the MFB drive is equivalent to optical stimulation more than sufficient
to generate half-maximal reward intensity, whereas in the lower row, the MFB drive is
equivalent to the strongest optical stimulation employed in the present study. The effect
of increased tonic-dopamine signaling is presumed to arise from decreases in subjective
effort costs or the value of alternate activities but not from upwards rescaling of
reward-intensity. Thus the vertical asymptotes of the cyan curves are not altered by the
drug.
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The left shift along the pulse-frequency axis in Fig 11 is insufficient to overtake the 795

cyan curve for the upper (MFB) limb of the model. Thus, the summated curve for the 796

drug condition (dashed magenta lines in the upper middle and upper right panels) is 797

not shifted laterally with respect to the summated curve for the vehicle condition (solid 798

magenta lines). As a consequence, the simulated reward mountain does not shift along 799

the pulse-frequency axis (Fig S35). Thus, the simulated output obtained using moderate 800

MFB drive on the dopamine neurons replicates the eICSS findings. 801

What would happen if the MFB drive were much stronger? We repeated the 802

simulations setting the MFB drive to the equivalent of an optical pulse frequency of 80 803

pulses s-1, around the highest value tested in most of the subjects in the current study. 804

The results are shown in the lower row of Fig 11. The reward-growth curve for the lower 805

(dopaminergic) limb of the model (green curve) is now shifted leftwards in the vehicle 806

condition (lower-left panel) and rises to a higher asymptote. From its enhanced starting 807

position along the abscissa, the simulated reward-growth curve for the lower limb in the 808

drug condition is now able to overtake the reward-growth curve for the upper limb, 809

shifting the dashed green curve for the lower limb (middle panel, bottom row) to the left 810

of the dashed cyan curve for the upper limb. As a result, the summated curve for the 811

drug condition (dashed magenta lines, bottom row) is displaced somewhat to the left of 812

the summated curve for the vehicle condition (solid magenta lines, bottom row). This 813

shift drags the reward mountain a short distance down the pulse-frequency axis 814

(Fig S36). Thus, given transsynaptic MFB drive that is sufficiently strong to match 815

extremely intense, direct, optical stimulation, some shift along the pulse-frequency axis 816

is predicted. 817

This dependence of the output of the convergence model on parameter values is of 818

interest. Although failure to observe shifts along the pulse-frequency axis was the most 819

common result of the experiments in which the eICSS reward-mountain was measured 820

under the influence of drugs that alter dopaminergic neurotransmission (27 of 32 cases 821

reported in [38,45,46,57]), it is not the only result. Reward mountains obtained from 822

three subjects in the cocaine study [38] showed fairly substantial, reliable, shifts along 823

the pulse-frequency axis. (The shift was marginally reliable in a fourth subject when 824

tested initially but disappeared upon re-test.) Although no subject in the 825

GBR-12909 [45] or pimozide [46] studies showed such shifts, one subject in the AM-251 826

study [57] did. Could variation in the strength of MFB drive on the dopamine neurons 827

explain these apparently discrepant findings? 828

Taken together, the results of the simulation performed at two levels of MFB drive 829

on the dopamine neurons cast the convergence model in a promising light. With 830

parameter values drawn from the available empirical data (and some as-yet unavoidable 831

generalization from eICSS data to the oICSS case), it can account both for the 832

dominant result of the empirical studies (Fig 11, upper row, Fig S35) as well as for the 833

few systematic deviations from the general pattern. The emergence of such deviations 834

depends on the strength of the MFB drive and the position of the curve for the upper 835

limb along the abscissa as well as on the frequency-following fidelity of both limbs and 836

the fibers that connect them. Thus, a readily testable prediction of the convergence 837

model is that shifts of the eICSS reward mountain in response to perturbation of 838

dopaminergic neurotransmission should be more common when longer train durations 839

are employed. (Lengthening the train duration allows for better frequency-following 840

fidelity in the lower limb as well as in the link that relays MFB drive to the dopamine 841

neurons.) Similarly, higher drug doses should increase the prevalence of such shifts. 842

The convergence model avoids a puzzling feature of the series-circuit model: the 843

apparent imposition of a processing bottleneck in brain-reward circuitry. Large, 844
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myelinated, fast-conducting fibers are expensive metabolically, and they take up 845

valuable neural real-estate. Why funnel the output of such a costly, high-bandwidth 846

pathway exclusively through lower bandwidth dopamine neurons? 847

In contrast to the convergence model, the series-circuit model does not account for 848

the combined data from the eICSS and oICSS reward-mountain studies entailing 849

pharmacological alteration of dopaminergic neurotransmission. In the series-circuit 850

model, any manipulation that changes phasic dopamine release, or the post-synaptic 851

consequences of this release, should shift the reward mountain along the pulse-frequency 852

axis. Thirty-three of the 38 subjects of the five eICSS and oICSS studies entailing 853

measurement of the reward mountain under pharmacological challenges argue otherwise. 854

A new home for previously orphaned findings? 855

The convergence models can account for a heretofore unexplained discrepancy 856

between dopamine release and self-stimulation performance. In rats performing eICSS 857

of the MFB, Cossette and colleagues traded off the stimulation current against the pulse 858

frequency [80]. As expected on the basis of the counter model, increases in pulse 859

frequency required that the current be reduced in order to hold behavioral performance 860

constant. In accord with a more detailed study of the frequency response of the MFB 861

neurons subserving eICSS [8], the required current continued to decline as the pulse 862

frequency was increased beyond 250 pulses s-1. In contrast, stimulation-evoked 863

dopamine release in the nucleus accumbens, monitored by means of fast-scan cyclic 864

voltammetry, increased very little, or not at all, as the pulse frequency was increased 865

from 120 to 250 pulses s-1 and generally declined when the pulse frequency was 866

increased further to 1000 pulses s-1. In the series-circuit model, midbrain dopamine 867

neurons relay signals from the directly activated MFB neurons to the behavioral final 868

common path. Thus, the trade-off between the induced firing frequency and the number 869

of directly activated MFB neurons recruited by the current should be manifested 870

faithfully in the stimulation-induced release of dopamine. It was not. The discrepancy 871

between the trade-off functions for eICSS and dopamine release is not explained by the 872

series-circuit model but is readily accommodated by the convergence model. 873

Huston and Borbély documented rewarding effects produced by electrical stimulation 874

of the lateral hypothalamic level of the MFB in rats that had undergone near-total 875

ablation of telencephalic structures [84, 85]. Although the major telencephalic terminal 876

fields of the midbrain dopamine neurons had been damaged heavily, the rats learned to 877

perform simple movements to trigger delivery of the electrical stimulation. The 878

series-circuit hypothesis leaves these data unexplained, but the convergence model could 879

accommodate them. For example, hypothalamic or thalamic neurons that survived the 880

ablations might relay reward-related signals to brainstem substrates of the behavioral 881

final common path via MFB fibers, as Huston proposed. 882

Johnson and Stellar [86] made large, bilateral, excitotoxic lesions in the 883

nucleus-accumbens (NAC) and ventral pallidum (VP) of rats that had been trained to 884

perform eICSS of the lateral hypothalamic level of the MFB. The series-circuit model 885

predicts that such extensive damage to a key dopaminergic terminal fields should have 886

greatly reduced the rewarding effectiveness of the electrical stimulation. It did not. The 887

authors concluded that “while the NAC and VP have been shown to be important for 888

various kinds of reward,” ... they do “not appear to be critical for the expression of 889

ICSS reward. It may be the case that the ICSS reward signal is processed downstream 890

from the NAC and VP and is therefore unaffected by total destruction of either 891

structure.” That conclusion contradicts the series-circuit hypothesis but it is perfectly 892

compatible with, and indeed anticipates, the convergence model presented here. 893
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The essential role of modeling and simulation 894

It is common in behavioral neuroscience to make predictions and assess results on 895

the basis of binary, directional classification. The effect of a manipulation either does or 896

does not meet a statistical criterion. If it does, the value of the output variable is said 897

to go up or go down. The numeric values of the input and output variables typically 898

matter little. 899

The reward-mountain model is more ambitious. It makes predictions about the form 900

of the relationships between the variables. As is so often the case in biology, the 901

relationships are non-linear. There are ranges of an input variable, such as the pulse 902

frequency, over which an output, such as time allocation, changes little and other ranges 903

over which the output changes a lot. Thus, the snide answer to the question of whether 904

an output will change is “it depends,” and the serious answer entails specifying this 905

dependency in terms of functional forms and their parameters. The numeric values 906

matter. 907

Albeit in a modest way, the reward-mountain model confronts the problem of 908

convergent causation, the fact that although behavioral output is highly constrained by 909

the relatively small number of muscles, joints and degrees of freedom in an animal body, 910

a very large number of neural controllers have access to the behavioral output. A given 911

level of reward pursuit may be directed at a large, but expensive, reward or at a small, 912

inexpensive one. The reward-mountain model distinguishes such cases by tying reward 913

pursuit to both the strength and costs of reward, and it goes beyond binary and 914

directional classification of effects by specifying the functions that map these physical 915

quantities into the subjective values that determine goal selection and behavioral 916

allocation. 917

The reward-mountain model is quantitative: given inputs consisting of reward 918

strengths and costs, it outputs time-allocation values. This output changes in specified, 919

lawful ways when internal parameters, such as the scaling of reward intensities, are 920

perturbed by manipulations, such as drug administration. A virtue of such an approach 921

is that it requires explicit statement of assumptions. A shortcoming, perhaps, is that 922

the specification of the numerous, unavoidable assumptions tends to elicit skepticism 923

that may be eluded by verbal formulations that allow assumptions to remain unstated 924

and implicit. In our view, it is best to make our ignorance manifest so as to incite 925

ourselves and our colleagues to reduce it. 926

Another sense in which we believe the quantitative specification of the model to be 927

important concerns the often-hidden perils of relying on verbal reasoning alone to 928

predict the behavior of systems embodying multiple, interacting, non-linear 929

components [38, 52]. Verbal reasoning is not up to this task. Instead, it requires careful 930

formal, quantitative specification and demonstration of feasibility via simulation, which 931

can reveal lacunae of which the modeler may have been unaware and generate 932

interesting and unexpected results that inspire new experiments. Perhaps most 933

important is that simulation reveals how the model works in a way that verbal 934

descriptions do not capture, and it provides a strong test of whether, in principle, the 935

model actually does what its designers have intended. In the accompanying Matlab®
936

Live Script, we provide the code for performing simulations of the reward-mountain 937

model. We invite the reader to experiment with the code and thereby critique the 938

model. 939

The simulations lead us to a view rather different than the one attributed to Otto 940

von Bismark concerning the making of democratic laws and the fabrication of sausages. 941

We believe that when modeling decisions about goal selection and pursuit, very close 942

December 3, 2019 26/44

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867481doi: bioRxiv preprint 

https://doi.org/10.1101/867481
http://creativecommons.org/licenses/by/4.0/


attention should be paid to “how the sausage was made.” For example, it was only by 943

detailed analysis of the internal workings of the convergence model that we came to 944

appreciate the plausibility of its counter-intuitive prediction: stability of the 945

reward-mountain along the pulse-frequency axis under moderate MFB drive in the face 946

of drug-induced enhancement of dopamine signaling. 947

Diagrams such as Fig 10 include a large number of components and may invite the 948

viewer to imagine William of Ockham turning in his grave. That said, parsimony entails 949

the jettisoning of superfluous entities. We invite the reader to identify which of the 950

components in the models can be tossed overboard without loss of explanatory power. 951

Can the data from previous eICSS experiments and the present oICSS experiment be 952

explained more simply? If we had found an affirmative answer to this question we 953

would have implemented it. Indeed, we see the models discussed here as over-simplified 954

rather than over-complicated. For example, they say nothing about fundamental 955

matters such as the functional specialization of dopamine subpopulations, how signals 956

from the “milieu interne” modulate the decision variables, or how the subjects learn and 957

update the reward intensities and costs that determine their behavioral allocation. 958

Nonetheless, we argue that the combination of the modeling, simulation and empirical 959

work provides a new perspective on the structure of brain-reward circuitry while 960

challenging a long-established view. 961

Finding the MFB substrate 962

The notion that non-dopaminergic neurons with myelinated axons predominate in 963

the directly stimulated substrate for eICSS of the MFB was proposed in the 1980s on 964

the basis of behaviorally derived estimates of conduction velocity, recovery from 965

refractoriness, and direction of conduction; [10–14,18]. A 1974 review includes a 966

suggestion that the directly stimulated substrate may be non-dopaminergic [87]. The 967

discrepancy between the behaviorally effective range of pulse frequencies and the 968

frequency-following fidelity of catecholatminergic neurons was also noted during the 969

1970s [88]. Since that time, little progress has been made toward identifying the directly 970

activated neurons responsible for eICSS of the MFB, although electrophysiological 971

recordings show the rough location of some somata that give rise to fibers with 972

properties compatible with the psychophysically based characterization [89–91]. One 973

likely reason is that the series-circuit model relegates these neurons to a subsidiary role 974

that has thus inspired little empirical investigation: on that view, the MFB fibers 975

merely provide an input, likely one of many [92,93], to the dopamine neurons ultimately 976

responsible for the rewarding effect. 977

The convergence model elevates the status of the directly activated neurons 978

subserving the rewarding effect of MFB stimulation. This model asserts that multiple, 979

partially parallel, neural circuits can generate reward and that the dopamine neurons do 980

not constitute an obligatory stage in the final common path for their evaluation and 981

pursuit. From that perspective, it is important to intensify the search for the limb(s) of 982

brain reward circuitry that may parallel the much better characterized dopaminergic 983

pathways. Application of modern tracing methods that integrate approaches from 984

neuroanatomy, physiology, optics, cell biology and molecular biology (e.g., [94]) may 985

well achieve what application of the cruder, older tools failed to accomplish. The 986

detailed psychophysical characterization of the quarry that has already been achieved, 987

particularly the evidence for myelination and axonal trajectory [10–14,89], can guide 988

the application of such methods. 989
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Potential implications of parallel channels in brain-reward 990

circuitry 991

Remarkable success has been achieved in developing tools for specific excitation or 992

silencing of dopaminergic neurons, measuring the activity of these neurons, mapping the 993

circuitry in which they are embedded, and categorizing different functional 994

dopaminergic subpopulations. The neurobiological study of dopamine neurons has been 995

coupled to learning theory, neural computation, and psychiatry, with longstanding 996

application in the study of addictive disorders [6, 16, 95, 96] and emerging linkage to the 997

analysis of depression [97, 98]. Perhaps the brilliance of these successes has obscured the 998

possible roles played by other neurons and circuits in the functions in which 999

dopaminergic neurons have been implicated. We propose that the network in which 1000

dopamine neurons are embedded is not the sole source of input to the behavioral final 1001

common path for the evaluation and pursuit of rewards. What roles might the 1002

alternative sources play in behavioral pathologies and behaviors essential to well being? 1003

Addressing that question requires that the existence of such networks be appreciated 1004

and addressed, their constituents identified, and their function understood. 1005

Conclusion 1006

The reward-mountain model was developed to account for data from eICSS 1007

experiments in which rats worked for rewarding electrical stimulation of the MFB. At 1008

the core of the model is a logistic reward-growth function that translates the aggregate 1009

impulse flow induced by the electrode into a neural signal representing the intensity of 1010

the reward. On the basis of the direction in which a drug shifts the reward mountain 1011

within a space defined by the strength and opportunity cost of reward, the model 1012

distinguishes drug actions at, or prior to the input to the reward-growth function from 1013

actions at, or beyond, the output. Bidirectional perturbations of dopaminergic 1014

neurotransmission have acted selectively in the latter manner, either by rescaling the 1015

output of the reward-growth function or by altering other valuation variables, such as 1016

subjective reward costs or the attraction of alternate activities: Dopamine-transporter 1017

blockers [38, 45] and a dopamine-receptor antagonist [46] shifted the mountain along the 1018

axis representing opportunity cost and not along the axis representing pulse-frequency. 1019

The present study demonstrates that the reward-mountain model also provides a 1020

good description of how the strength and opportunity cost combine to determine the 1021

allocation of behavior to pursuit of direct, optical activation of midbrain dopamine 1022

neurons. The results argue that as in the case of eICSS, a logistic-like function with 1023

independent input-scaling and output-scaling parameters translates the neural 1024

excitation induced by the stimulation into the intensity of the rewarding effect. Unlike 1025

the case of eICSS, augmentation of dopaminergic neurotransmission by 1026

dopamine-transporter blockade acts as if to rescale the input to the reward-growth 1027

function: the reward mountain was shifted along the pulse-frequency axis. In one sense, 1028

this is not surprising: by boosting the peak amplitude of stimulation-induced, 1029

dopamine-concentration transients in terminal fields, the drug should be expected to 1030

reduce the pulse frequency required to generate a reward of a given intensity. However, 1031

this result challenges a longstanding model of brain-reward circuitry. 1032

According to the series-circuit model, the rewarding effect of electrical MFB 1033

stimulation arises from the activation of highly excitable, non-dopaminergic axons that 1034

provide direct or indirect synaptic input to midbrain dopamine neurons; the rewarding 1035

effect arises from the transsynaptic activation of these dopamine neurons. The current 1036

results show that when these dopamine neurons are activated directly, 1037
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dopamine-transporter blockade shifts the reward mountain along the pulse-frequency 1038

axis. We argue that dopamine-transporter blockade should produce a similar shift in the 1039

position of the reward mountain when the dopamine neurons are activated 1040

transsynaptically. However, perturbation of dopaminergic neurotransmission has 1041

generally failed to shift the reward mountain along the pulse-frequency axis when 1042

electrical stimulation of the MFB is substituted for optical stimulation of the midbrain 1043

dopamine neurons. Thus, the series-circuit model cannot readily accommodate the 1044

results of both the eICSS and oICSS experiments. 1045

We propose that alternatives to the series-circuit model be explored. In the one 1046

sketched here, the reward signal carried by the MFB axons runs parallel to the reward 1047

signal carried by the midbrain dopamine neurons prior to the ultimate convergence of 1048

these two limbs of brain-reward circuitry onto the final common path for the evaluation 1049

and pursuit of rewards. This proposal can accommodate findings unexplained by the 1050

series-circuit model and suggests a research program that could complement the work 1051

that has so powerfully and convincingly implicated dopaminergic neurons in reward. 1052

Materials and methods 1053

Subjects 1054

Seven TH::Cre, male, Long-Evans rats weighing 350 g at the time of surgery, served 1055

as subjects. Animals were obtained from a TH::Cre rat colony established from three 1056

sires generously donated by Drs. Ilana Witten and Karl Deisseroth. Upon reaching 1057

sexual maturity, animals were housed in pairs in a 12 h -12 h reverse light-cycle room 1058

(lights off at 8:00 AM). The rats were housed singly following surgery. 1059

Ethics Statement 1060

All experimental procedures were approved by the Concordia University Animal 1061

Research Ethics Committee (Protocol #: 30000302) and conform to the requirements of 1062

the Canadian Council on Animal Care. 1063

Surgery 1064

Midbrain dopamine neurons were transfected with the light-sensitive cation channel, 1065

channelrhodopsin 2 (ChR2), fused to the reporter protein, enhanced yellow fluorescent 1066

protein (eYFP). The construct was delivered by means of a Cre-dependent 1067

Adeno-Associated Viral vector (AAV5-DIO-ChR2-EYFP, University of North Carolina 1068

Viral Vector Core, Chapel Hill, NC). The virus was injected bilaterally (±0.7 mm ML), 1069

at a volume of 0.5 µl, at three different DV coordinates (-8.2, -7.7 and -7.2 mm) and 1070

two different AP coordinates (-5.4 and -6.2 mm), to yield a total volume of 3.0 µl per 1071

hemisphere. Optical-fiber implants, with a core diameter of 300 µm, were aimed 1072

bilaterally at the VTA at a 10° angle (AP: -5.8, DV: 8.02 or 8.12, ML: ± 0.7 mm). 1073

Anesthesia was induced by an i.p. injection of a Ketamine-xylaxine mixture (87 mg/kg, 1074

13 mg/kg, Bionicle, Bellville, Ontario and Bayer Inc., Toronto, Ontario, respectably). 1075

Atropine sulfate (0.02-0.05 mg/kg, 1 mL/kg, Sandoz Canada Inc., Quebec) was injected 1076

s.c. to reduce bronchial secretions, and a 0.3 mL dose of penicillin procaine G (300 1077

000 IU/ml, Bimeda-MTC Animal Health Inc., Cambridge, Ontario) was administered 1078

SC, as a preventive antibiotic. “Tear gel” (1% w/v, ‘HypoTears’ Novartis) was applied 1079

to the eyes to prevent damage from dryness of the cornea. Anesthesia was maintained 1080

throughout surgery by means of isoflurane (1− 2.5% +O2). The head of the rat was 1081

fixed to the stereotaxic frame (David Kopf instruments, Tujunga, CA) by means of ear 1082
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bars inserted into the auditory canal and by hooking the incisors over the tooth bar. 1083

Bregma and Lambda were exposed by an incision of the scalp. Three blur holes were 1084

drilled in the skull over each hemisphere (AP: -5.4, -5.8, and -6.2 mm; ML:± 0.7,± 1085

2.08,± 0.7, respectively). A 28 gauge injector was loaded with the viral vector. Six 1086

0.5 µL boli of the virus-containing suspension were infused into each brain hemisphere 1087

at the following coordinates: AP: -5.4 and -6.2 mm; ML: ± 0.7 mm; DV: -8.2, -7.7 and 1088

-7.2 mm. Infusions were performed at a rate of 0.1 µL per minute using a precision 1089

pump (Harvard Instruments) and a 10 µL Hamilton syringe (Hamilton Labaoratory 1090

prodcuts, Reno, NV). To allow for diffusion, the injector was left in place for ten 1091

minutes following each infusion. Optical-fiber implants with a 300 µm, 0.37 1092

numerical-aperture core were constructed following the methods described by Sparta et 1093

al. [99]. Optical fibers were aimed bilaterally at the VTA at a 10° angle. The implants 1094

were placed at two different DV coordinates to increase the chances of placing the tip of 1095

at least one of the optical fibers directly over the neurons that support optical 1096

self-stimulation (AP −5.8 mm; ML ± 0.7 mm; DV −8.02 and -8.12 mm). The optical 1097

implants were anchored to the skull by means of stainless steel screws and dental acrylic. 1098

GelfoamTM (Upjohn Company of Canada, Don Mills, Ontario) was used to fill the holes 1099

in the skull and promote healing. Buprenorphine (0.05‘mg/kg SC, 1 mL/kg, RB 1100

Pharmaceuticals Ltd., Berkshire, UK) was used as a post-surgery analgesic. The rats 1101

were housed singly in the animal care facility for over five weeks to allow for surgical 1102

recovery and to achieve appropriate expression and distribution of the protein product 1103

of the ChR2-EYFP construct. 1104

Apparatus 1105

The operant chambers (30× 21× 51 cm) had a mesh floor and a clear Plexiglas 1106

front equipped with a flashing light located 10 cm above the floor mesh, and a 1107

retractable lever (ENV–112B, MED Associates) mounted on a side wall. A 1 cm light 1108

was located 2 cm above the lever and was activated when the rat depressed the lever. A 1109

blue DPSS laser (473 nm, Shanghai Lasers and Optics Century Co. or Laserglow 1110

Technologies, Toronto, ON) was mounted on the roof of each box. The laser was 1111

connected to a 1× 1 FC/M3 optical rotary joint (Doric lenses, Quebec, Canada) by 1112

means of a laser coupler (Oz Optics Limited, Ottawa, ON, or Thorlabs, Inc., Newton, 1113

New Jersey, USA) and fiber-optic patch cords. Robust, custom-built, optical-fiber patch 1114

cords designed for rats [100] were used to attach the implants in the animal’s head to 1115

the 1× 1 FC/M3 optical swivel so as to allow the rat to move without tangling the 1116

cable. Experimental control and data acquisition were handled by a personal computer 1117

running a custom-written program (“PREF”) developed by Steve Cabilio (Concordia 1118

University, Montreal, QC, Canada). The temporal parameters of the electrical 1119

stimulation were set by a computer-controlled, digital pulse generator. Stimulation 1120

consisted of 1 s trains optical pulses, 5 ms in duration. 1121

Drug 1122

GBR-12909 was donated generously by the NIMH Chemical Synthesis and Drug 1123

Supply Program. It was dissolved in 0.9% saline at a volume of 10 mg/ml. The pH of 1124

the solution was adjusted to 5± 0.1 with 0.1M NaOH. 1125

Self-stimulation screening and initial training 1126

Each animal underwent two to three screening sessions in which only one of the 1127

optical implants was attached to the laser. Optical power was measured by means of an 1128

optical power meter (PM100D, Thorlabs Inc., Newton, New Jersey, USA, modified to 1129
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reduce spurious output noise) and adjusted through trial and error for each rat to elicit 1130

robust oICSS behavior (30-60 mW, measured at the tip of the patch-cord with the laser 1131

operating in continuous-wave mode). Animals were trained by means of the successive 1132

approximation procedure to depress the lever to receive optical stimulation (a 1 sec 1133

train of 5 ms optical pulses at 80 pulses per second (pps). After the rats had learned to 1134

lever press, they were allowed to work for the optical reward, on a Continous 1135

Reinforcement (CRF) schedule, during two 15 min trials. The total number of presses 1136

was recorded. Both of the implants were tested under these conditions; the implant that 1137

yield the larger number of presses was used for the rest of the experiment. 1138

Training in preparation for measurement of the reward 1139

mountain 1140

The rats received further training to prepare them for measurement of the reward 1141

mountain (Fig. S37). First, the rats were trained to perform a new reward-procuring 1142

response, holding down the lever rather than simply pressing it briefly. This new 1143

response was rewarded according to a cumulative-handling-time schedule of 1144

reinforcement [101], which delivers a reward when the cumulative time the lever has 1145

been depressed reaches an experimenter-defined criterion called the ”price” of the 1146

reward. In this sense, the price corresponds to what economists call an opportunity cost. 1147

To earn a reward, the rats did not have to hold down the lever continuously until the 1148

price criterion was met; they could meet the criterion by means several bouts of lever 1149

holding separated by pauses. The onset and offset times of each bout of lever depression 1150

were recorded. 1151

Next, the values of one or both independent variable (pulse frequency, price) were 1152

varied sequentially from trial to trial, thus traversing the independent-variable space 1153

along a linear trajectory. Such a traversal is called a ”sweep.” Three types of sweeps 1154

were carried out. Frequency sweeps were carried out at a fixed price (initially 1-2 s). 1155

These sweeps consisted of 10 to 12 trials during which the rat had the opportunity to 1156

harvest as many as 60 rewards (except for rat BeChr19, who was allowed to harvest a 1157

maximum of 30 rewards per trial due to the unusual effectiveness of optical stimulation 1158

in this subject). Each reward was followed by a 2 s Black Out Delay (BOD) during 1159

which the lever was disarmed and retracted, and timing of the trial-duration was paused. 1160

The pulse frequency during the first two trials was set to yield maximal reward-seeking 1161

behavior. The first trial was considered a warm-up trial and was excluded from analysis. 1162

From the second trial onwards, the rewarding stimulation was decreased systematically 1163

from trial to trial by decreasing the pulse frequency in equal proportional steps. The 1164

range of tested pulse frequencies was selected as to drive reward-seeking behavior from 1165

its maximal to its minimal value in a sigmoidal fashion (S37B). Every trial was 1166

preceded by a 10 s Inter-Trial Interval (ITI) signaled by a flashing light. During the 1167

last 2 s of this period rats received priming stimulation consisting of a non-contingent, 1168

1 s stimulation train, delivered at the maximally rewarding pulse frequency. Rats 1169

performed one frequency sweep per session, consisting of ten trials (except for subject 1170

BeChr19 who was tested on 12 trials per frequency sweep). 1171

When the rats showed consistent performance across trials and sessions in the 1172

frequency-sweep condition, we introduced price sweeps into the training sessions. In the 1173

price-sweep condition, the pulse frequency was kept constant at the maximal value for 1174

each rat, but the cumulative work time required to harvest the reward (i.e. the price of 1175

the reward) was increased systematically across trials. The price was the same on the 1176

first two trials of each sweep. As in the frequency-sweep condition, the first trial was 1177

considered a warm-up trial and was excluded from analysis. Starting at the second trial 1178
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of the sweep, prices were increased by equal proportional steps across trials. The prices 1179

were set by trial and error so as to yield a sigmoidal transition between maximal and 1180

minimal reward-seeking behavior as a function of price (Fig. S37B). Trial duration was 1181

set so as to allow the rats to harvest a maximum of 60 rewards per trial (30 in the case 1182

of BeChr19). The BOD, ITI, and priming were the same as in the frequency sweep. 1183

During price-sweep training sessions, the rats also performed a frequency sweep. The 1184

order of the sweeps was randomized across sessions. 1185

Radial sweeps were incorporated when performance on the price sweeps appeared 1186

stable. Along radial sweeps, the pulse-frequency was decreased and the price was 1187

increased concurrently across trials. Thus, frequency sweeps run parallel to the 1188

pulse-frequency axis in the independent-variable space, price sweeps run parallel to the 1189

price axis, and radial sweeps run diagonally. The radial sweeps were composed of ten 1190

trials; the first trial served as a warm-up and was identical to the second trial. From the 1191

second trial onwards, both pulse frequency and price were varied in equal proportional 1192

steps so as to yield a sigmoidal decrease in reward-seeking behavior over the course of 1193

the sweep (Fig. S37B). The trajectory of the vector defined by the tested pulse 1194

frequencies and prices was aimed to pass as close as possible to the point defined by the 1195

estimated values of the Fpulsehm
and Pobje location parameters (see model fitting 1196

section). This required fitting the mountain model to preliminary data from each rat 1197

and adjusting the pulse frequencies and prices tested along the radial sweep accordingly 1198

for the following session. Pulse-frequency and price sweeps were also performed in each 1199

session during this phase of testing. The order of presentation of the three different 1200

sweeps was random across sessions, and the BOD, ITI, and priming parameters were 1201

the same on all trials. Rats were considered ready for drug-test sessions when 1202

reward-seeking behavior declined sigmoidally and consistently along all three sweeps 1203

and the trajectory of the radial sweep in the independent-variable space passed close to 1204

the point defined by the estimated values of Fpulsehm
and Pobje . 1205

Effects of GBR-12909 on the reward mountain 1206

Rats received i.p. injections 90 min prior to behavioral testing. Vehicle (2.0 ml/kg) 1207

was administered on Mondays and Thursdays and GBR-12909 (20 mg/kg) on Tuesdays 1208

and Fridays. In each session, rats performed a frequency, a price, and a radial sweep in 1209

random order. Each sweep consisted of ten trials each (except for the frequency sweep 1210

for rat BeChr19, which consisted of 12 trials). The duration of each trial was set so as to 1211

allow rats to harvest a maximum of 60 rewards per trial (except for rat BeChr19, who 1212

was allowed to harvest a maximum of 30 rewards per trial due to his unusual proclivity 1213

to work for very high opportunity costs). Wednesdays and weekends were used as drug 1214

elimination days: no testing was conducted on these days, and the rats remained in the 1215

animal care facility. Ten vehicle and ten drug sessions were conducted with each rat. 1216

Calculation of time allocation 1217

The raw data were the durations of “holds” (intervals during which the lever was 1218

depressed by the rat) and “release times” (intervals during which the lever was extended 1219

but not depressed by the rat). Total work time included 1) the cumulative duration of 1220

hold times during a trial, and 2) release times less than 1 s. The latter correction was 1221

used because during very brief release intervals, the rat typically stands with its paw 1222

over or resting on the lever [101]. Therefore, we treat these brief pauses as work and 1223

subtract them from the total release time. Corrected work time for a given trial was 1224

defined as the sum of the corrected hold times, and leisure time was defined as the sum 1225

of the corrected release times. The dependent measure was time allocation (TA), the 1226
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ratio of the corrected work and leisure times. 1227

Model fitting and comparisons 1228

A separate TA calculation was performed for each reward encounter : the time 1229

between extension of the lever and completion of the response requirement (when 1230

cumulative work time equals the set price). The primary datasets thus consisted of the 1231

TA values for the reward encounters that occurred during all trials and sessions run 1232

following administration of the drug or vehicle. These primary datasets were then 1233

resampled 250 times with replacement [38,102]. 1234

Fixed parameters. The mountain model and the fitting approach have been 1235

described in detail elsewhere [37, 38]. Two versions of the extended reward-mountain 1236

model [37] were fit to the present data. Both models include four fixed parameters, two 1237

describing the subjective-price function [39] and two describing the frequency-following 1238

function [8]. The subjective-price function maps the objective price of the reward into 1239

its subjective equivalent. Here, we used the form and parameters of obtained for this 1240

function in a study of eICSS of the MFB [39]. The frequency-following function maps 1241

the optical pulse frequency into the induced frequency of following in the midbrain 1242

dopamine neurons. The function we used here was of the same form as the one 1243

described in a study of eICSS of the MFB [8], but different parameter values were 1244

required to accommodate the differences between the frequency responses of optically 1245

stimulated ChR2-expressing midbrain dopamine neurons and electrically stimulated 1246

MFB neurons subserving eICSS. For details, please see the section entitled “Parameters 1247

of the frequency-following function for oICSS” in the supporting-information file. 1248

Fitted parameters. The first (“standard”) model includes six fitted parameters. The 1249

location parameters {Fpulsehm
, Pobje} position the mountain along pulse-frequency and 1250

price axis, respectively (Fig. 1B), the a and g parameters determine the slope of the 1251

mountain surface, and the Tmin and Tmax parameters determine its minimum and 1252

maximum altitudes, respectively. The second (“CR”) model includes an additional 1253

parameter, CR, that estimates the contribution of conditioned reward [38,45]. This 1254

parameter selectively increases time allocation to pursuit of weak, inexpensive rewards, 1255

thus providing a more accurate fit when the lever and/or the act of depressing it 1256

become potent secondary reinforcers. 1257

Common versus treatment-dependent parameters. Models containing many 1258

parameters can prove excessively flexible, and fits employing them may fail to converge. 1259

We restricted the flexibility of the models by fitting common values of Tmin and Tmax 1260

to the data from the two treatment conditions {vehicle, drug}. The rationale is that the 1261

factors causing Tmin to deviate from zero and Tmax to deviate from one tend to be be 1262

common across vehicle- and drug-treatment conditions. The main experimental 1263

question posed concerns the effect of the drug on the location parameters. Thus, these 1264

two parameters {Fpulsehm
, Pobje} were always free to vary across treatment conditions. 1265

Variants of both the standard and CR models were produced in which all, some, or none 1266

of the a, CR, and g parameters were common across the two treatment conditions. 1267

Thus,twelve models were fit: four variants of the standard model 1268

1. a free, g common 1269

2. g free, a common 1270

3. both a and g free 1271

4. neither a nor g free 1272

and eight variants of the CR model (the same combinations as for the standard model, 1273

but with CR either free or common). 1274
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All 12 models were fit to each of the 250 resampled datasets using a procedure 1275

developed by Kent Conover, based on the nonlinear least-squares routine in the 1276

MATLAB optimization toolbox (the MathWorks, Natick, MA). Mean values for each 1277

parameter were obtained by averaging the 250 estimates. Confidence intervals (95%) 1278

were estimated by excluding the lowest and the highest 12 values of the 250 estimates. 1279

This yields unbiased estimates of the fitted parameters and their dispersions for each 1280

subject. The Akaike information criterion [53] was used to select the model that offers 1281

the best balance between achieving a good fit and minimizing the number of parameters 1282

required to do so. Drug-induced shifts in the location of the 3D structure were 1283

considered significant when the 95% confidence interval around the difference between 1284

the 250 resampled estimates of the location parameters across drug and vehicle 1285

conditions excluded zero (i.e. no difference between conditions). 1286

Power-frequency trade-off 1287

Following the pharmacological experiment, we explored the effects of systematic 1288

changes in optical power and pulse frequency on the number of rewards obtained by 1289

each rat. The same subjects were trained to press the lever on an FR-1 schedule to 1290

trigger optical stimulation of midbrain dopamine neurons through the same optical 1291

implant used in the reward-mountain experiment. We quantified the number of 1292

responses emitted in each of a series of nine or ten trials lasting two minutes each. The 1293

pulse frequency was decreased systematically across trials: the highest pulse frequency 1294

was in effect during the first trial of the series (the “warm-up”) and also on the second 1295

trial, and data from the first trial was excluded from analysis. Subsequently, the 1296

pulse-frequency decreased in equal logarithmic steps from trial to trial. A single 1297

pulse-frequency sweep was run in each of five to six sessions per day. In each session, 1298

the optical power (measured at the tip of the patch-cord with the laser operating in 1299

continuous-wave mode) was set to one of five values (1.87, 3.75, 7.5, 15 or 30 mW for 1300

rat Bechr14; 3.75, 7.5, 15, 30, or 60 mW for rats Bechr21, Bechr28 and Bechr29; and 1301

2.5, 5, 10, 20, and 40 mW for rats Bechr19, Bechr26, and Bechr27). The rats were 1302

tested under these conditions for five days. The order of presentation of optical powers 1303

was determined pseudorandomly for each rat. Each power was presented in a different 1304

sequential order across each testing day (i.e. each power was used 1st, 2nd, 3rd, 4th, or 1305

5th at least once across days, but the preceding and/or subsequent tested powers may 1306

have been different across test days). To control for carry-over effects across test 1307

sessions, rats were given 30-min breaks between each session: following completion of 1308

each of the five to six daily sessions, they were taken out of the operant chambers, 1309

brought back to their home cage in the animal-care facility, and had free access to food 1310

and water for 30 min before resuming with the following test session. During this 1311

30-min break, the lasers were set to continuous operation mode to minimize fluctuation 1312

in optical power due to the cooling of the laser. 1313

Histology 1314

Rats were sacrificed by means of a lethal injection of pentobarbital i.p. After deep 1315

anesthesia had been induced, the rats underwent intracardiac perfusion with 1316

phosphate-buffered saline and 4% paraformaldehyde chilled to 4 °C. Upon extraction, 1317

the brains were cryoprotected in a solution of 4% paraformaldehyde and 30% sucrose for 1318

48 h at 4 °C and transferred to a −20 °C freezer thereafter. The brains were sliced 1319

coronally in 40 µm sections by means of a cryostat, and mounted in electrostatically 1320

adhesive slides (FisherbrandTM SuperfrostTM Plus slides, Fisher Scientific, Pittsburgh, 1321

PA). Sections were washed in 0.3% triton in Phosphate-Buffered Saline (PBS) for two 1322

minutes, then immersed in 10% donkey serum in PBS for 30 min for blocking. 1323
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Anti-Tyrosine hydroxylase antibody (MilliporeSigma, AB152) was diluted to 1:500 and 1324

incubated overnight at room temperature. The sections were then washed three times 1325

for five min in PBS and incubated with Alexa fluor 594 secondary antibody (Jackson 1326

Immuno research laboratories A-11012) for two hours at room temperature. The slides 1327

were washed three times for five minutes in PBS and coverslipped using Vectashileld 1328

with DAPI. Expression of the construct and restriction to TH-positive sites was 1329

confirmed using epifluorescence and confocal microscopy. 1330

Modeling 1331

A Matlab (version 2019b, The Mathworks, Natick, MA) Live Script was used to 1332

simulate the output of the reward-mountain model. Models of the neural circuitry 1333

underlying eICSS and oICSS were explored by means of the simulations. The Live 1334

Script develops the mountain model from first principles, both for eICSS and oICSS. 1335

Key experiments assessing the validity of the model are reviewed, and simulated results 1336

are compared to empirical ones. The predictions of the series-circuit model of brain 1337

reward circuitry are tested and found to deviate from the empirical results of eICSS 1338

studies. An alternate model is proposed and used to simulate the results of eICSS 1339

experiments that are not readily explained by the series-circuit model. The text of the 1340

Live Script is provided in the Supporting Information along with instructions for 1341

downloading and installing the executable code. 1342

Supporting information 1343

S1 File: supp info compressed.pdf. 1344

• Figs S1-S6 Rate-frequency curves as a function of optical power (rats 1345

Bechr14-28).. 1346
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• Tab S1. Definition of acronyms and symbols 1349

• Tab S2. The functions composing the reward-mountain model. 1350

• Derivation of the reward-mountain model 1351

– Fig S13 Assumed frequency-following function for optical 1352

stimulation of midbrain dopamine neurons. 1353

– Fig S14 Subjective opportunity-cost (“price”) function. 1354

– Fig S15 Surface and contour plots of two seven-parameter 1355

reward-mountain models. 1356

• Adaptation of the reward-mountain model for oICSS 1357

– Fig S16 The reward-mountain model for oICSS. 1358

– Parameters of the frequency-following function for oICSS. 1359

– Displacement of the shell: distinguishing two sources. 1360

– Correction of the location-parameter estimates for changes in 1361

frequency-following fidelity. 1362

• Model fitting and selection 1363

– Tab S3 The 12 candidate models fit to each dataset. 1364

– Tab S4 Model-evaluation statistics for the fit of the 12 candidate 1365

models to the data from rat Bechr29. 1366

– Tab S5 Summary statistics for the model that provided the best 1367
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– Tab S6 Best-fitting models for all rats. 1369

• Figs S17-S22 Surfaces fit to the vehicle and drug data (rats 1370

Bechr14-28). 1371
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¤a Current Address: Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology
and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
¤b Current Address: OMMAX Digital Strategy – Digital Transaction Advisory, 80801, Munchen, Germany

* peter.shizgal@concordia.ca

Supporting information 1

Power-frequency trade-off 2

Fig S1. Response-rate versus pulse-frequency graph for rat Bechr14. The number of responses emitted
per 2-min trial by an exemplar rat (Bechr29) is plotted as a function of pulse frequency and optical power.

Fig S2. Response-rate versus pulse-frequency graph for rat Bechr19.

Fig S3. Response-rate versus pulse-frequency graph for rat Bechr21.

Fig S4. Response-rate versus pulse-frequency graph for rat Bechr26.

Fig S5. Response-rate versus pulse-frequency graph for rat Bechr27.

Fig S6. Response-rate versus pulse-frequency graph for rat Bechr28.

The data for rat Bechr29 are shown in Fig 3 in the main text. 3

Time allocation as a function of reward strength and cost 4

Fig S7. Time allocation as a function of reward strength and cost for rat Bechr14. A: Time allocation
as a function of pulse frequency (reward strength) in the vehicle (upright triangles) and drug (inverted triangles)
conditions. B: Time allocation as a function of price (opportunity cost) in the vehicle (squares) and drug (diamonds)
conditions. In the radial-sweep condition, the pulse frequency was decreased and the price decreased concurrently, in
stepwise fashion, over consecutive trials. Time allocation is plotted as a function of pulse frequency in panel C: and
as a function of price in panel D:. Data from the vehicle condition are represented by circles, whereas data from the
drug condition are represented by Stars of David. The error bars represent 95% confidence intervals.

Fig S8. Time allocation as a function of reward strength and cost for rat Bechr19.
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Fig S9. Time allocation as a function of reward strength and cost for rat Bechr21.

Fig S10. Time allocation as a function of reward strength and cost for rat Bechr26.

Fig S11. Time allocation as a function of reward strength and cost for rat Bechr27.

Fig S12. Time allocation as a function of reward strength and cost for rat Bechr28.

The data for rat Bechr29 are shown in Fig 4 in the main text. 5

Derivation of the reward-mountain model 6

Acronyms and symbols employed in this supporting-information file are defined in Tab S1. 7

Table S1. Definition of acronyms and symbols

Acronym
or Symbol Definition

a price-sensitivity exponent
BSR brain stimulation reward
c chronaxie of the strength-duration function for pulses (pulse duration at

which the threshold current is twice rheobase)
C chronaxie of the strength-duration function for trains (train duration at

which Ffiring
hm

is twice ρ
Π
)

Cr Conditioned reward value
ChR2 channelrhodopsin-2
d pulse duration
Dburst duration of stimulation-induced burst of firing in the directly activated

neurons
Dtrain train duration (leading edge of first pulse to leading edge of final pulse)
DAPI 4′,6-diamidino-2-phenylindole
eICSS electrical intracranial self-stimulation
fa function that determines the average reward rate derived from performance

of alternate activities
fD function that relates the duration of the stimulation-induced burst of firing

to the train duration
fF frequency-following function that relates the induced firing frequency to

the pulse frequency
fN function that translates the pulse duration and current into the number of

electrically recruited, directly stimulated neurons
fp subjective-probability function
fP subjective-price function
fR reward-growth function for eICSS or oICSS
fT behavioral-allocation function
fU function that translates the reward rate and subjective rate of exertion

into a payoff
fφ subjective-effort function
Fbend parameter governing the abruptness of the roll-off in frequency following
Ffiring firing frequency induced by electrical or optical stimulation
Ffiring

hm
firing frequency that generates a reward of half-maximal intensity

Ffiringmax
maximum firing frequency induced by electrical or optical stimulation

Fhm notation for Fpulsehm
used in previous eICSS papers

F ∗

hm shorthand notation for F ∗

pulsehm
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Table S1. Definition of acronyms and symbols

Acronym
or Symbol Definition

Fpulse pulse frequency in an electrical or optical pulse train
Fpulse

hm
pulse frequency required to drive reward intensity to half its maximum
value

F ∗

pulse
hm

estimated pulse frequency required to drive reward intensity to half its
maximum value if frequency-following fidelity were perfect

Fro pulse frequency in the center of the roll-off region of the frequency-following
function

g exponent governing the steepness of reward-intensity growth
ICSS intracranial self-stimulation
I eICSS current
Kaa constant scaling the value of alternate activities
Kda constant representing the scaling of dopamine release
Kec

L
effort-cost scalar for leisure activities

Kec
W

effort-cost scalar for work

KF unit-translation constant to convert pulses s-1 into firings s-1 neuron-1

K
IS

current-distance constant
K

NS
neuron-distance constant

Krg reward-intensity scalar
N number of directly activated neurons
MFB medial forebrain bundle
oICSS optical intracranial self-stimulation
pobj objective probability that a reward will be delivered upon satisfaction of

the response requirement
psub subjective probability that a reward will be delivered upon satisfaction of

the response requirement
Pe notation for Pobje used in previous eICSS papers
P ∗

e shorhand notation for P ∗

obje

Pobj objective opportunity cost (“price”) of a stimulation train

Pobje
objective price at which T̂ = 0.5 when R̂ = R̂max

P ∗

obje
estimated objective price at which T̂ = 0.5 and R̂ = R̂max if frequency-
following fidelity were perfect

Psub subjective opportunity cost (“price”) of a stimulation train
~Psub

T̂=0.5
vector of subjective prices that hold time allocation midway between its
minimum and maximum values

Psub
bend

parameter controlling the abruptness of the transition from the “blade” to
the “handle” of the subjective-price function

Psubmin
minimal subjective price

Ṙaa average rate of reward from performance of alternate (leisure) activities
˙̂
Raa Ṙaa normalized to vary between 0 and 1
Rbsr peak reward intensity achieved over the course of a stimulation train

R̂bsr Rbsr normalized to vary between 0 and 1 as Rbsr rises from 0 to Rbsrmax

R̂bsrmax
maximum normalized reward intensity

~̂
Rbsr

T̂=0.5
vector of normalized reward intensities that hold time allocation midway
between its minimum and maximum values

Ṙbsr rate of brain-stimulation reward; reward intensity divided by the subjective
price paid to procure the pulse train

T time allocation
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Table S1. Definition of acronyms and symbols

Acronym
or Symbol Definition

T̂ time allocation normalized to rise between 0 and 1 as T rises from Tmin

to Tmax

Tmax maximal time allocation

Tmid value of T midway between Tmin and Tmax; Tmid = T̂0.5

Tmin minimal time allocation
TH tyrosine hydroxylase
UL payoff from alternate (“leisure”) activities (a.k.a “everything else”)
UW payoff from brain stimulation reward

ÛW UW normalized to vary between 0 and 1
YFP (enhanced) yellow fluorescent protein
ρ
I

rheobase of the strength-duration function for pulses
ρ
Π

rheobase of the strength-duration function for trains

φ̇obj
L

average work rate entailed in performing leisure activities

φ̇sub
L

average rate of subjective exertion entailed in performing leisure activities
˙̂
φsub

L
φ̇sub

L
normalized to vary between 0 and 1

φ̇obj
W

work rate entailed in holding down the lever

φ̇sub
W

subjective rate of exertion entailed in holding down the lever

The reward-mountain model provides a framework for integrating the frequency-sweep, pulse-sweep, and 8

radial-sweep data (e.g., Figure 4) in a unified 3D space and for interpreting the drug-induced changes in the position 9

of the resulting 3D structure (the reward mountain). The following derivation of the model first extends earlier 10

depictions that were developed in the context of eICSS studies [1–3] and then adapts the model to accommodate 11

oICSS of midbrain dopamine neurons. 12

The reward-mountain model predicts time allocation given experimenter-controlled variables that determine the 13

strength and cost of the rewarding stimulation. In most experiments carried out to date, the strength variable is the 14

pulse frequency within a fixed-duration stimulation train, and the cost variable is the work time (opportunity cost, 15

price) required to procure a stimulation train. The functional machinery that generates time-allocation values from 16

these inputs is summarized in Tab S2. 17
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Table S2. The functions composing the reward-mountain model. The shell → core functions (left column)
map the values of variables that are manipulated or controlled into inputs to the core of the model. The core functions
(middle column) map these inputs into the payoffs from work and leisure activities, whereas the core → shell function
map the payoffs into the observed dependent variable: time allocation. The accompanying Matlab® Live Script
illustrates how the listed functions are implemented. Please see Tab S1 for definitions of the symbols.

shell → core core core → shell

Ffiring = fF (Fpulse)

N = fN(I, d)

Dburst = fD(Dtrain) Ffiring
hm

= fH(Dburst, N)

Rbsr = fR

(
Ffiring, Ffiring

hm

)

psub = fp (pobj)

Psub = fP (Pobj)

φ̇sub
W

= fφ

(
φ̇obj

W

)
UW = fU

(
Rbsr

Psub

, psub, φ̇sub
W

)

= fa ( , , ... ) Ṙaa = fR ( )

φ̇sub
L
= fφ

(
φ̇obj

L

)
UL = fU

(
Ṙaa, φ̇subL

)
T = fT (UW , UL)

18
As the table implies, we distinguish between the “shell” and “core” of the model. The shell consists of the 19

variables that are observed (time allocation), manipulated (pulse frequency, price), and controlled (stimulation 20

parameters held constant, physical work required to hold down the lever, affordances of the test environment [4]). 21

The shell is displayed within the space defined by the observed and manipulated variables. 22

The core (middle column of Tab S2) consists of the functions that compute the intensity of the reward produced 23

by the stimulation train and combine this value with the opportunity and effort costs to generate what we call 24

“payoffs.” Parallel functions in the core compute the value of the alternate activities that compete with pursuit of the 25

stimulation for the rat’s behavior. A set of functions (left column) provides the input to the core by mapping the 26

manipulated and controlled variables into the quantities from which payoffs are derived. 27

A single function (right column), based on the generalized matching law [5], translates the payoffs generated in 28

the core into the time-allocation values that are manifested in the shell. 29

Shell variables are objective, whereas core variables are inferred subjective quantities. The core functions are the 30

bridge between the objective inputs that are manipulated or controlled to the observed objective output, time 31

allocation; their form and parameters explain why the manipulated variables cause time allocation to vary in the 32

manner observed in the experiment. 33

Shell → core functions 34

The arguments of the first three shell → core functions are the four parameters that define a fixed-frequency pulse 35

train: the pulse frequency (Fpulse), current (I), pulse duration (d), and train duration (Dtrain). These functions 36

relay to the core functions the stimulation-induced frequency of firing (Ffiring), the number of activated neurons 37

(N ), and the duration of the burst of increased firing (Dburst). 38

fF: In studies of eICSS, the experimenter typically varies the pulse frequency during a fixed-duration stimulation 39

train in order to control the intensity of the electrically-induced reward. The frequency-following function labeled fF 40

maps the manipulated shell variable, Fpulse into the corresponding core variable: the induced frequency of firing in 41

the directly-stimulated substrate, Ffiring. In the case of eICSS of the MFB, this function has been estimated by 42
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psychophysical means and shown to be roughly scalar up to very high pulse frequencies [6], well beyond the typical 43

range of the Fpulsehm
values that locate the reward-mountain shell in the space defined by the two independent 44

variables. Solomon et al. [6] showed that the following function provides a good fit to the frequency-following data for 45

eICSS of the MFB: 46

Ffiring = fF (Fpulse) =

K
F
× Fbend ×


ln


1 + e

Fro

Fbend


− ln


1 + e

Fro − Fpulse

Fbend





 (S1)

where

fF = the frequency-following function

Fbend = parameter determining the abruptness of the roll-off in the
frequency response; units: unitless

Ffiring = induced firing rate in the first-stage neurons;
units: firings s−1 neuron−1

Fpulse = the pulse frequency; units: pulses s−1

Fro = the pulse frequency in the center of the roll-off region; units: pulses s−1

K
F
= unit-translation constant;

units: firings pulse−1 neuron−1

A plot of the frequency-following function is shown in Fig S13. The form of the function is the same as the one 47

described by Solomon et al. [6]. The choice of parameters is described below in section Parameters of the 48

frequency-following function for oICSS.

Fig S13. Assumed frequency-following function for optical stimulation of midbrain dopamine
neurons. The induced firing frequency is plotted as a function of the optical pulse frequency. Note that
frequency-following fidelity is increasingly poor as the pulse frequency increases. At low values, the firing frequency
falls only slightly short of the pulse frequency, but by 40 pulses s-1, the firing frequency is only ∼80% of the pulse
frequency. The maximum induced firing frequency is 51.6 spikes s-1

49

fN: The FN function translates the pulse duration and current into the number of electrically excited neurons. These 50

two variables determine conjointly the boundary of the region in which the stimulation excites reward-related 51

neurons. Holding these variables constant, as is the case in most eICSS studies entailing measurement of the reward 52

mountain and in prior studies employing the curve-shift method [7–9], circumvents the need to make assumptions 53

about the spatial distribution of the directly-stimulated neurons subserving the rewarding effect and about their 54

excitability to extracellular stimulation. 55

Hawkins (cited in [10]) proposed that the number of directly-stimulated (“first-stage”) neurons subserving the 56

rewarding effect is roughly proportional to the current, when pulse duration is held constant. Emprical 57

studies [11, 12] show that the current required to excite a given first-stage neuron varies roughly as a rectangular, 58

hyperbolic function of the pulse duration. Thus, 59
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N = fN(d, I) =
KNS

KIS

×
I

ρ
I
×
(
1 +

c

d

) (S2)

where

c = chronxie; pulse duration (units: ms) for which the thresh-
old current is twice ρ

I

d = pulse duration (units: ms)

fN = the first-stage recruitment function

I = current (units: µA)

KNS
= neuron-distance constant; units: neurons mm−2

KIS
= current-distance constant; units: µA mm−2

N = number of activated first-stage neurons; units: neurons

ρ
I
= threshold current required to excite a first-stage neuron

using a pulse of infinite duration; units: µA

(S3)

fD: The third stimulation parameter that has been held constant in most reward-mountain and curve-shift studies is 60

the duration of the stimulation train. The fD function translates the duration set by the experimenter into the 61

duration of the stimulation-induced increase in the activity of the directly-stimulated substrate. If firing is 62

time-locked to the stimulation pulses, then the duration of this increase, Dburst, will equal the train duration, Dtrain. 63

Thus, we assume that 64

Dburst = fD(Dtrain) = Dtrain (S4)

where

Dburst = duration of the stimulation-induced increase in firing above
baseline in the directly stimulated neurons subserving the
reward effect

Dtrain = time interval between the leading edges of the first and
last pulse in a stimulation train

fD = the duration-mapping function

fp: Psychophysical methods have been used to describe the subjective-probability function for BSR, fp (lower-case 65

subscript) [13]. This function returns the subjective probability that a reward will be delivered upon payment of the 66

price set by the experimenter. Over the range, 0.5 - 1.0, this function was determined to be roughly scalar. In the 67

present study and in all other studies that have entailed measurement of the reward mountain, delivery of the reward 68

upon satisfaction of the response requirement is certain (pobj = 1). 69

psub = fp(pobj) = pobj (S5)

for 0.5 ≤ pobj ≤ 1

where

fp = the subjective-probability function

pobj = objective probability that reward will be delivered upon
satisfaction of the response requirement

psub = subjective probability that reward will be delivered upon
satisfaction of the response requirement

fP: Past measurements of the reward-mountain in eICSS studies employed the work time required to trigger delivery 70
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of a stimulation train (the price) as the cost variable, and that practice is continued here. The function labeled fP 71

(upper-case subscript) maps the required work time, Pobj , into the corresponding subjective variable, Psub. The form 72

and parameters of this function for eICSS of the MFB have been estimated by psychophysical means [14]. We showed 73

that the following psychophysical function more accurately describes the opportunity cost of rewarding brain 74

stimulation than the identity function or functions based either on hyperbolic or exponential discounting: 75

Psub = fP (Pobj) =

Psubmin
+ Psubbend

× ln


1 + e




Pobj − Psubmin

Psubbend






 (S6)

where

fP = the subjective-price function

Pobj = the ”price” of a stimulation train: the cumulative time the
lever must be depressed to trigger reward delivery; units: s

Psub = the subjective price of a stimulation train; units: s

Psubmin
= the minimum subjective price; units: s

Psubbend
= a constant that controls the abruptness of the transition

from “blade” to “handle;” unitless
.

For a different view of the subjective-price function, please see [15]. 76

At higher prices, the output of the subjective-price function defined by Eq S6 converges on its input: the 77

subjective price becomes indistinguishable from the objective one. However, as the objective price is reduced below 78

∼3 s, the subjective price deviates from the objective price and eventually approaches an asymptotic value: Psubmin
. 79

This asymptote has been interpreted to arise from the reduction and eventual disappearance of competition between 80

lever depression and competing activities, such as grooming, resting, and exploring; performance of these competing 81

activities is no longer perceived as beneficial once the available time for their execution becomes sufficiently short. 82

A plot of the subjective-price function is shown in Fig S14. The parameters employed are the mean values 83

determined by Solomon et al. [14].

Fig S14. Subjective opportunity-cost (“price”) function. The function maps the objective opportunity cost
(cumulative lever-depression time required to trigger reward delivery), Pobj),into its subjective equivalent Psub. The
form and parameters of this function are based on measurements by Solomon et al. [6].

84

The arguments of the first five shell → core functions are all variables controlled directly by the experimenter: 85

{Fpulse, d, I,D, p, P }. These six variables are transformed by the first five shell → core functions into inputs to the 86

core. The arguments of the remaining two shell → core functions listed in Tab S2 are variables arising from features 87

of the test environment that the experimenter attempts to hold constant: the rate of physical work entailed in 88

holding down the lever or in performing activities that compete with pursuit of the rewarding stimulation. 89

fφ: The effort cost of the reward is the subjective rate of exertion entailed in holding down the lever. We know of no 90

psychophysical studies that reveal the form of this function. That said, we can assume that it accelerates steeply as 91

the effort cost approaches the physical capabilities of the rat. The objective effort cost has been held constant in this 92

and in prior studies carried out in the reward-mountain paradigm. We assume that the subjective effort cost did not 93

co-vary with the manipulated variables. To help ensure this in the current study, the lever was withdrawn for 2 s 94

following the triggering of a stimulation train so as to provide time for any interfering motoric consequences of the 95

stimulation to dissipate. 96

We treat the subjective rate of exertion required to depress the lever as a constant defined by: 97
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φ̇subW
= fφ

(
φ̇objW

,Kφ

)
(S7)

where

fφ = subjective-effort function (form unknown)

φ̇objW
= rate of physical work required to hold down the lever; units:

Js−1

φ̇subW
= subjective rate of exertion required to hold down the lever

in units we call “oomphs” s−1

Kφ = unit-conversion constant; units: oomphs J−1

The dots over φ̇objW
and φ̇subW

signify that we define these quantities as rates. (No dots are placed over Ffiring and 98

Fpulse because doing so would be superfluous and potentially misleading. Frequencies are inherently rates over time 99

(the first time derivative of the pulse or spike number). By omitting the dots, we wish to avoid confusion between 100

these rates and their changes over time (the second derivative of the pulse or spike number).) 101

The effect of the drug, if any, on the rate of subjective exertion is defined as: 102

φ̇subWdrug
= φ̇subWvehicle

×Kec
W

(S8)

where

Kec
W

= proportional drug-induced change in the subjective rate of
exertion required to hold down the lever; unitless

In the vehicle condition, Kec
W

assumes an implicit value of one. 103

Activities such as grooming and exploring also entail performance of physical work. Thus, fφ is also applied to 104

these activities: 105

φ̇subL
= fφ

(
φ̇objL

,Kφ

)
(S9)

where

φ̇objL
= Average rate of physical work required to perform alternate

(“leisure”) activities; units: Js−1.

φ̇subL
= average subjective rate of exertion entailed in performance

of leisure activities in oomphs s−1 .

Kφ = unit-conversion constant; units: oomphs J−1

We assume that φ̇subL
does not covary systematically with the independent variables. 106

As in the case of the subjective rate of exertion entailed in work, we allow for drug-induced modulation of the 107

subjective rate of exertion entailed in performance of leisure activities. 108

φ̇subLdrug
= φ̇subLvehicle

×Kec
L

(S10)

where

Kec
L
= proportional drug-induced change in the subjective rate of

exertion required to hold down the lever; unitless

In the vehicle condition, Kec
L

assumes an implicit value of one. 109

fa: We do not know which aspects of the leisure activities that compete with pursuit of BSR give rise to reward 110

signals in the brain nor how these signals are encoded. That is why both the arguments and output of the seventh 111
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shell → core function (fa) have been left blank. However, we do know that valuation of these activities influences the 112

allocation of time to pursuit of experimenter-controlled rewards: enrichment of the test environment shifts allocation 113

towards alternate activities and away from the experimenter-controlled reward [16]. Thus a function such as fa must 114

exist. We include fa in the list of shell → core functions for completeness and in recognition of this requirement. 115

Core functions 116

Core functions determine the reward rates produced by work (lever depression) and leisure (alternate) activities. 117

These are combined with the associated effort costs to yield a pair of payoffs, which are then passed to the 118

core → shell function for translation into time allocation. 119

fR: The core receives a set of spike trains as a result of the combined action of the first three shell → core functions 120

{fF , fN , fD}, one spike train from every activated first-stage neuron. According to the counter model [10, 11,17], the 121

effects of the spike trains delivered by the individual first-stage neurons are summed, and thus, the intensity of the 122

rewarding effect is determined by the product of the number of activated first-stage neurons and the rate at which 123

they are fired by the stimulation train. This is why a Π symbol is used in the flow diagrams to represent the drive 124

produced by a pulse train of fixed duration on the scalar at the input of the reward-growth function (Fig 2). 125

The logistic form of the reward-growth function was described originally in operant-matching studies carried out 126

by Gallistel’s group [18–20]. Shizgal [21] proposed the following expression for this function: 127

Rbsr = fR [fF (Fpulse)] = R̂bsr ×Krg =

(
Ffiring

g

Ffiring
g + Ffiringhm

g

)
×Krg (S11)

where

fR = the reward-growth function

Ffiringhm
= firing rate required to drive reward intensity to half its

maximum value; units: firings neuron−1 s−1

Ffiringhm
= fF

(
Fpulsehm

)

Fpulsehm
= pulse frequency required to drive reward intensity to half

its maximum value; units: pulses s−1

g = the exponent that determines the steepness of reward-
intensity growth as a function of pulse frequency

Krg = reward-growth scalar; units: hedons

Rbsr = reward intensity produced by Ffiring; units: hedons

R̂bsr = normalized reward intensity produced by a pulse frequency
of Fpulse, which, in turn, produces a firing frequency of

Ffiring in each first-stage neuron; unitless. 0 ≤ R̂bsr ≤ 1

According to Eq S11, 128

R̂bsr =
Ffiring

g

Ffiring
g + Ffiringhm

g
(S12)

When frequency-following fidelity is sufficiently high, the normalized reward intensity
(
R̂bsr

)
will approach one at 129

high pulse frequencies. The lower the value of the location parameter
(
Ffiringhm

)
and the higher the value of the 130

reward-growth exponent (g), the easier this will be to achieve. 131

To accommodate the predicted rescaling of the input to the reward-growth function for oICSS by 132

dopamine-transporter blockade, a scalar, Kda, is added to Eq S11 in the drug condition of the experiment: 133
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Rbsrdrug
=




(
Ffiringdrug

×Kda

)g

(
Ffiringdrug

×Kda

)g

+
(
Ffiring

hmvehicle

)g


 ×Krg

=




(
Ffiringdrug

)g

(
Ffiringdrug

)g

+

(
Ffiring

hmvehicle

Kda

)g



×Krg (S13)

where

Kda = scalar representing the boost in dopamine release due to
transporter blockade

Thus, 134

Ffiring
hmdrug

=
Ffiringhmvehicle

Kda

(S14)

Dopamine-transporter blockade boosts dopamine release, thereby increasing the impact of each firing. The increased 135

value of the scalar (Kda) captures this augmented impact, reducing the value of the location parameter of the 136

reward-growth function in the drug condition. Fewer pulses per train are required to produce a reward of a given 137

intensity when Kda increases. Consequently, the reward-growth function shifts leftwards along the pulse-frequency 138

axis. In the simulations of the vehicle condition, Kda is assigned an implicit value of one. 139

Division by the subjective price transforms the reward intensity into a reward rate: 140

Ṙbsr =
Rbsr

Psub

(S15)

where

Ṙbsr = experienced rate of brain stimulation reward; units:
hedons s−1

fH: The location parameter of the reward-growth function is the firing rate that drives reward intensity to half its 141

maximal value. The value of this parameter depends on the number of stimulated first-stage neurons, N and the 142

interval during which the stimulation train elevates their firing rate, Dburst. A prior study of temporal integration in 143

the neural circuitry responsible for eICSS of the MFB [21] implies the following form for the function that determines 144

Ffiring
hm

: 145

Ffiring
hm

= fH (Dburst, N) =

ρ
Π
×

(
1 +

C

Dburst

)

N
(S16)

where

C = chronaxie: train duration at which Ffiring
hm

is twice the

value of ρ
Π
; units: s

ρ
Π
= aggregate rate of firing required to produce a reward of

half-maximal intensity when the train duration is infinite;
units: firings s−1

fU: In keeping with the generalized matching law [22], the benefit from work and its costs are combined in scalar 146

fashion to yield a net payoff. We can format the expression for the payoff as a ratio of two rates: the 147
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probability-weighted rate of brain-stimulation reward and the subjective rate of exertion required to hold down the 148

lever (see [23]): 149

UW = fU

(
Rbsr

Psub

, psub, φ̇sub
W

)
=

Rbsr

Psub

× psub

φ̇sub
W

=
Ṙbsr × psub

φ̇sub
W

(S17)

where

fU = utility function

UW = payoff from a train of rewarding stimulation;
units: hedons oomph−1

or as a benefit/cost ratio: 150

UW = fU

(
Rbsr

Psub

, psub, φ̇sub
W

)
=

Rbsr × psub

Psub × φ̇sub
W

(S18)

In the case of BSR, there is solid evidence that aggregate impulse flow in the first-stage neurons encodes the 151

signal that will be translated into the intensity of the reward [17, 20]. Although the identity of the first-stage neurons 152

subserving eICSS of the MFB (or any other brain site) remains unknown, directly-driven MFB neurons with 153

properties that match the psychophysically derived portrait of the first-stage fibers have been observed by means of 154

electrophysiological recording [24–26]. 155

The argument of the reward-growth function for leisure activities is left blank, thus signifying our ignorance of 156

how pursuit of these activities is encoded by the brain and translated into a reward rate. That said, the considerable 157

evidence that the value of leisure activities competes effectively with experimenter-controlled rewards [5, 16, 27–29] 158

implies that the payoffs from work and leisure are commensurable. Accordingly, we define a reward rate for the 159

leisure activities that compete with pursuit of BSR: 160

Ṙaa = fR ( ) =
˙̂
Raa ×Kaa (S19)

where

Kaa = alternate-activity scalar; units: hedons s−1

Ṙaa = average rate of reward from alternate (leisure) activities
that compete with pursuit of BSR; units: hedons s−1

˙̂
Raa = normalized rate of reward from alternate (leisure) activities;

unitless. 0 ≤
˙̂
Raa ≤ 1

( ) = the unknown variables that give rise to Ṙaa

The payoff from these alternate activities is computed in a manner analogous to the computation of the payoff from 161

BSR, as a ratio of reward and subjective-exertion rates: 162

UL = fU

(
Ṙaa, φ̇subL

)
=

˙̂
Raa ×Kaa

φ̇subL

(S20)

where

UL = payoff from leisure activities;
units: hedons oomph−1
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The core → shell function 163

fT : The payoffs from pursuit of BSR (UW ) and engagement in leisure activities (UL) are used by the sole 164

core → shell function to compute the allocation of time to pursuit of BSR. This behavioral-allocation function is 165

derived from the single-operant matching law [5, 30,31]: 166

T = Tmin +

[
(Tmax − Tmin)×

(UW )
a

(UW )a + (UL)
a

]
(S21)

where

a = price-sensitivity exponent; unitless

T = time allocation; unitless

Tmax = maximum time allocation; unitless

Tmin = minimum time allocation; unitless

UW = payoff from pursuit of rewarding brain stimulation
(“work”); units: hedons oomph−1

UL = payoff from pursuit of alternate (“leisure”) activities;
units: hedons oomph−1

Even when the rat is working maximally, latency to depress the lever is typically greater than zero, and Tmax is thus 167

typically less than one. The rat tends to sample the lever at trial onset, even when the payoff from brain stimulation 168

is low. Thus, Tmin is typically greater than zero. 169

The single-operant matching law was formulated initially to account for the behavior of subjects working on 170

variable-interval schedules of reinforcement. The cumulative handling-time schedule in force in the present study [32] 171

is more akin to a fixed-ratio schedule in that the number of rewards earned is strictly proportional to time worked. 172

On such schedules, time allocation shifts more abruptly than on variable-interval schedules as the value of the 173

experimenter-controlled reward is varied. In the original version of the single-operant matching law [30,31], the payoff 174

terms are not exponentiated. In contrast, the price-sensitivity exponent (a) in Eq S21 allows the reward-mountain 175

model to account for time-allocation shifts of varying abruptness. 176

To simplify the remaining derivation of the reward-mountain model, we define a normalized measure of time 177

allocation: 178

T̂ =
(UW )

a

(UW )a + (UL)
a (S22)

where 0 ≤ T̂ ≤ 1

Substituting from Eq S22 in Eq S21, we obtain 179

T = Tmin +
[
(Tmax − Tmin)× T̂

]
(S23)

T̂ =
T − Tmin

Tmax − Tmin

(S24)
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Time allocation as a function of reward strength and cost 180

We are now in a position to tie the dependent variable, time allocation (T ), to the two independent variables, 181

pulse frequency (Fpulse) and price (Pobj). Substitution for UW and UL from Eqs S17 and S20, respectively, in Eq S22 182

yields: 183

T̂ =




[R̂bsr ×Krg]× psub

[
˙̂
φsubW

×KecW
]× Psub




a




[R̂bsr ×Krg]× psub

[
˙̂
φsubW

×KecW
]× Psub




a

+ (UL)
a

(S25)

An initial step towards simplifying Eq S25 is to multiply each of the terms on the right by 184

(
Kec

W

Krg

)
×




˙̂
φ
sub

W

× Psub

psub




This yields: 185

T̂ =
(R̂bsr)

a

(R̂bsr)
a +



(
Kec

W
×Kaa

Krg

)
×




˙̂
φ
sub

W

× (UL)
a

psub


× Psub




a (S26)

To simplify Eq S25 further, we first define Tmid as the time-allocation value midway between maximal and 186

minimal time allocation: 187

Tmid = Tmin +

(
Tmax − Tmin

2

)
(S27)

According to Eqs S22 and S23,
when T = Tmid

T̂ = 0.5

and

UW = UL (S28)

We now hold time allocation at Tmid and drive reward intensity to its maximum value
(
R̂bsr = R̂bsrmax

)
. 188

Substituting for UW from Eq S17 and reversing Eq S28, we obtain 189
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UL =
[R̂bsrmax

×Krg]× psub

[
˙̂
φ
sub

W

×Kec
W
]× Psube

(Pobje
)

(S29)

where

Pobje
= objective price at which T = Tmid when R̂bsr = R̂bsrmax

Psube
= subective price at which T = Tmid when R̂bsr = R̂bsrmax

Rearranging the terms yields 190

Psube
=

Krg

Kaa ×Kec
W

×
psub × R̂bsrmax

˙̂
φsub

W
× UL

(S30)

For consistency with previous papers, we use the subscript, “e” in the symbol Psube
to refer to the fact that the 191

payoff from brain stimulation equals the payoff from alternate activities (“everything else”) when the normalized 192

reward intensity is maximal (R̂bsr = R̂bsrmax
) and the subjective price (Psub) equals Psube

. This equivalence 193

between the two competing payoffs is what drives time allocation to the half-way point (Tmid) between its minimal 194

(Tmin) and maximal (Tmax) values. 195

Rearranging Eq S30, we obtain: 196

R̂bsrmax

Psube

=



(
Kaa ×Kec

W

Krg

)
×




˙̂
φ
sub

W

× UL

psub





 (S31)

Substituting in Eq S26 from Eqs S11, S24, and S31, we obtain 197

T̂ =
(R̂bsr)

a

(R̂bsr)
a +

[
R̂bsrmax

×

(
Psub

Psube

)]a (S32)

By setting R̂bsr = R̂bsrmax
and Psub = Psube

in Eq S32, it can be seen readily that T̂ = 0.5, thus satisfying the 198

definition of Psube
as the price at which time allocation to pursuit of a maximally intense reward is halfway between 199

Tmin and Tmax. 200

Psub and R̂bsr must trade off to hold T̂ at a given level. The lowest attainable subjective price is the value 201

corresponding to an objective price of zero, which we will call Psub0
. (Negative values of Pobj may be required to 202

drive Psub to Psubmin
.) Consider a vector of subjective prices, ~Psub

T̂
, that extends from Psub0

to the highest tested 203

value of Psub and a corresponding vector of normalized reward intensities,
~̂
Rbsr

T̂
, that hold normalized time 204

allocation (T̂ ) constant over ~Psub. If follows from Eq S32 that 205
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~̂
Rbsr

T̂

~Psub
T̂

=

(
T̂

1− T̂

)1
a

×

(
R̂bsrmax

Psube

)
(S33)

0 ≤
~̂
Rbsr

T̂
≤ R̂bsrmax

≤ 1

0 < Psub0
≤ Psub

T̂

where

Psub0
= the subjective price corresponding to an objective price of

zero

The higher the subjective price, the higher the normalized reward intensity required to hold time allocation constant. 206

When T̂ = 0.5, Eq S33 reduces to: 207

~̂
Rbsr

T̂=0.5

~Psub
T̂=0.5

=
R̂bsrmax

Psube

(S34)

0 ≤ R̂bsr
T̂=0.5

≤ R̂bsrmax
≤ 1

0 < Psub0
≤ Psub

T̂=0.5
≤ Psube

Below (see: Contour lines: the trade-off between pulse frequency and price to hold time allocation constant), we use 208

Eqs S33 and S34 to obtain the equation for the contour lines that provide a two-dimensional description of the 209

reward-mountain surface. 210

To complete the derivation of the reward-mountain model, we now substitute for T̂ in Eq S23 and expand Eq S32 211

so that time allocation is expressed in terms of the independent variables: price (Pobj) and pulse frequency (Fpulse), 212

which appear as the arguments of the subjective-price and frequency-following functions, respectively: 213

T = Tmin + (Tmax − Tmin) ×

(
f
F
(Fpulse)

g

f
F
(Fpulse)g + f

F
(Fpulsehm

)g

)a

(
f
F
(Fpulse)

g

f
F
(Fpulse)g + f

F
(Fpulsehm

)g

)a

+

(
R̂bsrmax

×

[
f
P
(Pobj)

f
P
(Pobje

)

])a
(S35)

The conditioned-reward variant of the reward-mountain model 214

The six-parameter version of the reward-mountain model incorporates Eqs S1, S6, and S35. The fitted parameters 215

are a (the price-sensitivity exponent), Fpulsehm
(the pulse frequency at which reward intensity is half maximal), g 216

(the reward-growth exponent) Pobje (the price at which time allocation to pursuit of a maximal reward falls midway 217

between its minimal and maximal values), Tmin (minimum time allocation), and Tmax (maximal time allocation). 218

The seven-parameter version includes an additional parameter, Cr, to reflect conditioned reward. This seventh 219

parameter reflects a learned value, above and beyond the payoff from the stimulation train, associated with the lever 220

and/or the act of holding it down. The paper that introduced this parameter [3] incorporated it into the 221

reward-growth function as follows: 222
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R̂bsr =
Fpulse

g + Crg

Fpulse
g + Fpulsehm

g + Crg
(S36)

where

Cr = the conditioned reward, expressed in terms of the equiva-
lent pulse frequency

Note that the way the Cr parameter was incorporated into Eq S36 causes this parameter to interact with both 223

the a (Eq S35) and g (Eq S36) parameters. That form of the model failed to yield consistently converging fits when 224

applied to the current dataset. To address this problem, we altered the way that the Cr parameter is incorporated 225

into the reward-growth function (Eq S11) so as to reduce its interaction with the other parameters: 226

R̂bsr = Cr +

[(
1−

Cr

R̂bsrmax

)
×

(
f
F
(Fpulse)

g

f
F
(Fpulse)g + f

F
(Fpulsehm

)g

)]
(S37)

The resulting reward-mountain surface is produced by substituting the expression for R̂bsr from Eq S37 in Eq S32, 227

as follows: 228

T = Tmin + (Tmax − Tmin)×


Cr+

[(
1−

Cr

R̂bsrmax

)
×

(
f
F
(Fpulse)

g

f
F
(Fpulse)g + f

F
(Fpulsehm

)g

)]


a



Cr+

[(
1−

Cr

R̂bsrmax

)
×

(
f
F
(Fpulse)

g

f
F
(Fpulse)g + f

F
(Fpulsehm

)g

)]


a

+



R̂bsrmax
×

[
f
P
(Pobj)

f
P
(Pobje

)

]


a
(S38)

As shown in Fig S15, Eq S38 yields a reward-mountain surface that is all but indistinguishable from the surface 229

generated by the equation in the 2010 paper. Unlike the equation in the 2010 paper, Eq S38 produced well-behaved, 230

converging fits. 231

Fig S15. Surface and contour plots of two seven-parameter reward-mountain models. The new version
of the model produces a surface that is nearly identical to the one generated by the 2010 version of this model [3].
Fits of the 2010 model to the current datasets failed to converge, whereas fits of the new version of the model
converged in all cases.

Adaptation of the reward-mountain model for oICSS 232

Fig S16. The reward-mountain model for oICSS. A graphical summary of the reward-mountain model, as
adapted for oICSS of midbrain dopamine neurons. The symbols are defined in Tab S1.

The reward-mountain surface shows the observed behavioral output (time allocation, T ) as a function of the two 233

independent variables, the price (Pobj) and pulse frequency (Fpulse). These three variables constitute the shell of the 234

reward-mountain model, together with the controlled variables: the work rate required to hold down the lever 235

(φ̇obj
W

), the leisure activities afforded by the test environment, and the average work rate required to perform these 236

activities (φ̇obj
L
). The shell → core functions, {fF , fp, fP , fφ, fa}, map the manipulated and controlled variables 237

into the core quantities that determine the payoffs from work and leisure. These mapping functions are shown at the 238

left of the figure. The core functions that compute the reward intensities and corresponding payoffs {fR, fU} are 239

shown in the center. (fH , the function that determines the location parameter of the reward-growth function, is not 240

shown, nor are fD, the function that determines the duration of the stimulation-induced burst of firing and fN , the 241
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function that determines the number of recruited neurons (N ).) The core → shell function, (fT ), translates the 242

payoffs from work and leisure into time allocation. It is shown on the right. 243

Minimal changes were made to adapt the model prior to fitting the reward-mountain surface to the data: 244

1. New values were used for the parameters of the frequency-following function (Eq S1) so as to accommodate the 245

known properties of midbrain dopamine neurons and the optical-power versus pulse-frequency trade-off data 246

reported here. 247

2. In eICSS, the current and pulse duration conjointly determine the number of directly stimulated neurons. In 248

oICSS, optical power plays the role assumed by current in eICSS. However, there is insufficient information 249

available to model fN , the function that determines the number of neurons directly activated by a given optical 250

power and pulse duration. Instead, we simply chose values of N and ρ
Π

that produce simulated 251

reward-mountain surfaces similar to the ones returned by the fits of the model to the data. (See the 252

accompanying Matlab® Live Script.) 253

3. R̂bsrmax
was included explicitly in the reward-mountain model, thus expanding the model to accommodate 254

imperfect frequency-following fidelity. 255

4. Explicit inclusion of R̂bsrmax
required correction of the location parameters and a more nuanced treatment of 256

drug-induced shifts in the location of the mountain. (See: Displacement of the shell: distinguishing two sources.) 257

5. The new conditioned-reward variant described above (Eq S38) was used in lieu of the version introduced in our 258

prior studies of the effect of cocaine and GBR-12909 on reward mountains obtained in the eICSS 259

paradigm [3,33]. 260

Parameters of the frequency-following function for oICSS 261

The form of the frequency-following function (fF ) for channelrhodopsin-2-mediated excitation of midbrain 262

dopamine neurons has yet to be determined. Here, we used a function of the same form as the one we had determined 263

previously for eICSS of the MFB [6], but we substituted new parameter values. Dopamine neurons cannot fire nearly 264

as fast as the directly stimulated neurons subserving the rewarding effect of electrical MFB stimulation [6,34,35], and 265

the kinetics of channelrhodopsin-2 are slow in comparison to those of the voltage-gated channels responsible for 266

electrically induced neural firing [36]. Thus, frequency-following parameters determined for eICSS of the MFB cannot 267

be used to account for the frequency response of the dopamine neurons subserving oICSS of the ventral midbrain. 268

Although two studies found that frequency-following fidelity in optically stimulated midbrain dopamine neurons 269

fell to only 40-50% at optical pulse frequencies of 40-50 pulses s-1 [34, 35], results of two other electrophysiological 270

studies show very good firing fidelity at 50 pulses s-1 [37, 38]. Moreover, results of a recent electrochemical study [39] 271

show that optically induced dopamine release in the nucleus accumbens continued to rise as the pulse frequency was 272

increased from 40-50 pulses s-1. Poor frequency-following fidelity was found by Lohani and colleagues in midbrain 273

dopamine neurons optically stimulated at 100 pulses s-1 [40], suggesting that the upper limit on the induced firing 274

rate lies at a significantly lower pulse frequency. 275

Figs 3 and S5 show two cases (data from rats BeChR29 and 27) in which the behavioral effectiveness of the 276

stimulation continues to rise at pulse frequencies up to, or beyond, 60 pulses s-1. The curves for the remaining rats 277

approach asymptote earlier, but this does not necessarily reflect failure the higher pulse frequencies to increase firing: 278

saturation of reward-intensity growth [20] could be responsible instead. 279

In view of the power-frequency trade-off data reported here and the results reported in the studies cited above, we 280

set the middle of the roll-off region of the frequency-following function (Fro) to 50 pulses s-1 and the parameter 281

governing the abruptness of the roll-off (Fbend) to 20. The resulting frequency-following function is shown in Fig S13. 282

It continues to climb up to optical pulse frequencies of ∼100 pulses s-1 to attain a maximum induced firing rate of 283

51.6 spikes s-1. 284
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Displacement of the shell: distinguishing two sources 285

The purpose of the experiment is to draw inferences about brain-reward circuitry from the effect of 286

dopamine-transporter blockade on the location of the shell of the reward mountain within the space defined by the 287

two independent variables, the objective opportunity cost of the reward, Pobj , and the pulse frequency, Fpulse. 288

However, the core variables about which the inferences are to be drawn operate in spaces defined by the subjective 289

opportunity cost, Psub, and the induced frequency of firing, Ffiring (Tab S2). As we explain below, the 290

core → shell function, f
F
, which maps the pulse frequency into the evoked frequency of firing, contributes to the 291

estimates of both location parameters of the shell. Its influence must be removed in order to isolate the effects of the 292

drug on Ffiring
hm

and Psube
, the location parameters of the core. In the depiction and interpretation of the fitted 293

surfaces, we will distinguish between 294

• primary displacement of the shell of the reward mountain due to drug actions on the core components and 295

• secondary (additional) displacement of the shell due to the differential response of the frequency-following 296

function (fF ) in the drug and vehicle conditions 297

In the following section, we explain how to remove the secondary displacements from the location-parameter 298

estimates, thus isolating the primary displacements that are the focus of the study. 299

Correction of the location-parameter estimates for changes in frequency-following fidelity 300

Fitting the mountain surface to time-allocation data returns the two location parameters of the reward-mountain 301

shell: Pobje
, which positions the shell along the price axis, and Fpulsehm

, which positions the shell along the 302

pulse-frequency axis. Whereas the value of Fpulsehm
is independent of the value of Pobje

, the reverse does not hold 303

when frequency-following fidelity is imperfect. Changes in frequency-following fidelity alter the maximum reward 304

intensity (R̂bsrmax
) , which contributes to the value of both Pobje

and its subjective equivalent, Psube
. The portion 305

of the shifts in Pobje
due to changes in frequency-following fidelity must be removed in order decouple estimates of 306

that parameter from shifts along the pulse-frequency axis. Once Psube
has been suitably corrected, manipulations 307

that act at, or beyond, the output of the reward-growth function (fR, Fig S16) shift the mountain core uniquely 308

along the price axis, whereas manipulations that alter the input to the reward-growth function shift the mountain 309

core uniquely along the frequency axis [2, 3, 41]. 310

Imperfect frequency-following fidelity can also alter the extent to which the surface of the mountain shell shifts 311

along the pulse-frequency axis. This problem will arise if frequency-following fidelity differs in the drug and vehicle 312

conditions. Correction is required in order to estimate the shift of fundamental interest, which is the displacement of 313

the reward-growth function (a core component) along its firing-frequency axis. 314

The frequency-following function. The correction of the location-parameter estimates arises from the form of 315

the frequency-following function (fF ). The form and parameters of this function for eICSS of the MFB were 316

described by Solomon et al. [14]. In the absence of analogous data for oICSS, we have assumed the same functional 317

form but have tuned the parameters to accommodate the power-frequency trade-off data reported here and results of 318

prior studies [37–40]. 319

In double-logarithmic coordinates, the frequency-following function (Fig S13) has the form of an inverted hockey 320

stick, with a straight handle that transitions into a flat blade [6]. Pulse frequency is represented along the abscissa of 321

this function, and firing frequency is represented along the ordinate. The induced firing frequency follows the pulse 322

frequency perfectly over the portion of the handle that is truly straight, grows more slowly over a transition zone, and 323

levels off over the blade portion. Thus, within the transition zone, a given drug-induced decrement in firing frequency 324

(a core variable) will correspond to a larger decrement in pulse frequency (a shell variable). Drug-induced 325

displacement of the reward-growth function (fR) towards lower values of Ffiring
hm

improves frequency-following 326

fidelity (by moving the pulse frequency toward, or onto the straight “handle”). This causes the displacement of the 327

shell to exceed, and thereby overestimate, the underlying displacement of the reward-growth function. 328

To correct our estimate of how far the reward-growth function has shifted along the pulse-frequency axis, we need 329

to decouple its value from the maximum normalized reward intensity, R̂bsrmax
. This is achieved by using the 330

assumed frequency-following function (Eq S1) to estimate Ffiring
hm

from Fpulse
hm

. 331
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We define the corrected estimate of the location parameter as follows: 332

F ∗

pulse
hm

= f
F
(Fpulse

hm
) (S39)

where

F ∗

pulse
hm

= the estimated value of Ffiring
hm

, which is the value

Fpulse
hm

would have attained had frequency-following fi-

delity been perfect

Eq S39 states that F ∗

pulsehm
and f

F
(Fpulse

hm
) are one and the same. We will plot the value in question in the 333

coordinate space of the shell. There, the pulse frequency, rather than the firing frequency, serves as the ordinate. 334

Thus, in that context, we use F ∗

pulsehm
in lieu of f

F
(Fpulse

hm
) as our notation. 335

f
F
(Fpulse

hm
) (and thus F ∗

pulse
hm

) is a value along the ordinate of the frequency-following function (Fig S13), 336

whereas Fpulse
hm

is a value along the abscissa. Given the form of the frequency-following function, 337

F ∗

pulse
hm

< Fpulse
hm

once pulse frequency exceeds the capacity of the neurons to fire reliably to each and every pulse. 338

Several steps are required to correct the the parameter that locates the reward mountain along the price axis so 339

that it too is decoupled from frequency-following fidelity. The step first is analogous to the estimation of F ∗

pulsehm
340

from Fpulsehm
: We use the subjective-price equation (Eq S6) to transform Pobje

into its subjective equivalent, Psube
. 341

The next step is to correct Psube
for the effect of imperfect frequency-following fidelity. Eq S30 can be rearranged 342

as follows: 343

Psube
=


 psub[

Kec × φ̂
]
×
[
Kaa × Ûe

] ×Krg


× R̂bsrmax

(S40)

Eq S40 reminds us that Psube is proportional to the maximum normalized reward intensity that can be attained, 344

R̂bsrmax
. Eq S12 defines R̂bsrmax

in terms of the maximal attainable firing frequency, Ffiringmax
, the firing 345

frequency corresponding to Fpulse
hm

, and the reward-growth exponent, g. To estimate Ffiringmax
, we solve Eq S1 346

for a pulse frequency more than high enough to drive firing frequency to its maximum (Fpulsemax
= 1000 pulses s-1). 347

We then use the resulting estimate of R̂bsrmax
to produce a revised estimate of Psube

: 348

P ∗

sube
=

Psube

R̂bsrmax

(S41)

where

P ∗

sube
= estimated value that Psube

would have attained had
frequency-following fidelity been perfect

Last, we transform P ∗

sube
into its objective-price counterpart, P ∗

obje
by passing P ∗

sube
through the back-solution of 349

the subjective-price equation [6]: 350

P ∗

obje
= Psubmin

+ Psub
bend

× ln


−1 + e




P ∗

sube
− Psubmin

Psub
bend






 (S42)

for P ∗

sube
≥ Psub0

(S43)
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The transformation of P ∗

sube
into P ∗

obje
is performed so that the corrected location-parameter estimate can be 351

plotted in the space defined by the independent variables, {Pobj , Fpulse}. In this space, drug-induced shifts in the 352

position of the reward mountain, corrected for changes in frequency-following fidelity, are depicted as 353[
log10

(
F ∗

pulse
hm

drug

)
− log10

(
F ∗

pulse
hm

vehicle

)]
and

[
log10

(
P ∗

obje
drug

)
− log10

(
P ∗

obje
vehicle

)]
. 354

Model fitting and selection 355

Model selection 356

The 12 candidate models fit to the data are described in Tab S3. The models differ in the total number of 357

parameters as well as in the number of parameters free to vary across the vehicle and drug conditions. Models 2, 5, 8, 358

and 11 are based on the six-parameter version of the reward-mountain model (Eq S35), whereas the remaining 359

models are based on the seven-parameter version (Eq S38). The fits of all of the candidate models to the 360

reward-mountain data from all seven rats converged successfully. 361

Table S3. The 12 candidate models fit to each dataset. Values of the “ free” parameters were free to differ
between the vehicle and drug conditions, whereas a single value was fitted to the data from both conditions in the
case of “ com” (common) parameters. Additional columns list the total number of “Common” and “Free” parameters
along with their “Totals.” Models 2, 5, 8, and 11 are based on the six-parameter version of the reward-mountain
model (Eq S35), whereas the remaining models are based on the seven-parameter version (Eq S38).

Num a free g free CR free CR com Common Free Total

1 0 0 1 0 4 6 10

2 0 0 0 0 4 4 8

3 0 0 0 1 5 4 9

4 1 0 1 0 3 8 11

5 1 0 0 0 3 6 9

6 1 0 0 1 4 6 10

7 0 1 1 0 3 8 11

8 0 1 0 0 3 6 9

9 0 1 0 1 4 6 10

10 1 1 1 0 2 10 12

11 1 1 0 0 2 8 10

12 1 1 0 1 3 8 11

Tab S4 ranks the fits of the 12 candidate models for one rat (Bechr29) by their evidence ratios (the relative 362

likelihood that a candidate model is true in comparison to the best-fitting model). Note that the residual sum of 363

squares for the worst-fitting model (model 10) is slightly lower than in the case of the best-fitting model (model 2). 364

This is not surprising given that the worst-fitting model comprises 12 parameters whereas the best-fitting model 365

comprises only eight. The Akaike Information Criterion (AIC) [42] implements a trade-off between goodness of fit 366

and simplicity. Thus, the AIC penalizes models with large number of parameters in comparison to simpler ones. On 367

the basis of the AIC, model 10 is over 5× 105 times less likely than model 2 and is ranked accordingly. Summary 368

statistics for the best-fitting model for each rat are listed in Tab S5. 369
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Table S4. Model-evaluation statistics for the fit of the 12 candidate models to the data from rat Bechr29. The
models are described in Tab S3. “AIC” stands for the Akaike Information Criterion [42]. “Likelihood” refers to the

ratio:

[
Likelihood(candidate model)

Likelihood(best-fitting model)

]
, which expresses the relative likelihood that a candidate model is true in

comparison to the best-fitting model. The Evidence Ratio (“Ev ratio”) is the inverse of the likelihood ratio. The
total number of parameters is listed under “prms,” the residual sum of squares under “RSS,” the total sum of squares
under “TSS,” and the adjusted R2 under “Adj R2.”

Model AIC Likelihood Ev ratio prms RSS TSS Adj R2

2 -1,922.58 1.000000 1.00 8 13.904 12,647.57 0.998886

8 -1,916.12 0.039636 25.23 9 13.897 12,647.57 0.998885

5 -1,915.86 0.034860 28.69 9 13.904 12,647.57 0.998884

3 -1,915.86 0.034846 28.70 9 13.904 12,647.57 0.998884

11 -1,909.46 0.001421 703.74 10 13.896 12,647.57 0.998883

9 -1,909.40 0.001377 726.48 10 13.897 12,647.57 0.998883

6 -1,909.14 0.001211 825.83 10 13.904 12,647.57 0.998882

1 -1,909.14 0.001210 826.19 10 13.904 12,647.57 0.998882

12 -1,902.74 0.000049 20,330.45 11 13.896 12,647.57 0.998881

7 -1,902.69 0.000048 20,826.76 11 13.897 12,647.57 0.998880

4 -1,902.42 0.000042 23,852.26 11 13.904 12,647.57 0.998880

10 -1,896.02 0.000002 585,023.15 12 13.895 12,647.57 0.998878

Table S5. Summary statistics for the model that provided the best fit (highest evidence ratio) to the data for each
rat. The models in the “Model Num” column are defined in Tab S3. The residual sum of squares is listed in column
“RSS,” the total sum of squares in column “TSS,” and the adjusted R2 in column “Adj R2.”

Rat Model Num RSS TSS Adj R2

Bechr14 2 23.23 14, 413.79 0.9984

Bechr19 3 28.68 4, 554.59 0.9936

Bechr21 11 19.52 14, 177.29 0.9986

Bechr26 3 8.52 9, 017.52 0.9990

Bechr27 12 4.55 11, 171.77 0.9996

Bechr28 9 20.45 8, 986.80 0.9977

Bechr29 2 13.90 12, 647.57 0.9989

Different variants of the reward-mountain model provided the best fit to the data from different rats. Tab S6 370

shows the best-fitting model for all rats, as determined by the AIC-based evidence ratio. In four cases 371

(Bechr14,19,26,29), the best-fitting model was one in which common values of the a and g parameters were fit to the 372

data from both the vehicle and drug conditions; in the remaining three cases, the best-fitting model was one in which 373

the values of a, g, or both were free to vary across the vehicle and drug conditions. 374

In four cases (Bechr19, 26,27,28), the Cr parameter was included in the best-fitting model, whereas in the three 375

remaining cases, it was not. As Fig S15 illustrates, the Cr parameter will be advantageous when time allocation in 376

low-payoff trials is higher along pulse-frequency sweeps than along price or radial sweeps. In no case was the value of 377

this parameter free to vary across the vehicle and drug conditions in the best-fitting model. Thus, there is no 378

evidence that the advantage conferred by addition of the Cr parameter was due to dopamine-transporter blockade. 379
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Table S6. Best-fitting models for all rats. The models are described in Tab S3. Values of the “ free” parameters
were free to differ between the vehicle and drug conditions, whereas a single value was fitted to the data from both
conditions in the case of “ com” (common) parameters. Additional columns list the total number of common and free
parameters and their totals

Rat Model num a free g free CR free CR com Common Free Total

Bechr14 2 0 0 0 0 4 4 8

Bechr19 3 0 0 0 1 5 4 9

Bechr21 11 1 1 0 0 2 8 10

Bechr26 3 0 0 0 1 5 4 9

Bechr27 12 1 1 0 1 3 8 11

Bechr28 9 0 1 0 1 4 6 10

Bechr29 2 0 0 0 0 4 4 8

Fitted reward-mountain surfaces 380

Fig S17. Reward-mountain surfaces fit to the vehicle and drug data from rat Bechr14. The surfaces of
the reward-mountain shell are shown in gray. The thick black line represents the contour mid-way between the
minimal and maximal estimates of time allocation (the estimated altitudes of the valley floor and summit). Mean
time-allocation values for the pulse frequency, price, and radial sweeps are denoted by red pyramids, blue squares,
and green polyhedrons, respectively.

Fig S18. Reward-mountain surfaces fit to the vehicle and drug data from rat Bechr19. See caption for
Fig S17.

Fig S19. Reward-mountain surfaces fit to the vehicle and drug data from rat Bechr21. See caption for
Fig S17.

Fig S20. Reward-mountain surfaces fit to the vehicle and drug data from rat Bechr26. See caption for
Fig S17.

Fig S21. Reward-mountain surfaces fit to the vehicle and drug data from rat Bechr27. See caption for
Fig S17.

Fig S22. Reward-mountain surfaces fit to the vehicle and drug data from rat Bechr28. See caption for
Fig S17.

The corresponding graph for rat Bechr29 is shown in Fig 5 in the main text along with the caption. 381

Contour and bar graphs 382
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Fig S23. Contour graphs of the surfaces fit to the vehicle and drug data and bar graphs of the shifts
in the location parameters for rat Bechr14. The values of the independent variables along frequency sweeps
are designated by red triangles, along price sweeps by blue squares, and along radial sweeps by green circles. The
values of the location parameters, Fpulse

hm
and Pobje

, and are indicated by red horizontal lines with right-facing

triangular end points and blue vertical lines with diamond end points, respectively. The shaded regions surrounding
the lines denote 95% confidence intervals. The vehicle data are shown twice, once in the upper-left quadrant and once
in the lower right. The dotted lines connecting the panels designate the shifts in the common-logarithmic values of
the location parameters of the mountain, which are designated as {∆Pobje

, ∆Fhm} and plotted in the bar graph in
the upper-right panel. The dot-dash cyan lines superimposed on the bars show location-parameter estimates
corrected for changes in frequency-following fidelity due to the displacement of the mountain along the
pulse-frequency axis. (See section Correction of the location-parameter estimates for changes in

frequency-following fidelity.) The 95% confidence intervals are shown in the bar graphs as vertical lines.

Fig S24. Contour and bar graphs for rat Bechr19. See caption for Fig S23.

Fig S25. Contour and bar graphs for rat Bechr21. See caption for Fig S23.

Fig S26. Contour and bar graphs for rat Bechr26. See caption for Fig S23.

Fig S27. Contour and bar graphs for rat Bechr27. See caption for Fig S23.

Fig S28. Contour and bar graphs for rat Bechr28. See caption for Fig S23.

The corresponding graphs for rat Bechr29 are shown in Fig 6 in the main text. 383

Location-parameter estimates 384

Fhm: Tab S7 shows the estimates of Fpulse
hm

(uncorrected) and F ∗

pulse
hm

(corrected) for the drug and vehicle 385

conditions. In six of seven cases, a lower pulse frequency sufficed to produce a reward of half-maximal intensity under 386

the influence of dopamine-transporter blockade than in the vehicle condition. 387

The Fpulse
hm

estimates vary over more than a doubling range in both the drug and vehicle conditions. 388

Particularly in the vehicle condition, the higher values fall within a range over which the assumed frequency-following 389

function (??) rolls off, thus preventing the normalized reward-growth function from approaching a value of one at the 390

highest pulse frequencies tested. This is why the uncorrected ( Fpulse
hm

) and corrected (F ∗

pulse
hm

) values in Tab S7) 391

differ. For example, the ∼31 pulses s-1 that produced a reward of half-maximal intensity in rat Bechr29 in the vehicle 392

condition are estimated to have generated only ∼26 firings s-1. 393

Tab 2 in the main text shows the estimated drug-induced shifts in the location of the reward-mountain core 394

along the frequency axis. 395

Eqs S13,S14 express the effect of the drug on the location parameter of the reward-growth function as a divisor: 396

the more the drug boosts dopamine release, the lower the value of the location parameter for the drug condition and 397

thus the farther the reward-growth function is shifted to the left. The rightmost column in Tab 2 lists the values of 398

this divisor implied by the drug-induced shifts in the position of the reward mountain along the pulse-frequency axis. 399

By analogy to Eq S14, 400
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Table S7. The position of the reward mountain along the pulse-frequency axis. The Fpulse
hm

parameter

sets the location of the shell of the reward-mountain along the pulse-frequency axis. If frequency-following fidelity
were perfect, a pulse frequency of Fpulse

hm
would have induced an identical firing frequency in the optically activated

dopamine neurons. Otherwise, the values corrected for imperfect frequency following, which are shown in the
“F ∗

pulse
hm

” columns, will be lower than the uncorrected values, which are shown in the “Fpulse
hm

” columns. The

corrected values in the “F ∗

pulse
hm

” columns are the estimated firing frequencies induced by the pulse frequencies in

the “Fpulse
hm

” columns, derived from the frequency-following function described in section ??. The values listed in

the “Veh” columns are from the fits to the data acquired in the vehicle condition, whereas the values in the “Drg”
columns are from the fits to the data acquired under the influence of GBR-12909.

Rat Fpulse
hm

Drg Fpulse
hm

Veh F ∗

pulse
hm

Drg F ∗

pulse
hm

Veh

Bechr14 19.734 27.094 17.341 23.164

Bechr19 11.502 16.265 10.372 14.457

Bechr21 10.072 35.836 9.103 29.453

Bechr26 17.718 25.359 15.668 21.822

Bechr27 23.395 18.892 20.286 16.648

Bechr28 14.728 32.350 13.142 27.007

Bechr29 20.776 31.347 18.184 26.293

F ∗

pulse
hm

drug

=

F ∗

pulse
hm

vehicle

Kda
drug

(S44)

where

F ∗

pulse
hm

drug

= location parameter of the reward-growth function for the
drug condition

F ∗

pulse
hm

vehicle

= location parameter of the reward-growth function for the
vehicle condition

Kda
drug

= proportional reduction in the value of the location pa-
rameter of the reward-growth function due to dopamine-
transporter blockade

It follows that

Kda
drug

= 10
−diff

where

diff = log

(
F ∗

pulse
hm

drug

)
− log

(
F ∗

pulse
hm

vehicle

)

P
e
: In previous work employing the reward-mountain model [3, 33, 43,44], changes in the location of the fitted 401

surface along the price axis have been attributed to variables acting at, or beyond, the output of the reward-growth 402

function, whereas changes in the location of the fitted surface along the pulse-frequency axis have been attributed to 403

variables acting at, or prior to, the input to the reward-growth function. The reward-mountain model treats these 404

two sets of changes as independent, a postulate that is largely supported by empirial findings [1, 2, 13]. This 405

interpretation is valid as long as the induced firing frequency can be driven high enough to maximize reward intensity. 406

Tab S8 shows that this assumption does not hold in several of the datasets from the present study: The maximum 407

normalized reward intensity, R̂bsrmax
, is substantially less than one in these cases. 408

The deviation of R̂bsrmax
from one is generally greater in the vehicle data than in the drug data. In such cases, a 409
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Table S8. Estimates of the maximum normalized reward intensities in the vehicle and drug

conditions. The values in “R̂bsrmax
Drg” and “R̂bsrmax

Veh” columns are the maximum normalized reward
intensities in the vehicle and drug conditions, respectively, based on the frequency-following function described in
section ??. The ratios of these values (Drg / Veh) are listed in the “Ratio” column, and the common logarithms of
the ratios in the “log(Ratio)” column.

Rat R̂bsrmax
Drg R̂bsrmax

Veh Ratio log(Ratio)

Bechr14 0.986 0.958 1.029 0.013

Bechr19 1.000 0.999 1.001 0.000

Bechr21 1.000 0.849 1.179 0.071

Bechr26 0.998 0.989 1.009 0.004

Bechr27 0.964 0.997 0.967 -0.015

Bechr28 1.000 0.952 1.051 0.022

Bechr29 0.964 0.894 1.079 0.033

portion of the change in the value of the Pobje
parameter is due to fact that the drug displaced the rising portion of 410

the reward-mountain surface into a range of pulse frequencies over which the fidelity of frequency following is better 411

than in the vehicle condition. That contribution to the change in the value of the Pobje
parameter reflects mitigation 412

at the input to the reward-growth function (Eq S11), thus undermining the independence of the changes in the 413

parameters that locate the reward mountain along the price and frequency axes. That is why we computed corrected 414

estimates (P ∗

obje
), as described in section Correction of the location-parameter estimates for changes in 415

frequency-following fidelity thus compensating for the differences in the value of R̂bsrmax
across the vehicle and 416

drug conditions. The estimates of Pobje
and P ∗

obje
are shown in Tab S9. 417

Table S9. The position of the reward mountain along the price axis. The Pobje
parameter determines the

position of the reward mountain along the price axis. When the maximum normalized reward intensity differs
between the drug and vehicle conditions due to differences in frequency-following fidelity, the value of the Pobje

parameter is affected. The values listed in the “P ∗

obje
” columns have been corrected to remove this effect. They show

the estimated value that the Pobje
parameter would have attained had frequency-following fidelity been perfect.

Rat Pobje
Drg Pobje

Veh P ∗

obje
Drg P ∗

obje
Veh

Bechr14 9.572 6.127 9.414 6.252

Bechr19 11.755 5.369 11.658 5.363

Bechr21 25.102 13.662 25.096 15.933

Bechr26 14.051 11.625 14.347 11.843

Bechr27 22.434 19.475 23.066 19.592

Bechr28 75.392 51.225 76.366 56.401

Bechr29 10.041 6.295 10.480 7.375

Tab 3 in the main text lists the drug-induced shifts in the common logarithms of P ∗

obje
. 418

The drug-induced shifts in the location-parameter values are uncorrelated 419

Parameter values for best-fitting model for all rats 420

The values of the location parameters in these tables are uncorrected. Corrected values are listed in Tabs 2 and 3 421

in the main text. 422
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Fig S29. Scatter plot of drug-induced shifts in the location parameters. The corrected estimates of
displacement along the price and pulse-frequency axes are shown on the abscissa and ordinate, respectively. F ∗

hm is
shorthand for F ∗

pulse
hm

Table S10. Parameter values from the best-fitting model for the data from Rat Bechr14. Columns CBlow and
CBhigh list the upper and lower bounds of the 95.2% confidence intervals.

Vehicle Drug

Parameter Estimate CBlow CBhigh Estimate CBlow CBhigh

a 1.064 0.922 1.233 1.064 0.922 1.233

g 3.915 3.450 4.423 3.915 3.450 4.423

Log10(Fhm) 1.433 1.390 1.478 1.295 1.262 1.331

Log10(Pe) 0.787 0.694 0.869 0.981 0.889 1.052

Tmax 0.821 0.771 0.881 0.821 0.771 0.881

Tmin 0.144 0.127 0.159 0.144 0.127 0.159

Table S11. Parameter values from the best-fitting model for the data from Rat Bechr19. Columns CBlow and
CBhigh list the upper and lower bounds of the 95.2% confidence intervals.

Vehicle Drug

Parameter Estimate CBlow CBhigh Estimate CBlow CBhigh

a 1.840 1.729 1.972 1.840 1.729 1.972

Cr 0.214 0.191 0.239 0.214 0.191 0.239

g 5.862 3.837 13.690 5.862 3.837 13.690

Log10(Fhm) 1.211 1.172 1.247 1.061 0.996 1.100

Log10(Pe) 0.730 0.699 0.762 1.070 1.051 1.089

Tmax 0.796 0.777 0.816 0.796 0.777 0.816

Tmin 0.005 0.000 0.009 0.005 0.000 0.009

Table S12. Parameter values from the best-fitting model for the data from Rat Bechr21. Columns CBlow and
CBhigh list the upper and lower bounds of the 95.2% confidence intervals.

Vehicle Drug

Parameter Estimate CBlow CBhigh Estimate CBlow CBhigh

a 1.442 1.368 1.523 3.436 3.222 3.674

g 3.109 2.719 3.593 10.992 10.503 11.432

Log10(Fhm) 1.554 1.480 1.649 1.003 1.000 1.007

Log10(Pe) 1.136 1.115 1.154 1.400 1.388 1.410

Tmax 0.836 0.829 0.843 0.836 0.829 0.843

Tmin 0.097 0.091 0.103 0.097 0.091 0.103
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Table S13. Parameter values from the best-fitting model for the data from Rat Bechr26. Columns CBlow and
CBhigh list the upper and lower bounds of the 95.2% confidence intervals.

Vehicle Drug

Parameter Estimate CBlow CBhigh Estimate CBlow CBhigh

a 1.998 1.887 2.106 1.998 1.887 2.106

Cr 0.071 0.062 0.080 0.071 0.062 0.080

g 5.233 4.788 5.804 5.233 4.788 5.804

Log10(Fhm) 1.404 1.384 1.427 1.248 1.232 1.268

Log10(Pe) 1.048 1.080 1.148 1.134 1.164

Tmax 0.882 0.870 0.895 0.882 0.870 0.895

Tmin 0.057 0.051 0.063 0.057 0.051 0.063

Table S14. Parameter values from the best-fitting model for the data from Rat Bechr27. Columns CBlow and
CBhigh list the upper and lower bounds of the 95.2% confidence intervals.

Vehicle Drug

Parameter Estimate CBlow CBhigh Estimate CBlow CBhigh

a 1.454 1.381 1.525 2.015 1.924 2.135

Cr 0.037 0.035 0.039 0.037 0.035 0.039

g 5.050 4.561 5.684 3.524 3.360 3.699

Log10(Fhm) 1.276 1.248 1.307 1.369 1.342 1.394

Log10(Pe) 1.289 1.272 1.303 1.351 1.337 1.364

Tmax 0.888 0.881 0.895 0.888 0.881 0.895

Tmin 0.009 0.000 0.028 0.009 0.000 0.028

Table S15. Parameter values from the best-fitting model for the data from Rat Bechr28. Columns CBlow and
CBhigh list the upper and lower bounds of the 95.2% confidence intervals.

Vehicle Drug

Parameter Estimate CBlow CBhigh Estimate CBlow CBhigh

a 2.432 2.304 2.595 2.432 2.304 2.595

Cr 0.022 0.021 0.024 0.022 0.021 0.024

g 4.609 4.281 5.077 17.305 16.182 18.765

Log10(Fhm) 1.510 1.489 1.532 1.168 1.163 1.173

Log10(Pe) 1.709 1.687 1.730 1.877 1.860 1.893

Tmax 0.915 0.910 0.921 0.915 0.910 0.921

Tmin 0.143 0.135 0.151 0.143 0.135 0.151
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Table S16. Parameter values from the best-fitting model for the data from Rat Bechr29. Columns CBlow and
CBhigh list the upper and lower bounds of the 95.2% confidence intervals.

Vehicle Drug

Parameter Estimate CBlow CBhigh Estimate CBlow CBhigh

a 2.312 2.172 2.462 2.312 2.172 2.462

g 3.161 2.980 3.354 3.161 2.980 3.354

Log10(Fhm) 1.496 1.476 1.518 1.318 1.304 1.335

Log10(Pe) 0.799 0.783 0.814 1.002 0.990 1.015

Tmax 0.896 0.883 0.910 0.896 0.883 0.910

Tmin 0.112 0.107 0.118 0.112 0.107 0.118
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The reward-growth function for oICSS 423

Fig S30. Changing the value of the input-scaling parameter, Fhm , shifts the mountain along the
pulse-frequency axis. Fhm is shorthand for Fpulse

hm

Fig S31. Changing the value of the output-scaling parameter, Krg , shifts the mountain along the
price axis. Pe is shorthand for Pobje

Illustration of the correction for imperfect frequency-following fidelity 424

When the parameter that locates the reward mountain along the pulse-frequency axis (Fpulse
hm

) falls within the 425

range over which the induced firing frequency diverges substantially from the pulse frequency, then the magnitude of 426

a drug-induced shift along the pulse-frequency axis is exaggerated, and a fictive shift is produced along the price axis. 427

Fig S32 illustrates this effect and its removal by means of the correction procedure. The dot-dash cyan contour line 428

shows the objective-price and pulse-frequency values that would have driven time allocation halfway between its 429

minimal and maximal values had frequency-following fidelity been perfect. In contrast, the solid, wide, black contour 430

line shows the equivalent objective-price and pulse-frequency values given the assumed frequency-following function. 431

Note that the dot-dash cyan line deviates more from the solid, wide, black line in the simulated vehicle data in the 432

upper left and lower right quadrants than in the simulated drug data in the lower-left quadrant. This is so because 433

the uncorrected location-parameter value (vehicle: ∼39 pulses s-1; drug: ∼18 pulses s-1) is much closer to the 434

estimated maximum attainable firing frequency (51.67 firings s-1) in the vehicle condition than in the drug condition. 435

As a result, the simulated firing rate falls further below the pulse frequency in the vehicle condition than in the drug 436

condition. The dot-dash lines superimposed on the bar graphs show the result of correcting the location-parameter 437

shifts for this effect. 438

Fig S32. Correction for imperfect frequency-following fidelity. Simulated data, with Fpulse
hm

placed well

within the region over which frequency-following fidelity falls off substantially. The simualated vehicle data are shown
twice, once in the upper-left quadrant and once in the lower right. The dotted lines connecting the panels designate
the shifts in the common-logarithmic values of the location parameters of the mountain, which are designated as
{∆Pobje

, ∆Fhm} and plotted in the bar graph in the upper-right panel. The dot-dash cyan lines superimposed on
the bars show location-parameter estimates corrected for changes in frequency-following fidelity due to the
displacement of the mountain along the pulse-frequency axis. Fhm is shorthand for Fpulse

hm

Comparison of logistic and power growth of reward intensity 439

Fig S33. The input-scaling parameter of the power reward-growth function locates the reward
mountain along the price axis. Contour- and bar-graph representation of the simulated reward mountains
produced by the magenta and green power-reward-growth functions (Eq 2) in the lower-left panel of Fig 9. In
contrast to the effect of varying the value of the input-scaling parameter on the location of reward mountains based
on logistic reward growth (Figs S30, S31), changing the value of the input-scaling parameter of the
power-reward-growth function shifts the mountain along the price axis and not along the pulse-frequency axis.

Fig S34. The output-scaling parameter of the power reward-growth function also locates the reward
mountain along the price axis. Contour- and bar-graph representation of the simulated reward mountains
produced by the magenta and green power-reward-growth functions (Eq 2) in the lower-right panel of Fig 9.
Changing the value of the output-scaling parameter of the power-reward-growth function shifts the mountain along
the price axis just like the effect of changing the value of the input-scaling parameter shown in Fig S33.
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Toward a new model of brain-reward circuitry 440

Fig S35. Contour graphs of reward mountains simulated by the convergence model.
Dopamine-transporter blockade shifts the simulated reward mountain (almost) exclusively along the pulse-frequency
axis, as in the behavioral data. The simulated MFB drive on the dopamine neurons is equivalent to an optical pulse
frequency of 40 pulses s−1.

Fig S36. Contour graphs of reward mountains simulated by the convergence model given very
strong MFB input. The simulated MFB drive on the dopamine neurons is now equivalent to an optical pulse
frequency of 80 pulses s−1.

Training in preparation for measurement of the reward mountain 441

Fig S37. Graphical summary of the experimental procedure. A: TH::Cre +/- rats received bilateral VTA
injections of an AAV5 virus bearing a Cre-dependent, ChR2-YFP transcript. Optical fibers were bilaterally aimed at
the VTA. B: Rats were trained to hold down a lever for a specified cumulative amount of time to deliver trains of
optical stimulation to the VTA. The red curve represents the proportion of trial time the rat spent working for the
optical reward as the optical pulse frequency (the reward-strength variable) was systematically manipulated. The
blue curve shows the proportion of trial time the rat spent working for a maximal optical reward as the cumulative
amount of time required to harvest the reward (“price”) was manipulated systematically. The green curves show
proportion of trial time the rat spent working for the optical reward as the strength and price of the reward were
simultaneously manipulated. C: The reward-mountain model was fit independently to the data from each rat
following injections of GBR-12909 or vehicle. Within subject comparisons were performed.

Contour lines: the trade-off between pulse frequency and price to hold time 442

allocation constant 443

Contour graphs provide a compact summary of the reward-mountain surface in a format that facilitates 444

visualization of the direction(s) in which the mountain has been shifted by a manipulation such as administration of a 445

drug. The changes in the values of the location parameters become visually apparent in this format. 446

Here, we derive the equation for the contour lines, thus updating an earlier derivation [14] in which it had been 447

assumed that the higher pulse frequencies tested drive reward intensity to its maximum attainable value (R̂max → 1). 448

This will indeed be so if the pulse frequencies in question are substantially lower than the frequency-following limit in 449

the directly stimulated neurons. That assumption was usually justified in previous eICSS studies in which the reward 450

mountain was measured [2, 3, 6, 13, 14,33,43,44]. Highly excitably MFB neurons served as the directly activated 451

substrate for the rewarding effect in those studies. In contrast, midbrain dopamine neurons are directly activated 452

substrate in the current study. Not only do these neurons have more limited frequency-following abilities than their 453

MFB counterparts [38, 40], their activation is due to optical excitation of a relatively slow opsin [36] rather than to 454

electrical excitation of voltage-sensitive membrane channels. As we show below, it is likely that the highest pulse 455

frequencies employed in the present study did not always succeed in driving reward intensity to its maximum, 456

particularly in the vehicle condition. To accommodate such cases, we now generalize the previously published 457

expression for the contour lines [14]. 458

We begin by reformatting Eq 33 from the main text as follows: 459
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~̂
Rcont =


 T̂cont

1− T̂cont




1

a
×

[
R̂max ×

(
f
P
(~Pobjcont

)

f
P
(Pobje

)

)]
(S45)

where

a = price-sensitivity exponent

~Pobjcont
= vector of prices for which T̂ = T̂cont when R̂ is a corresponding element of R̂cont (S46)

Pobje
= objective price at which T = Tmid when R̂ = R̂max

f
P
(Pobjcont

) = subjective equivalent of Pobjcont

f
P
(Pobje

) = subective price at which T = Tmid when R̂ = R̂max

~̂
Rcont = vector of normalized reward intensities for which T̂ = T̂cont when Pobj is a corresponding

element of Pobjcont
; 0 ≤ R̂ ≤ 1

R̂max = maximum normalized reward intensity

T̂cont = time allocation represented by the contour line

T̂cont = normalized time allocation represented by the contour line;

T̂cont = (Tcont − Tmin)÷ (Tmax − Tmin); 0 ≤ T̂cont ≤ 1;

Substituting for R̂ from Eq 12 in the main text, we obtain: 460

f
F
(~Fpulsecont

)g

f
F
(~Fpulsecont

)g + f
F
(Fpulsehm

)g
=


 T̂cont

1− T̂cont




1

a
×

[
R̂max ×

(
f
P
(~Pobjcont

)

f
P
(Pobje

)

)]
(S47)

We now multiply both sides by f
F
(~Fpulsecont

)g + f
F
(Fpulsehm

)g, yielding

f
F
(~Fpulsecont

)g =

[
f
F
(~Fpulsecont

)g + f
F
(Fpulsehm

)g
]
×






 T̂cont

1− T̂cont




1
a

×

[
R̂max ×

(
f
P
(~Pobjcont

)

f
P
(Pobje

)

)]


(S48)

and we then expand the right side to yield:

f
F
(~Fpulsecont

)g =




f
F
(~Fpulsecont

)g ×


 T̂cont

1− T̂cont




1

a
×

[
R̂max ×

(
f
P
(~Pobjcont

)

f
P
(Pobje

)

)]


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+




f
F
(~Fpulsehm

)g ×


 T̂cont

1− T̂cont




1

a
×

[
R̂max ×

(
f
P
(~Pobjcont

)

f
P
(Pobje

)

)]




(S49)
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The terms that include f
F
(~Fpulsecont

)g are collected on the left side

f
F
(~Fpulsecont

)g −




f
F
(~Fpulsecont

)g ×


 T̂cont

1− T̂cont




1

a
×

[
R̂max ×

(
f
P
(~Pobjcont

)

f
P
(Pobje

)

)]




=

f
F
(~Fpulsehm

)g ×


 T̂cont

1− T̂cont




1

a
×

[
R̂max ×

(
f
P
(~Pobjcont

)

f
P
(Pobje

)

)]
(S50)

and the left side is factored to yield:

f
F
(~Fpulsecont

)g ×

(
1−






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
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1

a
×

[
R̂max ×

(
f
P
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)

f
P
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)

)]

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)
=
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
 T̂cont

1− T̂cont




1

a
×

[
R̂max ×

(
f
P
(~Pobjcont

)

f
P
(Pobje

)

)]
(S51)

Re-arranging the terms, we obtain: 461

f
F
(~Fpulsecont

)g

f
F
(Fpulsehm

)g
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
 T̂cont
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)
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(S52)

The numerator and denominator of the right side are now multiplied by f
P
(Pobje

)×
(

1−T̂cont

T̂cont

)1
a to yield 462

f
F
(~Fpulsecont

)g

f
F
(Fpulsehm

)g
=

R̂max × f
P
(~Pobjcont

)


(

1−T̂cont

T̂cont

)1
a × f

P
(Pobje

)


−

(
R̂max × f

P
(~Pobjcont

)
)

(S53)

The contour graphs will be plotted in double logarithmic coordinates. In that space, Eq S53 becomes 463
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log10
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f
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(S54)

When time allocation falls halfway between Tmin and Tmax (T = Tmid; T̂ = 0.5), Eq S54 reduces to: 464

log10
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f
F
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(S55)

Expanding the right side, we obtain

log10
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f
F
(~FpulseT=0.5

)
]
− log10
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(S56)

When R̂max = 1, Eq S56 reduces to 465
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(S57)
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The Matlab Live Script used in the simulations is available from the following Dropbox 
folder:


https://www.dropbox.com/sh/75xx1961cmvhxpq/ 
AACuI5RSImSDd8YCig_vos7aa?dl=0


This folder contains three files:


• The Live Script: GBR_eICSS_oICSS_v10.mlx


• A non-executable HTML version of the Live Script that can be viewed in a browser.


• A .zip archive of the 17 graphics files that the Live Script will import: 
Imported_figures.zip


The setup of the Live Script is described in the section entitled “Preliminaries” and is 
implemented in lines 4-24.


The Live Script should run on any version of Matlab from R2018a onwards. The script 
hasn’t been tested on earlier versions, but it may run on versions as far back as 
R2016a.


Execution of the entire script can take several minutes on a reasonably fast system. It 
may prove most practical to work through it in sections via the “Run Section” and “Run 
and Advance” buttons of the Live-Script editor.


Most variables are cleared at the end of each major section. The ones that are required 
throughout are all defined before line 316 (“Moving the mountain: validation studies“). 
Once the script has run to that point, the user can navigate directly to sections of 
interest via the “Go To” button, e.g.


• line 599: “The significance of orthogonal shifts”


• line 870: “At what stage of processing does perturbation of dopaminergic 
neurotransmission alter reward seeking in eICSS?”


• line 878: “Optical intracranial self-stimulation of midbrain dopamine neurons”


• line 1030: “Dopaminergic modulation of subjective effort cost”


• line 1122: “The series-circuit model of eICSS and oICSS”


• line 1406: “The convergence model”
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MATLAB Live Script to supplement "The effect of dopamine

transporter blockade on optical self-stimulation: behavioral and

computational evidence for parallel processing in brain reward

circuitry"
This document was not intended to stand alone; It is assumed that anyone working through this script

has already read the manuscript, with particular attention to the derivation of the reward-mountain

model in the supporting-information file.

Preamble

In the current experiment, rats worked for optical stimulation of midbrain dopamine neurons. Time allocated to

reward seeking was measured as a function of the strength and cost of the stimulation. We call the resulting

three-dimensional data structure the "reward mountain." Dopamine neurotransmission was perturbed by

administration of a dopamine-transporter blocker, and the consequent displacement of the reward mountain

was determined.

The reward-mountain model was developed to account for data from experiments on rats working for rewarding

electrical brain stimulation (electrical intracranial self-stimulation: eICSS). This model incorporates information

obtained over many decades of research on the neural circuitry that intervenes between the tip of the

stimulating electrode and the behavioral effects of the stimulation. Although this work has been dogged by

uncertainty about the identity of the directly stimulated neurons, painstaking psychophysical experiments

have provided extensive information about the directly activated neurons responsible for the rewarding effect,

the operating principles of the neural circuitry in which they are embedded, and the reward-seeking behavior

generated by this circuitry.  Of particular importance to the current study are experiments characterizing the

spatiotemporal integration of the electrically evoked reward signals and the growth of the rewarding effect as a

function of stimulation strength. 

In contrast to the case of eICSS, the identity of the directly stimulated substrate responsible for optical

intracranial self-stimulation (oICSS) of midbrain dopamine neurons is known - the stimulation specifically and

directly activates the dopaminergic neurons. However, only rudimentary information is available to date about

the growth or spatiotemporal integration of the optically induced reward signal. One purpose of this document is

to explore what the current experiment reveals about spatiotemporal integration and reward growth in the neural

circuitry underlying oICSS. Another purpose is to explore the implications of the current work for understanding

how eICSS and oICSS are related at the level of neural circuitry. We show by means of simulation that the

results of the current experiment pose grave difficulties for an intuitively appealing account we and others

proposed previously: that eICSS arises from the indirect activation of the directly stimulated dopamine neurons

that give rise to oICSS. These difficulties challenge widely held notions about the organization of brain circuitry

underlying reward.

Preliminaries

Setting the graph2files variable to true will cause graphs to be written to external files. These files are stored in

a subdirectory of the current folder called 'Figures.' Setting this variable to false will speed execution.

The show_graphics variable determines whether graphics are stored within this Live Script. This variable

must be set to false to enable efficient editing of this Live Script. When this Live Script has been executed

1
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with show_graphics set to true, subsequent editing and task switching will be slowed unacceptably. Set

show_graphics to true only in preparation for saving updated html and/or pdf copies of this file. To prepare for

editing after this script has been stored with show_graphics set to true, reset this variable to false, re-run the

script, and save it.

Setting the tabs2files variable to true will store information about equations, figures, functions, and symbols in

external Excel files. Setting this variable to false may speed execution slightly.

Setting the saveWS variable to true will cause the Matlab workspace to be stored in a .mat file in the folder from

which this live script was run.

Be sure to set the default_dir to the directory you wish to use as the default on your system.

As its name implies, the 'Imported_Figures' folder contains images that this Live Script will import from external

files. Those images should be stored in a sub-folder of the folder from which this Live Script will be run. The

name of that folder is the argument of the set_impfigdir command below.

Blocks of redundant code are included in various sections. Although this lengthens the Live Script, it reduces

the memory load due to the accumulation of workspace variables. Given that most variables are cleared at

the boundaries between major sections, the blocks of redundant code enable debugging by means of "Run

Section," "Run and Advance," etc. In a future revision, efficiency may be increased by aggregating the variables

assigned in these blocks in structures that are saved and re-loaded.

t_start = tic; % start timer for entire script
tic; % start timer for the current section
global graphs2files show_graphics
graphs2files = true; % save graphics to external files?
tabs2files = true; % save tables of equation #s, figure #s, function #s, and symbol #s?
saveWS = true; % save final workspace?
show_graphics = true; % display graphics in this Live Script?
version = 10; % used in the names of stored files

% define and set the default directory
default_dir = '~/Work/Research/papers/In_Progress/Opto_GBR2/Simulations'; 
if ~exist(default_dir, 'dir')
    disp(strcat({'Default directory '}, default_dir, {' does not exist.'}));
    return
end
cd(default_dir);

% Define the directory that will contain figures generated here & create it if necessary.
global FigDir
FigDir = set_figdir('Figures', graphs2files); % Sub-directory of default directory
% Define the directory containing stored images to be imported.
ImpFigDir = set_impfigdir('Imported_figures'); % Sub-directory of default directory
% Define the directory that will house the tables & create if if necessary.
tabdir = set_tabdir('Tables', tabs2files); % Sub-directory of default directory

The following technical section implements preliminary steps required to set up the simulations. 

In order to set up the simulations, some code must be executed to define basic functions and initialize variables.
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This document was designed to run on any version of Matlab from R2018a onwards without requiring

installation of external function files or scripts.  All functions are either built-in (supplied by the Mathworks as

part of the standard Matlab installation) or local (i.e., defined at the end of this Live-Script document). This

should allow this script to execute on any standard installation of the supported Matlab versions.

The following code initializes the tables that store information about the formatted equations, figures and

symbols used in this script.

%% Initialization

Initialize the tools that build the tables of equations, figures, functions, and symbols. Load the numbers and

descriptions of the pre-defined functions (see below, "Tools for this live script" and "Building blocks for the

functions included in the simulations."

global eqn_num eqn_tab fig_num fig_tab fun_num fun_tab sym_num sym_tab
init_all;

The equation table has been initialized.
The figure table has been initialized.
The function table has been initialized.
The symbol table has been initialized.
This is function #1: (init_all)
This is function #2: (add_eqn)
This is function #3: (add_fig)
This is function #4: (add_fun)
This is function #5: (add_sym)
This is function #6: (FilterFun)
This is function #7: (FilterFunBS)
This is function #8: (LogistNormFun)
This is function #9: (LogistNormBsFun)
This is function #10: (LogistNormBsLocFun)
This is function #11: (PsubFun)
This is function #12: (PsubBsFun)
This is function #13: (ScalarDivFun)
This is function #14: (ScalarDivBsFun)
This is function #15: (ScalarMultFun)
This is function #16: (ScalarMultBsFun)
This is function #17: (PsubEfun)
This is function #18: (PobjEfun)

Load the numbers and descriptions of the pre-defined functions (see below, "Tools for this live script" and

"Building blocks for the functions included in the simulations."

Enter symbols defined in the introductory paragraphs above.

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "eICSS", "electrical intracranial self-stimulation");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "oICSS", "optical intracranial self-stimulation");
keepVars = who; % Store variables to be retained
toc

Elapsed time is 0.110595 seconds.

The mountain model

tic;
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The reward-mountain model was developed to account for operant performance as a function of the cost and

strength of an experimenter-controlled reward, within the context of eICSS studies. The task performed to

obtain the rewarding stimulation entails putting time on a clock by holding down a lever; a reward is delivered

when the cumulative time the lever has been depressed reaches an experimenter-defined criterion (the "price"

of the reward). The measure of operant performance employed is time allocation: the proportion of trial time that

the rat devotes to procurement of the rewarding stimulation ("work"). The model is derived in the main body of

the accompanying manuscript and then adapted for application to oICSS. Papers cited here are listed in the

reference section of the main body of the manuscript.

In this section, we define the functional building blocks that will be used to simulate the output of the reward-

mountain model. 

We distinguish between the "shell" and "core" of the model. The shell consists of the variables that are

observed (time allocation), manipulated (pulse frequency, price), and controlled (stimulation parameters held

constant, physical work required to hold down the lever, affordances of the test environment for leisure activites,

such as grooming, resting, and exploring). The core consists of the functions that compute the intensity of the

reward produced by the stimulation train and combine this value with the opportunity and effort costs entailed

in its procurement, thus generating what we call "payoffs." A single function based on the generalized matching

law translates the payoffs generated in the core into the time-allocation values that are manifest in the shell.

Please see the main body of the text for definitions, explanations, and details. 

Shell→core functions 

The frequency-following function

Solomon et al. (2015) studied frequency-following fidelity in rats working for rewarding electrical stimulation of

the medial forebrain bundle (MFB). They showed that the following function provides a good description of the

relationship between the induced frequency of firing in the directly stimulated neurons and the pulse frequency:

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "FreqFolElec", "Frequency of firing as a function of electrical pulse frequency");

This is equation #1: (FreqFolElec)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "fF", "frequency-following function");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Fpulse", "pulse frequency");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Fbend", "parameter determining sharpness of bend in the FreqFol function");
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[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Fro", "the pulse frequency in the center of the roll-off region");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Ffiring", "induced firing rate of the directly stimuled neurons");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Kf", "unit-translation constant for the frequency-following function");
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "FilterFun", "F, Fbend, Fro",...
    "Frequency-following function");

Function FilterFun has already been entered.

The following graph relates the induced firing frequency to the electrical pulse frequency:

logFelecBend = 1.3222; % from Solomon et al., 2015
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587; % from Solomon et al., 2015
FelecRO = 10^logFelecRO; 
Felec = logspace(0,3,121);
Fmfb = FilterFun(Felec, FelecBend, FelecRO); % Compute firing rate using the frequency roll-off function

FF_graph = plot_freqFoll(Felec,Fmfb,'mfb',2,1000,2,1000); % see "Functions that plot graphs and set attributes" below
if show_graphics
    FF_graph.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "FreqFolMFB", ...
    "Induced firing frequency in the directly stimulated neurons as a function of pulse frequency");

This is figure #1: (FreqFolMFB)

This graph shows that the firing of the directly stimulated neurons subserving eICSS of the medial forebrain

bundle can follow the pulse frequency faithfully up to very high values (>= 350 pulses per second); the response

of the neurons flattens abruptly as pulse frequency is increased further. This high-fidelity frequency following is

consistent with the view that the directly stimulated cells subserving the rewarding effect are non-dopaminergic

neurons with myelinated axons (Shizgal, 1997; Bielajew & Shizgal, 1986; Gallistel, Yeomans & Shizgal, 1981;

Bielajew & Shizgal, 1982; Shizgal et al., 1980). 

In addition to finding firing frequencies corresponding to a given pulse frequency, we will also need to do the

reverse: finding the pulse frequency required to produce a given firing frequency. Thus, we define a back-

solution of the frequency-following function:

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fFbacksolved", "Back-solution of the frequency-following function");

This is equation #2: (fFbacksolved)

The neural-recruitment function

The  function translates the pulse duration and current into the number of electrically excited neurons:

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fN", "Neural-recruitment function");

This is equation #3: (fN)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "c", "chronaxie of strength-duration function for pulses");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "d", "pulse duration");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "fN", "Neural-recruitment function");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "I", "current");
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[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Kns", "Neuron-recruitment function");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Kis", "Current-distance constant");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "N", "Number of activated first-stage neurons");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "rhoI", "rheobase: threshold current to excite a first-stage neuron with a pulse of infinite duration");

Although we define this function here, we do not implement it or use it in the simulations. Instead, an output

value is chosen that, together with a value for the rheobase of the strength-duration function for trains,

generates location-parameter values within the range observed in past studies. This function is included in order

to summarize the relationships on which existing tests of the counter model have been based (e.g., Simmons &

Gallistel, 1994).

The burst-duration function

For completeness, we include a function that maps the duration of the pulse train into the duration of the evoked

increase in the firing of the first-stage neurons. In practice, we assume that the two are equal, as will be case

when frequency-following fidelity is high.

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fD", "Train-burst equation");

This is equation #4: (fD)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Dburst", "Duration of stimulation-induced increase in firing");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Dtrain", "train duration");
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fD", "Dtrain",...
    "Train-burst function");

This is function #19: (fD)

The subjective-probability function

This is another dummy function. As we review below, the subjective probability that a reward will be delivered

upon satisfaction of the response requirement appears to equal the objective probability when the latter is 0.5 or

higher. In the case of the present oICSS experiment, the objective probability of reward is always one.

n.b. A lower-case "p" is employed in the symbols.

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fp", "Subjective-probability equation");

This is equation #5: (fp)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "ProbObj", "Objective probability that reward will be delivered upon satisfaction of the response requirement");
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[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "ProbSub", "Subjective probability that reward will be delivered upon satisfaction of the response requirement");
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "ProbSubFun", "ProbObj",...
    "Subjective-probability function");

This is function #20: (ProbSubFun)

The subjective-price (opportunity-cost) function

As described in Solomon et al., (2017), the subjective-price function is defined as 

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "SubjPriceFun", "Subjective-price function");

This is equation #6: (SubjPriceFun)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Pobj", "objective price (opportunity cost)");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Psub", "subjective price");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "PsubBend", "transition parameter of subjective-price function");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "PsubMin", "minimum subjective price");

and plotted below.

PsubBend = 0.5;
PsubMin = 1.82;
Pobj = logspace(-1,2,120);
Psub = PsubFun(Pobj, PsubBend, PsubMin);
SP_graph = plot_PsubFun(Pobj,Psub, graphs2files, FigDir);
if show_graphics
    SP_graph.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "PsubFun", ...
    "The subjective-price function");

This is figure #2: (PsubFun)

In addition to finding subjective prices corresponding to objective ones, we will also need to do the reverse.

Thus, we define a back-solution of the subjective-price function:

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fPbacksolved", "Back-solution of the subjective-price function");

This is equation #7: (fPbacksolved)
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The subjective effort-cost function

The physical work entailed in holding down the lever is transformed into the subjective rate of exertion by the

following function:

We do not attempt to model the form and parameters of this function. The dots over  and  signify that

we define these quantities as rates.

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fphiW", "subjective-effort-cost equation for work");

This is equation #8: (fphiW)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "fphi", "subjective effort-cost function");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "dotPhiObj", "objective work rate required to hold down the lever");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "dotPhiSub", "subjective rate of exertion entailed in holding down the lever");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Kphi", "unit-conversion scalar for the effort cost of work");
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fphi", "dotPhiObj, Kec",...
    "subjective-effort function");

This is function #21: (fphi)

The effect of the drug, if any, on the rate of subjective exertion is defined as:

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fphiWdrug", "drug-induced change in the subjective effort cost of work");

This is equation #9: (fphiWdrug)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "KecW", "proportional drug-induced change in the subjective rate of exertion required to hold down the lever");

In the vehicle condition,  assumes an implicit value of one.

Activities such as grooming and exploring also entail performance of physical work. Thus, the subjective effort-

cost function is also applied to these activities:
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[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fphiL", "subjective-effort-cost equation for leisure");

This is equation #10: (fphiL)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "dotPhiObjL", "average objective work rate required to perform leisure activities");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "dotPhiSubL", "average subjective rate of exertion entailed in performing leisure activities");

As in the case of the subjective rate of exertion entailed in work, we allow for drug-induced modulation of the

subjective rate of exertion entailed in performance of leisure activities.

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fphiLdrug", "drug-induced change in the subjective effort cost of leisure activities");

This is equation #11: (fphiLdrug)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "KecL", "proportional drug-induced change in the subjective rate of exertion required to perform leisure activities");

In the vehicle condition,  assumes an implicit value of one.

Core functions

The reward-growth function for brain stimulation reward (BSR)

The reward-growth function translates the aggregate rate of stimulation-induced firing into the intensity of the

rewarding effect. Gallistel's team used operant matching to describe this function (Gallistel & Leon, 1991, Leon

& Gallistel, 1992, Mark & Gallistel, 1993; Simmons & Gallistel, 1994). Shizgal (2003) proposed the following

form for this function:
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[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fRbsr", "reward-growth equation for BSR");

This is equation #12: (fRbsr)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "fRbsr", "reward-growth function");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "FfiringHM", "firing frequency that produces a reward of half-maximal intensity");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "FpulseHM", "pulse frequency that produces a reward of half-maximal intensity");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "g", "reward-growth exponent");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Krg", "output scalar of the reward-growth function");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Rbsr", "reward intensity produced by Ffiring");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "hatRbsr", "normalized reward intensity produced by a pulse frequency of Fpulse");
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fRbsr", "F, Fbend, Fhm, Fro, g, Krg",...
    "Logistic reward-growth function");

This is function #22: (fRbsr)

It follows from the above that

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fRbsrNorm", "normalized reward-growth equation");

This is equation #13: (fRbsrNorm)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fRbsrNorm", "F, Fbend, Fhm, Fro, g",...
    "Normalized reward-growth function");

This is function #23: (fRbsrNorm)

To accommodate the predicted rescaling of the input to the reward-growth function for oICSS by dopamine-

transporter blockade, a scalar, , is added to the reward-growth equation in the drug condition of the

experiment:
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[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "RGfunDrug", "reward-growth equation for the drug condition");

This is equation #14: (RGfunDrug)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Kda", "scalar representing the boost in dopamine release due to transporter blockade");

Thus,

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "FhmDrug", "FhmDrug as a function of FhmVehicle");

This is equation #15: (FhmDrug)

The following graphs plot the reward-growth function for three values of each parameter:

logFelecBend = 1.3222; 
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587;
FelecRO = 10^logFelecRO;

numF = 121; % Number of pulse frequencies in Felec vector
Felec = logspace(0,3,numF);
FelecMat = repmat(logspace(0,3,numF),3,1); % add two rows in preparation for graphing

Fhm1 = 10^1.6; % The number of elements in the parameter vector must equal the # of rows in FelecMat
Fhm2 = 10^1.8;
Fhm3 = 10^2.0;
FhmVec = [Fhm1; Fhm2; Fhm3];
FhmMat = repmat(FhmVec,1,numF); % Store the Fhm values in a matrix of the same size as FelecMat

gElec1 = 5; % The number of elements in the parameter vector must equal the # of rows in FelecMat
gElec2 = 10;
gElec3 = 20;
gElecVec = [gElec1; gElec2; gElec3];
gElecMat = repmat(gElecVec,1,numF); % Store the gElec values in a matrix of the same size as FelecMat

Krg1 = 10^-0.2; % The number of elements in the paramer vector must equal the # of rows in FelecMat
Krg2 = 10^0;
Krg3 = 10^0.2;
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KrgVec = [Krg1; Krg2; Krg3];
KrgMat = repmat(KrgVec,1,numF); % Store the Krg values in a matrix of the same size as FelecMat

RelecMat_Fhm = fRbsr(FelecMat, FelecBend, FhmMat, FelecRO, gElec1, Krg2);
RelecMat_gElect = fRbsr(FelecMat, FelecBend, Fhm2, FelecRO, gElecMat, Krg2);
RelecMat_Krg = fRbsr(FelecMat, FelecBend, Fhm2, FelecRO, gElec1, KrgMat);

TitleStrSemi = 'semi-log';
TitleStrLogLog = 'log-log';

pnam = "F_{hm}";
fnam = "Fhm";
% The data to be plotted must be in columns. Thus, FelecMat and RelecMat are transposed.
RG_Fhm_semilog = plot_RG(FelecMat',RelecMat_Fhm',pnam,FhmVec,fnam,TitleStrSemi,'lin');
RG_Fhm_loglog = plot_RG(FelecMat',RelecMat_Fhm',pnam,FhmVec,fnam,TitleStrLogLog,'log');
RG_dual_Fhm = dual_subplot(RG_Fhm_semilog, RG_Fhm_loglog, 'RG_Fhm_semilog_loglog',...
    graphs2files,FigDir);
if show_graphics
    RG_dual_Fhm.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RGfunsElecFhm", ...
    "Growth of reward intensity at three values of the position parameter");

This is figure #3: (RGfunsElecFhm)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "plot_RG", ...
    "Fmat,RMat,pnam,pVec,fnam,TitleStr,linlog, varargins",...
    "function to plot a single reward-growth function");

This is function #24: (plot_RG)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "dual_subplot", ...
    "g1, g2, dual_sub_out, graphs2files, figdir",...
    "Function to plot two graphs side-by-side");

This is function #25: (dual_subplot)

The semi-log plot is on the left, and the log-log plot is on the right. 

14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867481doi: bioRxiv preprint 

https://doi.org/10.1101/867481
http://creativecommons.org/licenses/by/4.0/


These graphs shows how the position parameter rescales the input required to drive reward intensity to a

particular level, thus sliding the reward-growth functions laterally.

pnam = "g";
fnam = "g";
RG_gElec_semilog = plot_RG(FelecMat',RelecMat_gElect',pnam,gElecVec,fnam,TitleStrSemi,'lin');
RG_gElec_loglog = plot_RG(FelecMat',RelecMat_gElect',pnam,gElecVec,fnam,TitleStrLogLog,'log');
RG_dual_g = dual_subplot(RG_gElec_semilog, RG_gElec_loglog, 'RG_gElec_semilog_loglog',...
    graphs2files, FigDir);
if show_graphics
    RG_dual_g.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RGfunsElecG", ...
    "Growth of reward intensity at three values of the steepness parameter");

This is figure #4: (RGfunsElecG)

The semi-log plot is on the left, and the log-log plot is on the right. 

These graphs shows how the steepness parameter rotates the reward-growth functions around their midpoint.

pnam = "K_{rg}";
fnam = "Krg";
RG_Krg_semilog = plot_RG(FelecMat',RelecMat_Krg',pnam,KrgVec,fnam,TitleStrSemi,'lin');
RG_Krg_loglog = plot_RG(FelecMat',RelecMat_Krg',pnam,KrgVec,fnam,TitleStrLogLog,'log');
RG_dual_Krg = dual_subplot(RG_Krg_semilog, RG_Krg_loglog, 'RG_Krg_semilog_loglog',...
    graphs2files, FigDir);
if show_graphics
    RG_dual_Krg.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RGfunsElecKrg", ...
    "Growth of reward intensity at three values of the output-scaling parameter");

This is figure #5: (RGfunsElecKrg)

These graphs show how the  parameter, , rescales the output of the reward-growth function vertically,

thus determining its asymptotic level. 

The preceding graphs show how rescaling of the input to and output from the reward-growth function produce

orthogonal changes. This is true as long as as the firing of the directly stimulated neurons keeps pace with

the pulse frequency. However, once the value of the position parameter nears the maximum firing frequency

of the directly stimulated neurons (e.g., when the current is very low), rightward shifts of the reward-growth

function, such as those produced by further decreases in current, are accompanied by decreases in its upper

asymptote. The neurons can no longer fire fast enough to drive reward intensity to the same maximum as was

achieved when the value of the position parameter was lower (e.g., because the current was higher). This has

implications for the interpretation of changes in the location parameters of the reward mountain, as discussed

below.

Fhm4 = 10^2.0;
Fhm5 = 10^2.3;
Fhm6 = 10^2.6

Fhm6 = 398.1072

FhmVec = [Fhm4; Fhm5; Fhm6];
FhmMat = repmat(FhmVec,1,numF); % Store the Fhm values in a matrix of the same size as FelecMat

RelecMat_FhmHi = fRbsr(FelecMat, FelecBend, FhmMat, FelecRO, gElec1, Krg2);
TitleStrSemi = 'HiF-semi-log';
TitleStrLogLog = 'HiF-log-log';
pnam = "F_{hm}";
fnam = "FhmHi";
% The data to be plotted must be in columns. Thus, FelecMat and RelecMat are transposed.
RG_FhmHi_semilog = plot_RG(FelecMat',RelecMat_FhmHi',pnam,FhmVec,fnam,TitleStrSemi,'lin');
RG_FhmHi_loglog = plot_RG(FelecMat',RelecMat_FhmHi',pnam,FhmVec,fnam,TitleStrLogLog,'log');
RG_dual_FhmHi = dual_subplot(RG_FhmHi_semilog, RG_FhmHi_loglog, 'RG_FhmHi_semilog_loglog',...
    graphs2files,FigDir);
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if show_graphics
    RG_dual_FhmHi.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RGfunsElecFhmHi", ...
    "Growth of reward intensity at three values of the position parameter near FelecRO");

This is figure #6: (RGfunsElecFhmHi)

When the middle of the frequency roll-off zone ( ) is positioned at 362 pulses  (the median value

reported by Solomon et al., 2015) and  is 100 pulses , the normalized reward-growth function approaches

an upper asymptote of one, as expected. However, doubling  to ~200 pulses  moderately decreases the

upper asymptote. A further doubling to ~400 pulses pushes  past , markedly truncating the growth

of reward intensity.

close all;

The location parameter of the reward-growth function for BSR

The location parameter of the reward-growth function is the firing rate that drives reward intensity to half its

maximal value. The value of this parameter depends on the number of stimulated first-stage neurons, N, and

the interval during which the stimulation train elevates their firing rate, . 

A prior study of temporal integration in the neural circuitry responsible for eICSS of the MFB (Sonnenschein et

al., 2003) implies the following form for the function that determines :
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[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "fHfiring", "strengh-duration function for trains expressed as a firing frequency");

This is equation #16: (fHfiring)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fHfiring", "C, D, N, RhoPi, varargin",...
    "strengh-duration function for trains expressed as a firing frequency");

This is function #26: (fHfiring)

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "fH", "strengh-duration function for trains expressed as an aggregate firing frequency");

This is equation #17: (fH)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fH", "C, D, RhoPi",...
    "strengh-duration function for trains expressed as an aggreagate firing frequency");

This is function #27: (fH)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Cmfb", "chronaxie of the strength-duration function for trains");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Dtrain", "duration of an electrical pulse train");

Symbol Dtrain has already been entered.

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "RhoPi", "rheobase of the strength-duration function for trains");

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fH", "C, D, rhoPi",...
    "Strength-duration function for trains; generates aggregate firing rate required to produce half-maximal reward intensity");

Function fH has already been entered.

We assume that .

The counter model is implicit in the equation for . According to this model, the aggregate rate of firing in

the directly stimulated neurons determines the intensity of the rewarding effect.

The payoff from work

 In keeping with the generalized matching law (Killeen, 1972), the benefit from work and its costs are combined

in scalar fashion to yield a net payoff. We can format the expression for the payoff as a ratio of two rates (see:

Gallistel & Gibbon, 2000):

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fUW", "payoff from work");

This is equation #18: (fUW)
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[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "fU", "utility function");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "UW", "payoff from work");

or as a benefit/cost ratio:

The reward-growth function for leisure activities

 We define a reward rate for the leisure activities that compete with pursuit of BSR as follows:

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fRaa", "Leisure reward rate");

This is equation #19: (fRaa)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Kaa", "subjective reward-rate scalar");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "DotRaa", "Average subjective reward rate from leisure activities");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "DotHatRaa", "normalized average subjective reward rate from leisure activities");
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fRaa", "Raa,Kaa",...
    "reward-growth function for leisure activities");

This is function #28: (fRaa)

The payoff from leisure activities

 

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, "fUL", "payoff from leisure");

This is equation #20: (fUL)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "UL", "payoff from leisure activities");

The core → shell function

The behavioral-allocation function

The payoffs from pursuit of BSR and engagement in leisure activities are used by the sole  core→shell function

to compute the allocation of time to pursuit of BSR. 
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[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "a", "payoff-sensitivity exponent");

The exponent  determines how abruptly time allocation changes as a function of changes in payoff.

Restating this equation symbolically, we obtain

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "TU", "Time allocation defined in terms of payoffs");

This is equation #21: (TU)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "T", "time allocation");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Tmax", "maximum time allocation");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Tmin", "minimum time allocation");

We also define a normalized measure of time allocation

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "Tnorm", "Normalized time allocation");

This is equation #22: (Tnorm)

as well as a value of time allocation, , at which the payoffs from work and leisure are equal, and thus, time

allocation falls halfway between its minimal and maximal values:

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "Tmid", "Mid-range time allocation");

This is equation #23: (Tmid)
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When the reward intensity produced by the stimulation approaches its upper asymptote, the price at which

 is:

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "Psub_e", "Definition of Psub_e");

This is equation #24: (Psub_e)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "PsubEfun", ...
    "dotPhiObj, Kaa, Kec, Krg, Raa, pObj, RnormMax, varargin",...
    "function to compute PsubE");

Function PsubEfun has already been entered.

To obtain an expression for , we back-solve the subjective-price equation, as shown above in

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='fPbacksolved')))}));

Equation 7

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "PobjEfun", ...
    "dotPhiObj, Kaa, Kec, Krg, ObjAA, pObj, PsubBend, PsubMin, RnormMax, varargin",...
    "Back-solution of the subjective-price function to return PobjE from PsubE");

Function PobjEfun has already been entered.

We can now define the equation for normalized time allocation as:

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "TnormExpand", "Normalized time allocation expanded");

This is equation #25: (TnormExpand)

and the full equation for time allocation as:
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[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "Tfull", "Full 6-parameter time-allocation equation");

This is equation #26: (Tfull)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "TAfun", "a, F, Fbend, FpulseHM, Fro, g, Pobj, PobjE, PsubBend, PsubMin, RnormMax",...
    "6-parameter TA function");

This is function #29: (TAfun)

The reward mountain

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='Tfull')))}));

Equation 26

defines the surface of the reward-mountain model  in a three-dimensional space defined by the two independent

variables, the pulse frequency  and the price , and a single dependent variable, time allocation .

Thus, this equation bridges the core of the model by linking three shell variables, two inputs and one output; the

bridge is constructed from the shell → core, core, and core → shell functions. The slope of the mountain surface

depends on the payoff-sensitivity parameter  and the steepness parameter of the reward-growth equation,

.  The location of the mountain in the plane defined by the independent variables is determined by the two

location parameters: whereas  positions the mountain along the price axis,  positions the mountain

along the pulse-frequency axis. Finally, the altitude of the "valley floor" and "summit" are set by  and ,

respectively.

To simulate the mountain model, we must obtain values for the position parameters.  . We proceed as

follows:

C = 0.473; % median from Sonnenschein et al., 2003
Dtrain = 0.5; % train duration in eICSS reward-mountain studies
logFelecBend = 1.3222; % from Solomon et al., 2015
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587; % from Solomon et al., 2015
FelecRO = 10^logFelecRO;
FPmax =1000; % for determining RbsrNormMax. This value is sufficiently above FelecRO to maximize the firing rate
N = 100; % arbitrary
RhoPi = 5000; % arbitrary
% RhoPi/N = 50, which is roughly consistent with Sonnenchein et al., 2003

FmfbHM = FpulseHMfun(C, Dtrain, FelecBend, FPmax, FelecRO, N, RhoPi)
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FmfbHM = 97.3001

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "FpulseHMfun", ...
    "C, D, Fbend, FPmax, Fro, N, RhoPi, varargin",...
    "Function to compute the pulse frequency that produces half-maximal reward intensity");

This is function #30: (FpulseHMfun)

The parameter that determines the location of the mountain along the price axis is . 

dotPhiObj = 1;
Kaa = 1;
Kec = 1;
Krg = 1;
dotRaa = 0.1; 
pObj = 1;
PsubBend = 0.5;
PsubMin = 1.82;

Before computing , we must determine the maximum value of the normalized reward intensity ( ).

If the value of the position parameter of the reward-growth function is too high given the frequency roll-off

parameters,  will be less than one. 

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "RnormMax", "maximum normalized reward intensity");
g = 5;
%RnormMax = RnormMaxFun(Fmax, FelecBend, FmfbHM, FelecRO, g)
RnormMax = fRbsrNorm(FPmax, FelecBend, FmfbHM, FelecRO, g)

RnormMax = 0.9986

PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax)

PobjE = 9.9860

We will now assign a value to the price-sensitivity parameter, a, and will simulate the mountain surface. (See

Functions composing the reward-mountain model below.)

a = 3;
Felec = logspace(0,3,121)'; % column variable
Pobj = logspace(0,3,121); % row variable
Tmfb = TAfun(a, Felec, FelecBend, FmfbHM, FelecRO, g, Pobj, PobjE, PsubBend, PsubMin, RnormMax);
% n.b., numel(Felec) = numel(Pobj). Felec has been transposed. Thus, Tmfb is a square matrix.
MTN = plot_MTN(Felec, Pobj, Tmfb, 'off', 'MTN', 'reward mountain', ...
    graphs2files, FigDir);
if show_graphics
    MTN.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "Mountain", ...
    "3D plot of the reward mountain");

This is figure #7: (Mountain)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "plot_MTN", ...
    "F, Pobj, T, Visible, mtn_root, title_str, graphs2files, figdir, varargin",...
    "Function to plot a single reward mountain");

This is function #31: (plot_MTN)

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 25.821254 seconds.
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Moving the mountain: validation studies

tic;
close all;

We have carried out a series of experiments that test the mountain model. Given that there are two independent

position parameters  , it should be possible to move the mountain independently along either

of the axes representing the objective price and the pulse frequency. This prediction has been tested in three

ways.

Effect of varying the stimulation current

Changing the stimulation current alters the number of reward-related axons recruited. According to

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='FmfbHM')))}));

Equation 

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='FelecHM')))}));

Equation 

this will change the value of the parameter that positions the mountain along the pulse-frequency axis

, but according to

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='Psub_e')))}));

Equation 24

and

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='fPbacksolved')))}));

Equation 7

changing the current will have no effect on the value of the parameter  that positions the mountain along

the price axis. We will now simulate the effect of changing the current by solving the time-allocation equation for

two different values of N.

C = 0.473; % median from Sonnenschein et al., 2003
D = 0.5; % typical train duration
logFelecBend = 1.3222; % from Solomon et al., 2015
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587; % from Solomon et al., 2015
FelecRO = 10^logFelecRO;
FPmax =1000; % for determining RbsrNormMax. This value is sufficiently above FelecRO to maximize the firing rate
N = [79,158]; % Number of neurons recruited by low & hi currents (2-element vector)
RhoPi = 5000; % arbitrary

FmfbHM = FpulseHMfun(C, D, FelecBend, FPmax, FelecRO, N, RhoPi) % FmfbHM is a 2-element vector

FmfbHM = 1×2

  123.1648   61.5823

25

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867481doi: bioRxiv preprint 

https://doi.org/10.1101/867481
http://creativecommons.org/licenses/by/4.0/


dotPhiObj = 1;
Kaa = 1;
Kec = 1;
Krg = 1;
dotRaa = 0.1; 
pObj = 1;
PsubBend = 0.5;
PsubMin = 1.82;

FPmax = 1000; % This value is sufficiently above FelecRO to maximize the firing rate
g = 5;
RnormMax = fRbsrNorm(FPmax, FelecBend, FmfbHM, FelecRO, g) % RnormMax is a 2-element vector

RnormMax = 1×2

    0.9955    0.9999

PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax)

PobjE = 1×2

    9.9546    9.9986

% PobjE is a 2-element vector

a = 3;
Felec = logspace(0,3,121)'; % column variable
Pobj = logspace(0,3,121); % row variable
Tmfb1 = TAfun(a, Felec, FelecBend, FmfbHM(1), FelecRO, g, Pobj, PobjE(1), ...
    PsubBend, PsubMin, RnormMax(1));
Tmfb2 = TAfun(a, Felec, FelecBend, FmfbHM(2), FelecRO, g, Pobj, PobjE(2), ...
    PsubBend, PsubMin, RnormMax(2));
% n.b., numel(Felec) = numel(Pobj). Felec has been transposed. Thus, Tmfb is a square matrix.
MTNloI = plot_MTN(Felec, Pobj, Tmfb1, 'off', 'MTNloI', 'low current', ...
    graphs2files, FigDir);
MTNhiI = plot_MTN(Felec, Pobj, Tmfb2, 'off', 'MTNhiI', 'high current', ...
    graphs2files, FigDir);
dual_I_plot = dual_subplot(MTNloI, MTNhiI, 'MTNloI_hiI',...
    graphs2files,FigDir);
if show_graphics
    dual_I_plot.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "LoHiI_mtns", ...
    "Effect of changing the current on the reward mountain");

This is figure #8: (LoHiI_mtns)

(See Functions that plot graphs and set attributes below.)

Although the change in the position of the mountain following and increase in the number of reward-related

neurons recruited can be discerned readily in the 3D plots, the effect is best depicted by means of contour

graphs and a bar graph showing the changes in the position paramter. The contour graphs capture in two

dimensions all of the spatial information in the 3D plots.

ContLoI = plot_contour(Felec, Pobj, Tmfb1, PobjE(1), FmfbHM(1), 'off', 'ContLoI', 'low current', ...
    strcat({'N = '}, num2str(N(1))), graphs2files, FigDir);
ContHiI = plot_contour(Felec, Pobj, Tmfb2, PobjE(2), FmfbHM(2), 'off', 'ContHiI', 'high current', ...
    strcat({'N = '}, num2str(N(2))), graphs2files, FigDir);
bg_LoHiI = plot_bg(FmfbHM(1), FmfbHM(2), PobjE(1), PobjE(2), 'off', 'bg_LoHiI',...
    graphs2files, FigDir);
bg_root ='bg_LoHiI';
quad_I_plot = quad_subplot(ContLoI, ContHiI, bg_LoHiI, 'quad_LoHiI', bg_root, ...
    graphs2files, FigDir);
if show_graphics
    quad_I_plot.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "quad_LoHiI", ...
    "Effect of changing the number of recruited neurons on the position of the reward mountain");

This is figure #9: (quad_LoHiI)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "plot_contour", ...
    "F, Pobj, T, Pobj_e, Fhm, Visible, mtn_root, title_str, annot_str, graphs2files, figdir, varargin",...
    "Function to plot the contour graph of a single mountain");

This is function #32: (plot_contour)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "quad_subplot", ...
    "cont1, cont2, bg, quad_sub_out, bg_root, graphs2files, figdir",...
    "Function to plot four graphs in a 2 x 2 mosaic");

This is function #33: (quad_subplot)

The contour graph for the low-current condition is shown twice, once in the upper-left panel and once in the

lower-right panel. By comparing the horizontal position of the mountain in the left column, the reader can

quickly discern whether there has been a shift along the price axis, and by comparing the vertical position

of the mountains in the bottom row, the reader can quickly discern whether there has been a shift along the

pulse-frequency axis. As required by the mountain model, the latter shift is observed when the number of

neurons recruited is increased due to boost in the stimulation current. The bar graph in the upper right provides

a summary of the simulated shifts. The tiny rightward shift along the price axis is due to the fact that  is

a little closer to one at the higher current than at the lower current (due to the fact that  is lower).

Arvanitogiannis and Shizgal (2008) tested the effect of varying the stimulation current on the position of the

reward mountain. In all four rats, the mountain shifted along the pulse-frequency axis as predicted. In two of
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these rats, there was no corresponding shift along the price axis, but rightward shifts were seen in the remaining

two subjects. This deviation from the predictions was attributed to the heterogeneity of the stimulated neurons.

Such a deviation would be expected if the stimulation activated two subpopulations of reward-related neurons

that project to separate integrators with converging outputs (Arvanitogiannis, Waraczynski & Shizgal, 1996;

Arvanitogiannis & Shizgal, 2008). The convergence model described below provides an example of such an

arrangement.

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 10.356255 seconds.

Effect of varying the train duration

tic;
close all;

In

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='quad_LoHiI')))}));

Figure 9

the mountain shifts along the pulse-frequency axis because changing the current alters the denominator of the

ratio on the right-hand side of

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='fH')))}));

Equation 17

Changing the train duration should produce the same qualitative effect as changing the current, but by altering

the numerator of the ratio on the right-hand side of

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='fH')))}));

Equation 17

instead. By increasing the duration of the train, there is more time for temporal summation and thus, the pulse

frequency required to produce a reward of half-maximal intensity decreases.

C = 0.473; % median from Sonnenschein et al., 2003
D = 0.5; % typical train duration
logFelecBend = 1.3222; % from Solomon et al., 2015
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587; % from Solomon et al., 2015
FelecRO = 10^logFelecRO;
FPmax =1000; % for determining RbsrNormMax. This value is sufficiently above FelecRO to maximize the firing rate
N = 126;
D = [0.25,1.00]; % Short & long train durations (2-element vector)
RhoPi = 5000; % arbitrary
% RhoPi/N = 50, which is roughly consistent with Sonnenchein et al., 2003
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FmfbHM = FpulseHMfun(C, D, FelecBend, FPmax, FelecRO, N, RhoPi) % FmfbHM is a 2-element vector

FmfbHM = 1×2

  114.7621   58.4524

dotPhiObj = 1;
Kaa = 1;
Kec = 1;
Krg = 1;
dotRaa = 0.1; 
pObj = 1;
PsubBend = 0.5;
PsubMin = 1.82;

g = 5;
RnormMax = fRbsrNorm(FPmax, FelecBend, FmfbHM, FelecRO, g) % RnormMax is a 2-element vector

RnormMax = 1×2

    0.9968    0.9999

PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax)

PobjE = 1×2

    9.9681    9.9989

% PobjE is a 2-element vector

a = 3;
Felec = logspace(0,3,121)'; % column variable
Pobj = logspace(0,3,121); % row variable
Tmfb1 = TAfun(a, Felec, FelecBend, FmfbHM(1), FelecRO, g, Pobj, ...
    PobjE(1), PsubBend, PsubMin, RnormMax(1));
Tmfb2 = TAfun(a, Felec, FelecBend, FmfbHM(2), FelecRO, g, Pobj, ...
    PobjE(2), PsubBend, PsubMin, RnormMax(2));

MTNloD = plot_MTN(Felec, Pobj, Tmfb1, 'off', 'MTNloD', 'short-duration train', ...
    graphs2files, FigDir);
MTNhiD = plot_MTN(Felec, Pobj, Tmfb2, 'off', 'MTNhiD', 'long-duation train', ...
    graphs2files, FigDir);
dual_D_plot = dual_subplot(MTNloD, MTNhiD, 'MTNLoHiD',...
    graphs2files,FigDir);
if show_graphics
    dual_D_plot.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "LoHiD_mtns", ...
    "Effect of changing the train duration on the reward mountain");

This is figure #10: (LoHiD_mtns)

ContLoD = plot_contour(Felec, Pobj, Tmfb1, PobjE(1), FmfbHM(1), 'off', 'ContLoD', 'short-duration train', ...
    strcat({'D = '}, num2str(D(1))), graphs2files, FigDir);
ContHiD = plot_contour(Felec, Pobj, Tmfb2, PobjE(2), FmfbHM(2), 'off', 'ContHiD', 'long-duation train', ...
    strcat({'D = '}, num2str(D(2))), graphs2files, FigDir);
bg_LoHiD = plot_bg(FmfbHM(1), FmfbHM(2), PobjE(1), PobjE(2), 'off', 'bg_LoHiD',...
    graphs2files, FigDir);
bg_root ='bg_LoHiD';
quad_D_plot = quad_subplot(ContLoD, ContHiD, bg_LoHiD, 'quad_LoHiD', bg_root, ...
    graphs2files, FigDir);
if show_graphics
    quad_D_plot.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "LoHiD_quad", ...
    "Effect of changing the train duration on the position of the reward mountain");

This is figure #11: (LoHiD_quad)

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 13.785165 seconds.

tic;
close all;

Arvanitogiannis and Shizgal (2008) assessed the effect of increasing the train duration from 0.25 to 1.00 s in

four rats. The data in all four cases correspond to the prediction: there were statistically reliable shifts of the

reward mountain along the pulse-frequency axis but not along the price axis. The effect of increasing the train

duration was tested in an additional six rats by Breton et al. (2014). In all six cases, the mountain shifted as

predicted along the pulse-frequency axis, and in three of these cases, no reliable shifts along the price axis

were observed. In the remaining three cases, increasing the train duration did produce rightward shifts along

the price axis. These were again hypothesized to due to the recruitment of reward-related neurons projecting to

separate integrators. The convergence model describe below offers a new interpretations of the rightward shifts.

if show_graphics
    show_imported_graphic('TD_quad_Y14.png', 25, ImpFigDir);
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end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "LoHiD_quad_Y14", ...
    "Rat Y14: Effect of changing the train duration on the position of the reward mountain");

This is figure #12: (LoHiD_quad_Y14)
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A figure from Breton et al. (2014) showing single-subject data is reproducted above. Note the strong similarity

between the simulated results in

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='LoHiD_quad')))}));

Figure 11

and the empirical results in

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='LoHiD_quad_Y14')))}));

Figure 12

toc

Elapsed time is 1.508525 seconds.

Effect of varying reward probability

tic;
close all;

Whereas changing the current or train duration is predicted to shift the reward mountain along the pulse-

frequency axis but not along the price axis, changing the probability of delivering a reward upon satisfaction of

the response requirement is predicted to produce an orthogonal shift: the mounain should move along the price

axis but not along the pulse-frequency axis. This can be seen readily by inspection of

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='Pobj_e')))}));

Equation 

,

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='StrDurFunTr')))}));

Equation 

and

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='FmfbHM')))}));

Equation 

. Intuitively, changing the reward probability should have no effect on the pulse-frequency required to produce a

reward of half-maximal intensity, but is should rescale the payoff produced by this reward. Following the change

in reward probability, the reward produced by a given pulse frequency is as intense as it was previously, but the

ability of this pulse train to compete with alternate sources of reward will depend on the likelihood that the rat

gets paid for the work it performs to obtain the electrical stimulation.

We will simulate the effect of changing the reward probability, first from 1.0 to 0.75 and then from 1.0 to 0.5:

C = 0.473; % median from Sonnenschein et al., 2003
D = 0.5; % typical train duration
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logFelecBend = 1.3222; % from Solomon et al., 2015
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587; % from Solomon et al., 2015
FelecRO = 10^logFelecRO;
FPmax =1000; % for determining RbsrNormMax. This value is sufficiently above FelecRO to maximize the firing rate
N = 126;
D = 0.5; % train duration
RhoPi = 5000; % arbitrary
% RhoPi/N is roughly equal to 50, which is roughly consistent with Sonnenchein et al., 2003

FmfbHM = FpulseHMfun(C, D, FelecBend, FPmax, FelecRO, N, RhoPi)

FmfbHM = 77.2222

% n.b., FmfbHM1 = FmfbHM2

dotPhiObj = 1;
Kaa = 1;
Kec = 1;
Krg = 1;
dotRaa = 0.1; 
pObj = [1, 0.75];
PsubBend = 0.5;
PsubMin = 1.82;

g = 5;
RnormMax = fRbsrNorm(FPmax, FelecBend, FmfbHM, FelecRO, g)

RnormMax = 0.9996

PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax)

PobjE = 1×2

    9.9956    7.4967

a = 3;
Felec = logspace(0,3,121)'; % column variable
Pobj = logspace(0,3,121); % row variable
Tmfb1 = TAfun(a, Felec, FelecBend, FmfbHM, FelecRO, g, Pobj, ...
    PobjE(1), PsubBend, PsubMin, RnormMax);
Tmfb2 = TAfun(a, Felec, FelecBend, FmfbHM, FelecRO, g, Pobj, ...
    PobjE(2), PsubBend, PsubMin, RnormMax);

MTNp1 = plot_MTN(Felec, Pobj, Tmfb1, 'off', 'MTNp1', 'p = 1.0', ...
    graphs2files, FigDir);
MTNp0p75 = plot_MTN(Felec, Pobj, Tmfb2, 'off', 'MTNp0p75', 'p = 0.75', ...
    graphs2files, FigDir);
dual_p0p75_plot = dual_subplot(MTNp1, MTNp0p75, 'MTNp1vsp0p75',...
    graphs2files,FigDir);
if show_graphics
    dual_p0p75_plot.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "p1vsp0p75_mtns", ...
    "Effect of changing the reward probability on the reward mountain");

This is figure #13: (p1vsp0p75_mtns)

Contp1 = plot_contour(Felec, Pobj, Tmfb1, PobjE(1), FmfbHM, 'off', 'Contp1', 'p = 1.0', ...
    strcat({'p = '}, num2str(pObj(1))), graphs2files, FigDir);
Contp0p75 = plot_contour(Felec, Pobj, Tmfb2, PobjE(2), FmfbHM, 'off', 'Contp0p75', 'p = 0.75', ...
    strcat({'p = '}, num2str(pObj(2))), graphs2files, FigDir);
bg_p1vsp0p75 = plot_bg(FmfbHM, FmfbHM, PobjE(1), PobjE(2), 'off', 'p1vs0p75_bg',...
    graphs2files, FigDir, -0.375, 0.075);
bg_root ='bg_p1vsp0p75';
quad_p0p75_plot = quad_subplot(Contp1, Contp0p75, bg_p1vsp0p75, 'quad_p1vsp0p75', bg_root, ...
    graphs2files, FigDir);
if show_graphics
    quad_p0p75_plot.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "quad_p1vsp0p75", ...
    "Effect of changing the reward probability on the reward mountain");

This is figure #14: (quad_p1vsp0p75)

clear -regexp ^bg ^Cont ^dual ^MTN ^quad; % Clear only restricted set of variables here
toc

Elapsed time is 9.850066 seconds.

tic;
close all;

pObj = [1, 0.5];

PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax)

PobjE = 1×2

    9.9956    4.9969

a = 3;
Felec = logspace(0,3,121)'; % column variable
Pobj = logspace(0,3,121); % row variable
Tmfb1 = TAfun(a, Felec, FelecBend, FmfbHM, FelecRO, g, Pobj, ...
    PobjE(1), PsubBend, PsubMin, RnormMax);
Tmfb2 = TAfun(a, Felec, FelecBend, FmfbHM, FelecRO, g, Pobj, ...
    PobjE(2), PsubBend, PsubMin, RnormMax);
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MTNp1 = plot_MTN(Felec, Pobj, Tmfb1, 'off', 'MTNp1', 'p = 1.0', ...
    graphs2files, FigDir);
MTNp0p5 = plot_MTN(Felec, Pobj, Tmfb2, 'off', 'MTNp0p5', 'p = 0.5', ...
    graphs2files, FigDir);
dual_p0p5_plot = dual_subplot(MTNp1, MTNp0p5, 'MTNp1vsp0p5',...
    graphs2files,FigDir);
if show_graphics
    dual_p0p5_plot.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "p1vsp0p5_mtns", ...
    "Effect of changing the reward probability on the reward mountain");

This is figure #15: (p1vsp0p5_mtns)

Contp1 = plot_contour(Felec, Pobj, Tmfb1, PobjE(1), FmfbHM, 'off', 'Contp1', 'p = 1.0', ...
    strcat({'p = '}, num2str(pObj(1))), graphs2files, FigDir);
Contp0p5 = plot_contour(Felec, Pobj, Tmfb2, PobjE(2), FmfbHM, 'off', 'Contp0p5', 'p = 0.5', ...
    strcat({'p = '}, num2str(pObj(2))), graphs2files, FigDir);
bg_p1vsp0p5 = plot_bg(FmfbHM, FmfbHM, PobjE(1), PobjE(2), 'off', 'p1vsp0p5_bg',...
    graphs2files, FigDir, -0.375, 0.075);
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "p1vsp0p5_quad", ...
    "Effect of changing the reward probability on the reward mountain");

This is figure #16: (p1vsp0p5_quad)

bg_root ='bg_p1vsp0p5';
quad_p0p5_plot = quad_subplot(Contp1, Contp0p5, bg_p1vsp0p5, 'quad_p1vsp0p5', bg_root, ...
    graphs2files, FigDir);
if show_graphics
    quad_p0p5_plot.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "quad_p1vsp0p5", ...
    "Effect of changing the reward probability on the reward mountain");

This is figure #17: (quad_p1vsp0p5)

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 8.880286 seconds.

tic;
close all;

Breton, Conover and Shizgal (2014) tested the effect of decreasing the reward probability from 1.00 to 0.75.

The reward mountains obtained from all 10 rats shifted along the price axis as predicted. There was no

statistically reliable shift along the pulse-frequency axis in the position of the mountains obtained from six of

these rats. In the remaining four cases, the shifts along the pulse-frequency axis were small in comparison to

the shifts along the price axis and were inconsistent in direction. Decreasing the probability of reward further

to 0.5, increased the size of the shifts along the price axis in all seven rats tested. In five cases, there were no

shifts observed along the pulse-frequency axis, and in the two cases in which such shifts were detected, they

were inconsistent in direction. Data from one subject showing the effect of reducing the reward probability to 0.5

are shown below

if show_graphics
    show_imported_graphic('prob_shifts_PD8.png',25,ImpFigDir);
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end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "p1vsp0p5_quad_PD8", ...
    "Rat PD8: Effect of changing the reward probability on the reward mountain");

This is figure #18: (p1vsp0p5_quad_PD8)

followed by a summary of the entire dataset. 

if show_graphics
    show_imported_graphic('prob_disc_all.png',30,ImpFigDir);
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "ProbDiscSummary", ...
    "Summary of the effects of changing the reward probability on the reward mountain");

This is figure #19: (ProbDiscSummary)

The upper panel of the summary shows that changing reward probability moves the mountain almost

exclusively along the price axis and does so in a graded manner; the larger the change in reward probability,

the larger the shift along the price axis. On the basis of

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='PayoffElec')))}));

Equation 

we can estimate the subjective reward probability from the observed shift along the price axis. The lower

panel of the summary shows that the subjective reward probabilities estimated in this manner are all but

indistinguishable from the objective reward probabilities.
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toc

Elapsed time is 1.608664 seconds.

The significance of orthogonal shifts

tic;
close all;

The validation experiments just described show conclusively that the reward mountain can be displaced

along either the pulse-frequency or price axes, as predicted by the underlying model. In most cases, these

displacements are orthogonal: the mountain shifts either along one axis or the other. 

These observations have important implications for the form of the reward-growth function at the heart of the

mountain model. In order for shifts along more than one axis to be possible, the form of the reward-growth

function must distinguish changes that rescale its input and output. The logistic form implied by the matching

data from the Gallistel lab instantiates such a distinction. Changes in the value of the position parameter,

, rescale the input, thereby shifting the reward-growth function along the pulse-

frequency axis, whereas changes in the value of the maximum attainable reward, , rescale the output,

thereby shifting the maximum value of the reward-growth function vertically. In the figures below, we change

the value of the input-rescaling position parameter  by varying the current (thereby

changing  N, the number of reward-generating neurons recruited), and we rescale the output of the reward-

growth function by changing the value of the maximum attainable reward, .

logFelecBend = 1.3222; % from Solomon et al., 2015
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587; % from Solomon et al., 2015
FelecRO = 10^logFelecRO; 

numF = 121; % Number of pulse frequencies in Felec vector
Felec = logspace(0,3,numF);
FelecMat = repmat(logspace(0,3,numF),3,1); % add two rows in preparation for graphing

C = median([0.453,0.503, 0.268, 0.224, 0.493, 0.64]); % from Sonnenschein et al., 2003
D = 0.5;
RhoPi = (5000 / fHfiring(C, D, 100, 5000)) * 100; % To position the logFhm values near 0.1 log10 units

gElec = 5;

NnLG1 = 10^1.8; % The number of elements in the parameter vector must equal the # of rows in FelecMat
NnLG2 = 10^2;
NnLG3 = 10^2.2;
NnLGvec = [NnLG1;NnLG2;NnLG3];
NnLGmat = repmat(NnLGvec,1,numF); % Store the N values in a matrix of the same size as FelecMat

KrgLG1 = 10^-0.2; % The number of elements in the parameter vector must equal the # of rows in FelecMat
KrgLG2 = 10^0;
KrgLG3 = 10^0.2;
KrgLGvec = [KrgLG1;KrgLG2;KrgLG3];
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KrgLGmat = repmat(KrgLGvec,1,numF); % Store the Krg values in a matrix of the same size as FelecMat

FhmLG1 = fHfiring(C, D, NnLG1, RhoPi); % The number of elements in the parameter vector must equal the # of rows in FelecMat
FhmLG2 = fHfiring(C, D, NnLG2, RhoPi);
FhmLG3 = fHfiring(C, D, NnLG3, RhoPi);
FhmLGvec = [FhmLG1;FhmLG2;FhmLG3];
FhmLGmat = repmat(FhmLGvec,1,numF); % Store the Fhm values in a matrix of the same size as FelecMat

RelecLGmat_Nn = fRbsrFull(C,D,FelecMat,FelecBend,FelecRO,gElec,KrgLG2,NnLGmat,RhoPi);
RelecLGmat_Krg = fRbsrFull(C,D,FelecMat,FelecBend,FelecRO,gElec,KrgLGmat,NnLG2,RhoPi);
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fRbsrFull", ...
    "C, D, F, Fbend, Fro, g, Krg, N, RhoPi, varargin",...
    "Full reward-growth function for BSR");

This is function #34: (fRbsrFull)

TitleStrSemiLog = 'logistic growth';
TitleStrLogLog = 'logistic growth';

pnam = "F_{hm}";
fnam = "Fhm";
% The data to be plotted must be in columns. Thus, FelecMat and RelecMat are transposed.
RG_NnLG_semilog = plot_RG(FelecMat',RelecLGmat_Nn',pnam,FhmLGvec,fnam,TitleStrSemiLog,'lin');
RG_NnLG_loglog = plot_RG(FelecMat',RelecLGmat_Nn',pnam,FhmLGvec,fnam,TitleStrSemiLog,'log');

pnam = "K_{rg}";
fnam = "Krg";
RG_KrgLG_semilog = plot_RG(FelecMat',RelecLGmat_Krg',pnam,KrgLGvec,fnam,TitleStrSemiLog,'lin');
RG_KrgLG_loglog = plot_RG(FelecMat',RelecLGmat_Krg',pnam,KrgLGvec,fnam,TitleStrSemiLog,'log');

dual_subplot(RG_NnLG_loglog, RG_KrgLG_loglog, 'RG_NnLG_KrgLG_loglog',...
    graphs2files,FigDir);
if show_graphics
    RG_NnLG_KrgLG_loglog.Visible = 'on';
end
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "LogisticRGLL", ...
    "When reward intensity grows as a logistic function of pulse frequency, shifts are orthogonal");

This is figure #20: (LogisticRGLL)

RG_NnLG_KrgLG_semilog = dual_subplot(RG_NnLG_semilog, RG_KrgLG_semilog, 'RG_NnLG_KrgLG_semilog',...
    graphs2files,FigDir);
if show_graphics
    RG_NnLG_KrgLG_semilog.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "LogisticRGSL", ...
    "When reward intensity grows as a logistic function of pulse frequency, shifts are orthogonal");

This is figure #21: (LogisticRGSL)

The horizontal shifts of the reward-growth function are translated into shifts of the reward mountain along the

pulse-frequency axis, whereas vertical shifts of the reward-growth function are translated in shifts of the reward

mountain along the price axis. Above, we have illustrated such orthogonal shifts by simulating the effects of

changing the current or train duration, as shown in

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='LoHiI_quad')))}));

Figure 

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='LoHiD_quad')))}));

Figure 11

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='LoHiD_quad_Y14')))}));

Figure 12

and the effects of changing the reward probability, as shown in

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='p1vsp0p75_quad')))}));

Figure 

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='p1vsp0p5_quad')))}));

Figure 16

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='p1vsp0p5_quad_PD8')))}));

Figure 18

What would happen if frequency-following fidelity remained the same, but the input-scaling and output-scaling

parameters of the reward-growth function were no longer independent? We can simulate such a case by

replacing the logistic reward-growth function with a power function:
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[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "RGpg", "Power growth of reward intensity");

This is equation #27: (RGpg)

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "fRpg", "F, Fbend, Fro, g, Kin, Krg",...
    "Function to compute power growth of reward");

This is function #35: (fRpg)

This power-growth function can be rewritten as

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "RGpgReformat", "Power growth of reward intensity");

This is equation #28: (RGpgReformat)

In contrast to the case of logistic growth, the two scaling constants act jointly, in an inseparable manner, and

exclusively on the output of the function. Changing either scaling constant shifts the power-growth function

along the y axis but does not change its position along the x axis. As in the case of the logistic reward-growth

function, g determines the steepness of reward growth (the slope on double-logarithmic coordinates). Although

 appears to scale the output, whereas  appears to scale the induced firing frequency, 

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='RGpgReformat')))}));

Equation 28

shows that the two constants function as one. Thus, reward intensity will grow as a power function of

the electrical pulse frequency until the induced firing frequency in the stimulation reward-related neurons

asymptotes. Changing the current displaces the logistic reward-growth function laterally, a shift that is

orthogonal to the one produced by changing the scale parameter, . In contrast, changing the current

displaces the power reward-growth function vertically, the same direction as the shift produced by changing the

scale parameter. This is shown graphically below. 

In the following simulations, changing the value of Nserves as a proxy for changes in current. The 

parameter is inversely proportional to the number of stimulated neurons (N). In the figure legends, the value of

the  parameter is normalized to the  value corresponding to the middle value of N.

logFelecBend = 1.3222; 
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587;
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FelecRO = 10^logFelecRO;
FPmax = 1000;

numF = 121; % Number of pulse frequencies in Felec vector
Felec = logspace(0,3,numF);
FelecMat = repmat(logspace(0,3,numF),3,1); % add two rows in preparation for graphing

gElec = 2.5;

NnPG1 = 10^(2-(0.3/gElec)); % The number of elements in the parameter vector must equal the # of rows in FelecMat
NnPG2 = 10^2;
NnPG3 = 10^(2+(0.3/gElec));
% NnPGvec = [NnPG1;NnPG2;NnPG3];
% NnPGmat = repmat(NnPGvec,1,numF); % Store the N values in a matrix of the same size as FelecMat

FFaggNorm = FilterFun(FPmax,FelecBend, FelecRO) * NnPG2; % Normalization factor
% When Kout = 1 and NnPG = NnPG2, FFaggNorm ensures that R = 1 when FF = FFmax
KinPGnorm = FFaggNorm/NnPG2;
KinPG1 = FFaggNorm/NnPG1; 
KinPG2 = FFaggNorm/NnPG2; 
KinPG3 = FFaggNorm/NnPG3;
KinPGvec = [KinPG1;KinPG2;KinPG3];
KinPGmat = repmat(KinPGvec,1,numF); % Store the Kin values in a matrix of the same size as FelecMat

% The number of elements in the parameter vector must equal the # of rows in FelecMat
KoutPG1 = 10^-0.3;
KoutPG2 = 10^0;
KoutPG3 = 10^0.3; % RpgMax = 10^0.15 = 1.4125
KoutPGvec = [KoutPG1;KoutPG2;KoutPG3];
KoutPGmat = repmat(KoutPGvec,1,numF); % Store the Kout values in a matrix of the same size as FelecMat

RelecPGmat_Kin = fRpg(FelecMat,FelecBend,FelecRO,gElec,KinPGmat,KoutPG2);
RelecPGmat_Kout = fRpg(FelecMat,FelecBend,FelecRO,gElec,KinPG2,KoutPGmat);

TitleStrSemiLog = 'power growth';
TitleStrLogLog = 'power growth';

pnam = "K_{in} / K_{in_{norm}}";
fnam = "Kin";
KinLgndVec = KinPGvec ./ KinPGnorm;

RG_KinPG_semilog = plot_RG(FelecMat',RelecPGmat_Kin',pnam,KinLgndVec,fnam,TitleStrSemiLog,'lin');
RG_KinPG_loglog = plot_RG(FelecMat',RelecPGmat_Kin',pnam,KinLgndVec,fnam,TitleStrLogLog,'log');
pnam = "K_{out}";
fnam = "Kout";
RG_KoutPG_semilog = plot_RG(FelecMat',RelecPGmat_Kout',pnam,KoutPGvec,fnam,TitleStrSemiLog,'lin');
RG_KoutPG_loglog = plot_RG(FelecMat',RelecPGmat_Kout',pnam,KoutPGvec,fnam,TitleStrLogLog,'log');

RG_KinPG_KoutPG_semilog = dual_subplot(RG_KinPG_semilog, RG_KoutPG_semilog, 'RG_KinPG_KoutPG_semilog',...
    graphs2files,FigDir);
if show_graphics
    RG_KinPG_KoutPG_semilog.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "PowerRGSL", ...
    "When reward intensity grows as a power function, all shifts are vertical");

This is figure #22: (PowerRGSL)

dual_subplot(RG_KinPG_loglog, RG_KoutPG_loglog, 'RG_KinPG_KoutPG_loglog',...
    graphs2files,FigDir);
if show_graphics
    RG_KinPG_KoutPG_loglog.Visible = 'on';
end
%shg
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "PowerRGLL", ...
    "When reward intensity grows as a power function, all shifts are vertical");

This is figure #23: (PowerRGLL)

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='RGpg')))}));

Equation 27

Unlike the case with logistic growth of reward intensity, the variable that scales the input to the power reward-

growth function  and the variable that scales its output are no longer independent and cannot move

the reward-growth curve in orthogonal directions. As a result, the reward mountain can shift only along a single

axis when the underlying reward-growth function lacks independent input- and output-scaling parameters. This

is demonstated in the following section.

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 15.340981 seconds.

tic;
close all;

The reward mountain can shift only along the price axis when the underlying reward-growth function lacks

indepedent input- and output-scaling parameters
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dotPhiObj = 1;
Kaa = 1;
Kec = 1;
dotRaa = 0.1; 
pObj = 1;

a = 3;
Felec = logspace(0,3,121)'; % column variable
Pobj = logspace(0,3,121); % row variable

logFelecBend = 1.3222; 
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587;
FelecRO = 10^logFelecRO;

gElec = 2.5;
N = 100;
PsubBend = 0.5;
PsubMin = 1.82;

FPmax = 1000;
FFmax = FilterFun(FPmax,FelecBend, FelecRO);  

Kin = [FFmax, FFmax / 2^(1/gElec)];
Kout = [1,2];

RmaxBase = fRpg(1000,FelecBend,FelecRO,gElec,Kin(1),Kout(1));
RmaxKin = fRpg(1000,FelecBend,FelecRO,gElec,Kin,Kout(1));
RmaxKout = fRpg(1000,FelecBend,FelecRO,gElec,Kin(1),Kout);

PsubEpgBase = PsubEpgFun(dotPhiObj, Kaa, Kec, Kout, dotRaa, pObj, RmaxBase);
PsubEpgKin = PsubEpgFun(dotPhiObj, Kaa, Kec, Kout, dotRaa, pObj, RmaxKin);
PsubEpgKout = PsubEpgFun(dotPhiObj, Kaa, Kec, Kout, dotRaa, pObj, RmaxKout);
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "PsubEpgFun", ...
    "dotPhiObj, Kaa, Kec, Krg, ObjAA, pObj, Rmax",...
    "Function to compute PsubE for power reward growth");

This is function #36: (PsubEpgFun)

TpgBase = TApgFun(a, Felec, FelecBend, FelecRO, gElec, Kin(1), Kout(1), Pobj, PsubBend, PsubEpgBase, PsubMin);
TpgKin2 = TApgFun(a, Felec, FelecBend, FelecRO, gElec, Kin(2), Kout(1), Pobj, PsubBend, PsubEpgKin(2), PsubMin);
TpgKout2 = TApgFun(a, Felec, FelecBend, FelecRO, gElec, Kin(1), Kout(2), Pobj, PsubBend, PsubEpgKout(2), PsubMin);
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "TApgFun", ...
    "a, Felec, FelecBend, FelecRO, gElec, Kin, Kout, N, Pobj, PsubBend, PsubEpgBase, PsubMin",...
    "Time allocation in response to power growth of reward intensity");

This is function #37: (TApgFun)

xmin = 0;
xmax = 2.3;
ymin = 1.5;
ymax = 3;
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MTNpgKin1 = plot_MTN(Felec, Pobj, TpgBase, 'off', 'MTNpgKin1', 'Kin = Kin1', ...
    graphs2files, FigDir, xmin, xmax, ymin, ymax);
MTNpgKin2 = plot_MTN(Felec, Pobj, TpgKin2, 'off', 'MTNpgKin2', strcat('Kin1','\div','2.0^{1/g}'), ...
    graphs2files, FigDir, xmin, xmax, ymin, ymax);
dual_pgKin_plot = dual_subplot(MTNpgKin1, MTNpgKin2, 'MTNpgKin1Kin2',...
    graphs2files,FigDir);
if show_graphics
    dual_pgKin_plot.Visible = 'on';
end
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "PG_K1_1vsK1_2_mtns", ...
    "Effect of changing the power-growth input-scaling parameter");

This is figure #24: (PG_K1_1vsK1_2_mtns)

MTNpgKout1 = plot_MTN(Felec, Pobj, TpgBase, 'off', 'MTNpgKout1', 'Kout = Kout1', ...
    graphs2files, FigDir, xmin, xmax, ymin, ymax);
MTNpgKout2 = plot_MTN(Felec, Pobj, TpgKout2, 'off', 'MTNpgKout2', 'Kout = 2*Kout1', ...
    graphs2files, FigDir, xmin, xmax, ymin, ymax);

dual_pgKout_plot = dual_subplot(MTNpgKout1, MTNpgKout2, 'MTNpgKout1Kout2',...
    graphs2files,FigDir);
if show_graphics
    dual_pgKout_plot.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "PG_Kout1vsKout2_mtns", ...
    "Effect of changing the power-growth output-scaling parameter");

This is figure #25: (PG_Kout1vsKout2_mtns)

FhmPGKin = find_FhmPG(FPmax, FelecBend, FelecRO, gElec, Kin, Kout(1), RmaxKin);
FhmPGKout = find_FhmPG(FPmax, FelecBend, FelecRO, gElec, Kin(1), Kout, RmaxKout);
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "find_FhmPG", ...
    "FPmax, Fbend, Fro, g, Kin, Kout, RmaxPG",...
    "Function to compute the Fhm value for power reward growth");

This is function #38: (find_FhmPG)

PobjEpgBase = PsubBsFun(PsubEpgBase, PsubBend, PsubMin);
PobjEpgKin = PsubBsFun(PsubEpgKin, PsubBend, PsubMin);
PobjEpgKout = PsubBsFun(PsubEpgKout, PsubBend, PsubMin);

ContKin1 = plot_contour(Felec, Pobj, TpgBase, PobjEpgKin(1), FhmPGKin(1), 'off', 'ContKin1', 'Kin = 1.0', ...
    strcat({'Kin = '}, num2str(round(Kin(1),2))), graphs2files, FigDir,...
    xmin, xmax, ymin, ymax);
ContKin2 = plot_contour(Felec, Pobj, TpgKin2, PobjEpgKin(2), FhmPGKin(2), 'off', 'ContKin2', 'Kin = 2.0^{1/g}', ...
    strcat({'Kin = '}, num2str(round(Kin(2),2))), graphs2files, FigDir,...
    xmin, xmax, ymin, ymax);
bg_Kin1vskKin2 = plot_bg(FhmPGKin(1), FhmPGKin(2), PobjEpgKin(1), PobjEpgKin(2), 'off', 'Kin1vsKin2_bg',...
    graphs2files, FigDir);
bg_root = 'bg_Kin1vsKin2';
quad_Kin1vsKin2 = quad_subplot(ContKin1, ContKin2, bg_Kin1vskKin2, 'quad_Kin1vsKin2', bg_root, ...
    graphs2files, FigDir);
if show_graphics
    quad_Kin1vsKin2.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "quad_Kin1vsKin2", "Effect of increasing the value of the input-scaling paramater");

This is figure #26: (quad_Kin1vsKin2)

ContKout1 = plot_contour(Felec, Pobj, TpgBase, PobjEpgKout(1), FhmPGKout(1), 'off', 'ContKout1', 'Kout = Kout1', ...
    strcat({'Kout = '}, {'Kout1'}), graphs2files, FigDir,...
    xmin, xmax, ymin, ymax);
ContKout2 = plot_contour(Felec, Pobj, TpgKout2, PobjEpgKout(2), FhmPGKout(2), 'off', 'ContKout2', 'Kout = 2 * Kout1', ...
    strcat({'Kout = '}, {'2 * Kout1'}), graphs2files, FigDir,...
    xmin, xmax, ymin, ymax);
bg_Kout1vskKout2 = plot_bg(FhmPGKout(1), FhmPGKout(2), PobjEpgKout(1), PobjEpgKout(2), 'off', 'Kout1vsKout2_bg',...
    graphs2files, FigDir);
bg_root = 'bg_Kout1vsKout2';
quad_Kout1vsKout2 = quad_subplot(ContKout1, ContKout2, bg_Kout1vskKout2, 'quad_Kout1vsKout2', bg_root, ...
    graphs2files, FigDir);
if show_graphics
    quad_Kout1vsKout2.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "quad_Kout1vsKout2", "Effect of increasing the value of the output-scaling paramater");

This is figure #27: (quad_Kout1vsKout2)

The graphs shown above demonstrate that changes to the input- and output-scaling parameters of the power-

growth function produce identical shifts in the position of the reward mountain. Changing the value of either

parameter shifts the mountain rightward along the price axis, in sharp contrast to the orthogonal shifts observed

when reward intensity grows as a logistic function of pulse frequency.

In the case of eICSS, we know from the experiments of Gallistel's group that reward intensity grows in a manner

similar to a logistic function of pulse frequency. Unlike the case of power growth, logistic growth is characterized

by independent parameters that scale the input and output. This characteristic is what causes the effect of

varying reward probability to shift the reward mountain in a direction orthogonal to the effects of varying current

or train duration. It follows that when such orthogonal shifts are observed, this requires that the underlying

reward-growth function incorporates independent parameters that scale the input (the position parameter)

and the output (the parameter representing the maximum reward intensity). Thus even in the absence of

data from matching experiments or other methods for measuring the growth of reward intensity, we can make

inferences about the reward-growth function by observing the way in which various manipulations shift the

reward mountain. This will be important for the interpretation of the oICSS data.

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 18.280454 seconds.
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At what stage of processing does perturbation of dopaminergic neurotransmission alter reward seeking

in eICSS?

tic;
close all;

We have described changes in the position parameter  as alterations in the sensitivity of the reward-

growth function. One might best label  as the "inverse-sensitivity" parameter because the lower its value,

the weaker the input required to drive reward intensity to a given level. In contrast, we have described changes

in the output-scaling parameter  as alterations in the gain of the reward-growth function. Just as turning

the volume knob on an audio amplifier changes the loudness produced by weak and strong inputs by the same

percentage, changing  alters the reward intensity produced by both low and high pulse frequencies (within

the frequency-following range) by the same percentage. Changes in sensitivity shift the reward mountain along

the pulse-frequency axis, whereas changes in gain shift the mountain along the price axis.

Operant peformance in the eICSS paradigm is altered by perturbation of dopaminergic neurotransmission.

Boosting dopaminergic signalling typically enhances performance, whereas attenuating dopaminergic

signalling typically attenuates performance. These changes have long been attributed to the modulation of

reward sensitivity by dopaminergic agents (See: Hernandez et al., 2010). If so, drugs that alter dopaminergic

neurotransmission should shift the reward mountain along the pulse-frequency axis and not along the price axis.

We have shown that this is not so. In rats working for electrical stimulation of the medial forebrain bundle, we

demonstrated that enhancement of dopaminergic signalling by the highly specific reuptake blocker, GBR-12909,

shifted the reward mountain rightward along the price axis in 8/10 rats without producing any statistically

reliable shifts along the pulse-frequency axis (Hernandez et al., 2012). The D2/D4/5HT7 receptor blocker,

pimozide, shifted the reward mountain leftward along the price axis in 5/6 rats without producing any statistically

reliable shifts along the pulse-frequency axis (Trujillo-Pisanty, Conover & Shizgal, 2014). To account for these

complementary effects, the changes in dopaminergic neurotransmission had to have altered one or more of the

variables that determine the position of the reward mountain along the price axis, such as the output-scaling

parameter of the reward-growth function , the subjective effort cost ( ), or the payoff from alternate

activities ( ).

if show_graphics
    show_imported_graphic('GBR_pimozide_summary.png', 100, ImpFigDir);
end

53

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867481doi: bioRxiv preprint 

https://doi.org/10.1101/867481
http://creativecommons.org/licenses/by/4.0/


[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "PimGBRshifts", ...
    "Changes in dopaminergic neurotransmission shift the mountain along the price axis");

This is figure #28: (PimGBRshifts)

An intuitively appealing interpretation of these data is based on the notion that the neurons subserving eICSS

of the medial forebrain bundle project to midbrain dopamine neurons and that it is the transynaptic activation of

the dopamine neurons that gives rise to the reward effect of the medial forebrain bundle stimulation (the "series"

model of brain-reward circuitry). In the following section, we apply the reward mountain model to the oICSS data

from the present paper. We show that the series model cannot account for the data from both the eICSS and

oICSS studies. After demonstrating this, we discuss "convergence" models that show promise for an intergrated

account of both eICSS and oICSS, and we propose experiments that put such accounts to empirical test.

toc

Elapsed time is 0.748551 seconds.

Optical intracranial self-stimulation of midbrain dopamine neurons

tic;
close all;

In the experiments reviewed above, rats worked to trigger trains of electrical current pulses applied to the

medial forebrain bundle. In contrast, in the experiment we now discuss, rats worked to trigger trains of optical

pulses delivered through an optical fiber positioned over the ventral tegmental area of the midbrain. As a

result of viral transcription and Cre-Lox recombination, dopamine neurons with somata in, or adjacent to, the
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VTA expressed channelrhodopsin-2 (ChR2) and thus could be excited by light delivered at an appropriate

wavelength (473 nm). As others have reported previously (Witten et al., 2012), rats expressing ChR2 in

midbrain dopamine neurons work vigorously to obtain such optical stimulation. 

We show that TH-Cre rats expressing ChR2 in midbrain dopamine neurons learn to perform the cumulative

hold-down task to receive optical stimulation of the ventral tegmental area (VTA), where the somata of

dopamine neurons projecting to forebrain targets reside. As in the case of eICSS, time allocation varies

smoothly as a function of the strength and price of the optical stimulation. The surface defined by the mountain

model fits the data well.

if show_graphics
    show_imported_graphic('Bechr29_veh_mtn.png', 30, ImpFigDir);
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "BeChR29vehMtn", ...
    "The mountain model fitted to vehicle-condition data from rat BeChR29");
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This is figure #29: (BeChR29vehMtn)

The effect of the dopamine-transporter blocker, GBR-12909.

To boost dopaminergic neurotransmission, we administered 20 mg/kg of the dopamine-transporter blocker,

GBR-12909. Under the influence of the drug, the mountain fitted to the data from rat BeChR29 shifted leftwards

along the pulse-frequency axis and rightwards along the price axis.

if show_graphics
    show_imported_graphic('Bechr29_dual_mountains.png', 30, ImpFigDir);
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "BeChR29vehdrgMtn", ...
    "Effect of GBR-12909 on the reward-mountain data obtained from rat BeChR29");

This is figure #30: (BeChR29vehdrgMtn)

These shifts can be most clearly discerned in the contour-plot display and bargraph summary:

if show_graphics
    show_imported_graphic('BeChR29_quad_GBR.png', 25, ImpFigDir);
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "BeChR29quad", ...
    "Effect of GBR-12909 on the reward-mountain data obtained from rat BeChR29");

This is figure #31: (BeChR29quad)

This pattern of shifts is seen in the results from 6 of the 7 rats:

if show_graphics
    show_imported_graphic('optoGBR_shift_summary.png', 100, ImpFigDir);
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "GBRshiftSummary", ...
    "Effect of GBR-12909 on the reward-mountain data obtained from all 7 rats");

This is figure #32: (GBRshiftSummary)

The error bars surrounding the data point for each rat represent the bootstrapped 95% confidence interval (CI)

for the parameter in question, whereas the boxes denoted by the heavy solid lines represent the inter-quartile

range (IQR) of the median parameter estimate for the group of seven rats. The and 

values have been corrected for differential frequency-following fidelity in the vehicle and drug conditions. (See

below and main body of the manuscript.)

Modeling the results

We now undertake modeling to determine how the optical pulse train can be translated into the observed

behavioral responses in a manner consistent with the observed effect of dopamine-transporter blockade on the

reward mountain.

The first step is to relate the induced frequency of firing in the dopamine neurons to the optical pulse frequency.

For this purpose, we adopt a filter function of the form defined by

disp(string({strcat({'Function '},num2str(fun_tab.Number(fun_tab.Name=='FilterFun')))}));

Function 6
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, which provides an accurate description of how medial forebrain bundle fibers subserving electrical intracranial

self-stimulation respond to the electrical pulse frequency. It is not known how well the functional form

describes frequency-following in optically activated, ChR2-expressing, midbrain dopamine neurons. As

explained in the main body of the manuscript, parameter values have been chosen on the basis of published

electrophysiological, voltammetric, and behavioral data. 

The maximum firing frequency in the dopamine neurons is far lower than in the directly stimulated neurons

responsible for the rewarding effect of electrical medial forebrain bundle stimulation (Solomon et al., 2015). To

reflect this in the equation for the frequency response, we used updated names and values for the parameters:

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "FreqFolDA", "Frequency of firing as a function of pulse frequency");

This is equation #29: (FreqFolDA)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "FdaBend", "parameter determining sharpness of bend in FreqFol function");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Fopt", "optical pulse frequency");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "FdaRate", "optically induced firing rate of the dopamine neurons");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "FdaRO", "the pulse frequency in the center of the roll-off region");

In later stages of the modeling, we use the inverse function, FilterFunBS, to return an optical pulse frequency

given the dopamine firing frequency it produces. (see Functional building blocks for the simulations).

The following graph show the function employed to model frequency-following fidelity in the ChR2-expressing

dopamine neurons in response to the optical pulse frequency:

FdaBend = 20; 
FdaRO = 50; 
logFopt = 0:0.025:2.4;
Fopt = 10.^logFopt;
FRda = FilterFun(Fopt, FdaBend, FdaRO); % Compute firing rate using the frequency roll-off function

FF_graphDA = plot_freqFoll(Fopt,FRda,'DA',1,250,1,100);
if show_graphics
    FF_graphDA.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "FreqFolDA", ...
    "Induced firing frequency in dopamine neurons as a function of pulse frequency");

This is figure #33: (FreqFolDA)

The spike counter

Performance for optical stimulation of midbrain dopamine neurons depends both on the induced firing frequency

and the number of dopamine neurons excited by the optical input (Ilango et al., 2014). The simplest assumption

consistent with this finding is that the behavioral effects depend on the aggregate rate of induced firing, as is the

case of the behavioral effects produced by rewarding electrical stimulation of the medial forebrain bundle. The

aggregate rate of firing induced by the optical stimulation in the population of dopamine neurons is the product

of the number of optically activated neurons and the induced firing frequency:
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[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "AggDAfr", "Aggregate firing rate in the dopamine neurons");

This is equation #30: (AggDAfr)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "FdaAgg", "aggregate firing rate of the optically excited dopamine neurons");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Nda", "number of optically excited dopamine neurons");

clear a Fopt FRda logFopt;
clear -regexp ^Fda ^FF_graph;
toc

Elapsed time is 3.287460 seconds.

The effect on the reward mountain produced by modulation of dopaminergic neurotransmission

tic;
close all;

The influence of the induced firing of the dopamine neurons can be modulated by drugs, such as transporter

blockers, that alter synaptic transmission. To capture such effects, we add a scalar at the output of the

dopamine spike count:

[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "DAdrive", "scaled post-synaptic influence of the induced dopamine firing");

This is equation #31: (DAdrive)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Kda", "constant that scales the postsynaptic impact of the dopamine firing");

Symbol Kda has already been entered.
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In the following schema, the aggregate rate of firing is represented by the Π symbol and the dopamine-drive

scalar by a triangle:

if show_graphics
    show_imported_graphic('counter_opto.png',60,ImpFigDir);
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "DAdrive", ...
    "Influence of optically stimulated dopamine release on downstream targets");

This is figure #34: (DAdrive)

We refer to the scaled output of the activated population of midbrain dopamine neurons as "dopamine drive."

The reward-growth function for oICSS

In six of the seven rats, dopamine-transporter blockade shifted the mountain leftward along the pulse-frequency

axis. As we demonstrated above, such shifts require that the function that translates dopamine drive into reward

intensity (i.e., the reward-growth function) must have a position parameter that is independent of the parameter

that sets the maximum reward intensity attainable. The logistic function described by Gallistel's group in the

case of eICSS has this property, and we have therefore added such a function at the output of the counter.

if show_graphics
    show_imported_graphic('DA_logisitc_simplified.png',50,ImpFigDir);
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "oICSS_simplified", ...
    "simplied oICSS model with logistic reward growth");

This is figure #35: (oICSS_simplified)

In the case of eICSS, the form of the two-dimensional reward-growth function employed in the simulations is

based on the empirical measurements obtained by Gallistel's group. No such measurements have yet been

obtained for oICSS. Future experiments will be required to determine whether the logistic form or another form

with independent input- and output-scaling parameters provides the best description of reward growth in the

case of oICSS.

In the case of eICSS, the reward-growth function has been generalized to three dimensions {reward intensity,

pulse frequency, train duration} on the basis of additional empirical data (Sonnenschein, Conover, & Shizgal,

2003). Both the pulse frequency and train duration have been manipulated in oICSS experiments (Ilango et al.,

2014), but not in a way that makes it possible to describe the joint dependence of reward intensity on these two

variables. Future experiments will be required to determine this. For present purposes, we will again adopt the

function derived from eICSS data for use in simulating oICSS performance.  

We define the position parameter of the reward-growth function for oICSS of midbrain dopamine neurons by

modifying

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='fH')))}));

Equation 17

as follows:
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[eqn_num, eqn_tab] = ...
    add_eqn(eqn_num, eqn_tab, "FHda", "strength-duration function for optical trains delivered to dopamine neurons");

This is equation #32: (FHda)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Cda", "chronaxie of the strength-duration function for trains delivered to dopamine neurons");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "Dopt", "duration of an optical pulse train");
[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "RhoDA", "rheobase of the strength-duration function for trains delivered to dopamine neurons");

The function FpulseHMfun 

disp(string({strcat({'Function '},num2str(fun_tab.Number(fun_tab.Name=='FpulseHMfun')))}));

Function 30

(See Functions composing the reward-mountain model below), accepts an argument
list of variable length. If  is appended to the end of the argument list, then it will enter into the

calculation of  as specified in the above equation. If  is omitted, it assumes an implicit value of one.

The following code produces estimates of  for two values of . The lower value (1) represents the

effectiveness of dopaminergic neurotransmission in the vehicle condition, whereas the higher value (2)

represents the effectiveness of dopaminergic neurotransmission under the influence of dopamine-transporter

blockade.

C = 0.473; % median from Sonnenschein et al., 2003
D = 1.0; % train duration for oICSS study
FdaBend = 20; 
FdaRO = 50; 
Kda = [1,10^.2];
NnDA = 100;
RhoPiDA = 1572; % See the calculation in the Series-circuit section below for D = 1 s
FPmax = 1000;
FdaHMkDA = FpulseHMfun(C, D, FdaBend, FPmax, FdaRO, NnDA, RhoPiDA, Kda)

FdaHMkDA = 1×2

   27.1046   16.4598

%FdaHMkDA is a two-element vector

Note that although Kda(1) is half the value of Kda(2), FdaHMkDA(2) is less than half the value of

FdaHMkDA(1). The reason for this is that the frequency-response function for the dopamine neurons has

already started to roll off by FdaHMkDA(1) (some dopamine neurons fail to fire once per pulse at this pulse

frequency). This will be reflected in a greater discrepancy between RnormMax(1) and one than between

RnormMax(2) and one.

To compute time allocation, we also require the value of the parameter that positions the mountain along

the price axis, . In the initial simulation, we assume that the value of this parameter is unaffected by the

blockade of the dopamine transporter.

dotPhiObj = 1;
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Kaa = 1;
Kec = 1;
Krg = 1;
dotRaa = 0.1; 
pObj = 1;
PsubBend = 0.5;
PsubMin = 1.82;

FPmax = 1000; % This value is sufficiently above FdaRO to maximize the firing rate
g = 5;
RnormMax = fRbsrNorm(FPmax, FdaBend, FdaHMkDA, FdaRO, g)

RnormMax = 1×2

    0.9615    0.9967

% RnormMax is a two-element vector

PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax)

PobjE = 1×2

    9.6147    9.9670

% PobjE is a two-element vector

We can now estimate time allocation and simulate the reward mountains for the vehicle and drug conditions

using the full logistic reward-growth model shown in the figure below:

if show_graphics
    show_imported_graphic('oICSS_logistic+3Pe_noMasks_v4.png',25,ImpFigDir);
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "oICSS_logistic", ...
    "oICSS model with logistic reward growth");

This is figure #36: (oICSS_logistic)

We will now simulate the output of this model, disregarding, for the time being, any drug-induced changes in

dopamine tone .

a = 3;
Fopt = logspace(0,3,121)'; % column variable
Pobj = logspace(0,3,121); % row variable
Tda1 = TAfun(a, Fopt, FdaBend, FdaHMkDA(1), FdaRO, g, Pobj, PobjE(1), ...
    PsubBend, PsubMin, RnormMax(1));
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Tda2 = TAfun(a, Fopt, FdaBend, FdaHMkDA(2), FdaRO, g, Pobj, PobjE(2), ...
    PsubBend, PsubMin, RnormMax(2));

Before plotting the bar graphs, we need to correct the estimates of the location parameters for the differential

frequency-following fidelity in the drug and vehicle conditions. The mountain is shifted downwards along the

pulse-frequency axis in the drug condition and thus, frequency-following fidelity is better than in the vehicle

condition.

As we explain in the main body of the manuscript, 

and

FdaHMkDAstar = FilterFun(FdaHMkDA,FdaBend,FdaRO);

PsubE = PsubFun(PobjE,PsubBend,PsubMin);
PsubEstar = PsubE ./ RnormMax;
PobjEstar = PsubBsFun(PsubEstar,PsubBend,PsubMin);

title_str1 = strcat({'Kda = '}, sprintf('%2.2f', Kda(1)));
xmin = 0;
xmax = 2.3;
ymin = 0.3;
ymax = 2.3;
MTNkDA1 = plot_MTN(Fopt, Pobj, Tda1, 'off', 'MTNkDA1', title_str1, ...
    graphs2files, FigDir, xmin, xmax, ymin, ymax);
title_str2 = strcat({'Kda = '}, sprintf('%2.2f', Kda(2)));
MTNkDA2 = plot_MTN(Fopt, Pobj, Tda2, 'off', 'MTNkDA2', title_str2, ...
    graphs2files, FigDir, xmin, xmax, ymin, ymax);
MTNkDA1vskDA2 = dual_subplot(MTNkDA1, MTNkDA2, 'MTNkDA1vskDA2',...
    graphs2files,FigDir);
if show_graphics
    MTNkDA1vskDA2.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "kDA1vskDA2_mtns", ...
    "Effect of dopamine-transporter blockade on the reward mountain");

This is figure #37: (kDA1vskDA2_mtns)

ContkDA1 = plot_contour(Fopt, Pobj, Tda1, PobjE(1), FdaHMkDA(1), 'off', 'ContkDA1', title_str1, ...
    strcat({'Kda = '}, num2str(Kda(1))), graphs2files, FigDir,...
    xmin, xmax, ymin, ymax);
ContkDA2 = plot_contour(Fopt, Pobj, Tda2, PobjE(2), FdaHMkDA(2), 'off', 'ContkDA2', title_str2, ...
    strcat({'Kda = '}, num2str(Kda(2))), graphs2files, FigDir,...
    xmin, xmax, ymin, ymax);
bg_kDA1vskDA2 = plot_bgStar(FdaHMkDA(1), FdaHMkDA(2), FdaHMkDAstar(1), FdaHMkDAstar(2),...
    PobjE(1), PobjE(2), PobjEstar(1), PobjEstar(2),...
    'off', 'kDA1vskDA2_bg', graphs2files, FigDir);
bg_root = 'bg_kDA1vskDA2';
quad_kDA1vskDA2 = quad_subplot(ContkDA1, ContkDA2, bg_kDA1vskDA2, 'quad_kDA1vskDA2', bg_root, ...
    graphs2files, FigDir);
if show_graphics
    quad_kDA1vskDA2.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "kDA1vskDA2_quad", ...
    "Effect of dopamine-transporter blockade on the reward mountain");

This is figure #38: (kDA1vskDA2_quad)

In the above simulation, the drug-induced boost in the effectiveness of dopaminergic neurotransmission has

rescaled the input to the reward-growth function. As a result, the mountain shifts leftwards along the pulse-

frequency axis. This captures one of the observed effects of GBR-12909. 

The small shift along the price axis is due to the fact that  is closer to one in the drug condition than

in the vehicle condition. This is due to the fact that  is lower in the drug condition and thus further from the

pulse frequency at which frequency following begins to roll off. The corrected value of  is designated

by the dot-dash cyan line on the red bar.

The difference in frequency-following fidelity in the drug and vehicle conditions also produces a small shift in

. This shift is removed by the correction (dot-dash cyan line on the blue bar).

The empricially observed rightward shifts along the pulse axis survive the correction for differential frequency-

following fidelity. To capture these, a scalar increase must be produced at or beyond the output of the reward-

growth function. In the example shown below, we do this by having the drug-induced increase in dopamine tone

reduce the subjective effort cost, as proposed by Salomone and colleagues.

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc
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Elapsed time is 10.708417 seconds.

Dopaminergic modulation of subjective effort cost

tic;
close all;

In 

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='oICSS_logistic')))}));

Figure 36

, blockade of the dopamine transporter changes both phasic and tonic dopamine signaling. Given that the

lack of correlation between the magnitudes of the resulting shifts along the pulse-frequency and price axes,

separate scalars are included for phasic and tonic signaling. The schema indicates three different ways in which

increases in tonic signaling could shift the mountain along the price axis, as designated by the black dashed

line. The one simulated here is a reduction in the rate of subjective exertion entailed in holding down the lever.

% Set Fhm to the values obtained from ratBechr29 in the vehicle and drug conditions 
Kda = [1,1.4458]; % Kda value for Bechr29
FdaHMkDA = [31.34679397, 20.77560124]; % values for Bechr29
FdaHMkDAstar = [26.29253041, 18.18388501]; % values for Bechr29

PsubBend = 0.5;
PsubMin = 1.8197;

FdaBend = 20; 
FdaRO = 50; 
FPmax = 200; % This is the value that was employed in the correction of the location parameters
g = 3.160774009; % value for Bechr29; value common for Veh and Drg conditions
RnormMax = [0.893580092, 0.964209143]; % means of resampled values for Bechr29

% PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax, KeffMod) 
PobjE = [6.295449067, 10.04096421]; % values for Bechr29
PobjEstar = [7.375024269, 10.47998071]; % values for Bechr29

% We can't simply perform the corrections of the location parameters on the means. 
% The original corrections were performed on the 250 resampled log values.
% The statistics are based on these vectors.
% The log of the mean is not equal to the mean of the logs.
% Similarly, we cannot simply use FilterFun to correct the mean Fhm values and use these to estimate RnormMax
% logFfiringHM (i.e., logFhmStar) and logPobjEstar were estimated from each of the 250 resampled values of 
% logFpulseHM and logPobjE. We encounter the same issue.
% The values used above are based on the 250 resampled log values, which were loaded directly from the
% saved workspace that was used in the fits.

a = 3;
Fopt = logspace(0,3,121)'; % column variable
Pobj = logspace(0,3,121); % row variable
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Tda1 = TAfun(a, Fopt, FdaBend, FdaHMkDA(1), FdaRO, g, Pobj, PobjE(1), ...
    PsubBend, PsubMin, RnormMax(1));
Tda2 = TAfun(a, Fopt, FdaBend, FdaHMkDA(2), FdaRO, g, Pobj, PobjE(2), ...
    PsubBend, PsubMin, RnormMax(2));

xmin = 0;
xmax = 2.3;
ymin = 0.3;
ymax = 2.3;
title_str1 = strcat({'Kda = '}, sprintf('%2.2f', Kda(1)));
MTNkDAeffMod1 = plot_MTN(Fopt, Pobj, Tda1, 'off', 'MTNoICSSkDAeffMod1', title_str1, ...
    graphs2files, FigDir, xmin, xmax, ymin, ymax);
title_str2 = strcat({'Kda = '}, sprintf('%2.2f', Kda(2)));
MTNkDAeffMod2 = plot_MTN(Fopt, Pobj, Tda2, 'off', 'MTNoICSSkDAeffMod2', title_str2, ...
    graphs2files, FigDir, xmin, xmax, ymin, ymax);
MTNoICSSkDA1vskDA2 = dual_subplot(MTNkDAeffMod1, MTNkDAeffMod2, 'MTNoICSSkDA1vskDA2',...
    graphs2files,FigDir);
if show_graphics
    MTNoICSSkDA1vskDA2.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "kDA1vskDAeffMod2_mtns", ...
    "Effect of dopamine-transporter blockade on the reward mountain");

This is figure #39: (kDA1vskDAeffMod2_mtns)

ContkDAeffMod1 = plot_contour(Fopt, Pobj, Tda1, PobjE(1), FdaHMkDA(1), 'off', 'ContkDAeffMod1', title_str1', ...
    strcat({'Kda = '}, num2str(Kda(1))), graphs2files, FigDir,...
    xmin, xmax, ymin, ymax);
ContkDAeffMod2 = plot_contour(Fopt, Pobj, Tda2, PobjE(2), FdaHMkDA(2), 'off', 'ContkDAeffMod2', title_str2, ...
    strcat({'Kda = '}, num2str(Kda(2))), graphs2files, FigDir,...
    xmin, xmax, ymin, ymax);
ymin = -0.3581; % from the bargraph for Bechr29
ymax = 0.3652; % from the bargraph for Bechr29
bg_kDA1vskDA2effMod = plot_bgStar(FdaHMkDA(1), FdaHMkDA(2), FdaHMkDAstar(1), FdaHMkDAstar(2),...
    PobjE(1), PobjE(2), PobjEstar(1), PobjEstar(2),...
    'off', 'kDA1vskDA2_bg', graphs2files, FigDir,...
        ymin, ymax);
bg_root = 'bg_kDA1vskDAeffMod2';
quad_kDA1vskDA2effMod = quad_subplot(ContkDAeffMod1, ContkDAeffMod2, bg_kDA1vskDA2effMod,...
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    'quad_kDA1vskDAeffMod2', bg_root, graphs2files, FigDir);
if show_graphics
    quad_kDA1vskDA2effMod.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "kDA1vskDA2effMod_quad", ...
    "Effect of dopamine-transporter blockade on the reward mountain");

This is figure #40: (kDA1vskDA2effMod_quad)

The simulated results are now in qualitative accord with the empirical findings: the mountain shifts leftwards

along the pulse-frequency axis and rightwards along the price axis in response to blockade of the dopamine

transporter.

Here are the shifts observed in the mountains obtained from rat BeChR29 and the shifts simulated above using

the  and values derived from that rat's data:

BeChR29_bg = make_fig_from_png(fullfile(ImpFigDir,'BeChR29_bg.png'), 30);
BeChR29bgVSsimBG = dual_subplot(BeChR29_bg, bg_kDA1vskDA2effMod, 'BeChR29bgVSsimBG',...
    graphs2files,FigDir);
% rescale the right panel to 60% width, 80% height & center in right panel
BeChR29bgVSsimBGrs = adjust_right_panel(BeChR29bgVSsimBG, 0.6, 0.825); 
if show_graphics
    BeChR29bgVSsimBGrs.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "BeChR29bgVSsimBGrs", ...
    "Simulated and observed effects of dopamine-transporter blockade on the reward mountain");

This is figure #41: (BeChR29bgVSsimBGrs)

The correspondence is forced by inputting values of , , and g obtained from the fit of the reward-

mountain model to the empirical data. All that this comparison does is to verify the functions for computing time

allocation and graphing the results.

Full simulation would yield the same results if we adjusted  so as to generate the

observed values.

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 11.140447 seconds.

The series-circuit model of eICSS and oICSS

tic;
close all;

In the previous section, we demonstrate how the effects of dopamine-transporter blockade on oICSS can be

explained within the context of the mountain model by a combination of changes in phasic and tonic dopamine

signaling. In this section, we pose an additional challenge: can the explanation proposed for the oICSS data

also account for the known effects of dopamine-transporter blockade on eICSS? Below, we show that the

proposed explanation fails to meet this challenge, we discuss the implications for the "series-circuit" model of

eICSS, and we develop a new model that can account for the effects of dopamine-transporter blockade on both

oICSS and eICSS.

The series-circuit model treats oICSS and eICSS as behavioral manifestations of the effects produced by

injecting signals at two different neural stages of the same pathway. On this view, eICSS arises from electrically

induced activation of highly excitable, non-dopaminergic neurons that project directly or indirectly to midbrain

dopamine neurons. In other words, the directly activated neurons that give rise to eICSS are in series with the
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dopamine neurons that render the electrical stimulation rewarding. The midbrain dopamine neurons are excited

trans-synaptically in the case of eICSS and directly in the case of oICSS. The consequences of their activation

are the same: the subject seeks to re-initiate the stimulation and will pay large effort and opportunity costs when

the strength of the stimulation suffices to produce a large increment in the aggregate firing rate of the dopamine

neurons.  

Here, we show only the portion of the model that generates the reward-intensity signal.

if show_graphics
    show_imported_graphic('series-circuit_DA_double_logisitc_RG_v2.png',15,ImpFigDir);
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "SeriesCircuit_eICSS_oICSS", ...
    "Series-circuit model of eICSS and oICSS");

This is figure #42: (SeriesCircuit_eICSS_oICSS)

As the figure above shows, two different reward-growth functions are required, one upstream of the dopamine

neurons and another downstream. The upstream reward-growth function is necessary in order to account for

the data summarized in

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='PimGBRshifts')))}));

Figure 28

That figure shows that modulation of dopaminergic neurotransmission alters eICSS performance by shifting the

reward mountain along the price axis and not along the pulse-frequency axis. This implies that the drug-induced

change in dopamine signaling acts at or beyond the output of the reward-growth function for eICSS. For this

to occur in the series-circuit model, the reward-growth function for eICSS must lie upstream (to the left) of the

dopamine neurons.

A second reward-growth function must lie downstream (to the right) of the dopamine neurons. This is required

because GBR-12909 shifted the reward mountain for oICSS along the pulse-frequency axis, as shown in

disp(string({strcat({'Figures '},num2str(fig_tab.Number(fig_tab.Name=='BeChR29vehdrgMtn')))}));

Figures 30

and

disp(string({strcat({''},num2str(fig_tab.Number(fig_tab.Name=='GBRshiftSummary')))}));

32

We explain above (The significance of orthogonal shifts) that the mountain will move along the pulse-

frequency axis only if the input to the reward-growth function has been rescaled. Such rescaling occurs when
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the magnitude of dopamine transients is boosted by GBR-12909 and the reward-growth function for oICSS is

positioned downstream of the dopamine neurons.

Series-circuit model: changes in the reward mountain for eICSS in response to dopamine-transporter

blockade

To generate a reward mountain for eICSS from the series-circuit model, we proceed in several stages. As was

done above (The reward-growth function for oICSS), the optical pulse frequency required to produce a half-

maximal reward intensity is calculated directly from 

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='fH')))}));

Equation 17

We next need to compute the electrical pulse frequency (applied to a medial forebrain bundle electrode) that

produces excitation in the dopamine neurons equivalent to that produced by a given train of optical pulses

delivered to the midbrain dopamine neurons. According the series-circuit model, all inputs that produce

the same peak output from the dopamine neurons will produce the same rewarding effect. This will be true

regardless of whether the dopamine neurons are excited directly by optical activation or indirectly by trans-

synaptic input from medial forebrain bundle neurons activated by electrical stimulation. According to the model,

an observer placed downstream from the dopamine neurons and supplied only with information about the

aggregate peak output of these neurons cannot know whether optical or electrical stimulation was responsible

for a given phasic increase in dopamine release. It is the peak magnitude of this phasic increase in aggregate

firing that determines the intensity of the rewarding effect. 

(See "The spike counter" above.)

To obtain the electrical pulse frequency required to produce a reward of half-maximal intensity, we need to

back-solve the equations describing the stages of the model that intervene between the electrode and the

dopamine neurons. The back-solutions return the electrical pulse frequency that delivers an input to dopamine

neurons equivalent to the optical pulse frequency that produces a half-maximal reward intensity. 

The reward-growth functions (S-shaped curves in rectangular boxes) in the flow diagrams are normalized: Their

output varies from zero to one and is then scaled by the variable in the triangle to their right. In the case of the

upstream reward-growth function in

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='SeriesCircuit_eICSS_oICSS')))}));

Figure 42

(the reward-growth function to the left of the dopamine neurons), that scaling variable is  . The value of

this variable determines the maximum input that the electrode can deliver to the dopamine neurons, scaled

in terms of the equivalent optical pulse frequency. In the initial simulation below,  is set to 63 pulses per

second, and given the parameters of the frequency-following function of the dopamine neurons { },

this will drive the dopamine neurons to a near-maximal level (~43 spikes ). We demonstrate below that the

qualitative effect of dopamine transporter blockade is little affected by the value of .
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The function that computes the required electrical pulse frequency in the series-circuit model, FscHMbs,

comprises three back-solutions. (See Functions composing the reward-mountain model below.) First, we

invert the scaling of the output of the upstream reward-growth function: we divide the optical pulse frequency

required to produce a reward of half-maximal intensity by . This gives us the output of the upstream

normalized reward-growth function (a value between zero and one), the fraction of  required to produce

a half-maximal reward intensity at the output of the dopamine neurons (the FdaHMkDA value). We then

backsolve the upstream reward-growth function (by means of the LogistNormBsFun function) to obtain the

average firing rate of the medial forebrain bundle neurons required to produce the reward intensity in question,

given the position parameter of the logistic reward-growth function and the value of its exponent. The position

parameter of the logistic is calculated using 

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='fH')))}));

Equation 17

(the FFmfbHM function). Finally, we use the FilterFunBS function to obtain the electrical pulse frequency that

produces this average firing rate. 

The input to FscHMbs is the optical pulse frequency required to produce a reward of half-maximal intensity

( ) by direct activation of the dopamine neurons, and the output is the equivalent electrical pulse

frequency ( ).

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "FscHMbs", ...
    "FhmDA, FmfbBend, FhmMFB, FmfbRO, gMFB, KrgEq",...
    "Back solution of the full reward-growth function for the series-circuit (sc) model");

This is function #39: (FscHMbs)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "FscHM", "position parameter of RG function in the series-circuit model");

We now compute the value of the FscHMbs function for the vehicle and drug conditions.

%% Calculate FscHM for the vehicle and drug conditions 
% Calculate the position parameter of the upstream reward-growth function
C = 0.473; % median from Sonnenschein et al., 2003
D = 0.5; % typical train duration
FdaBend = 20; 
logFmfbBend = 1.3222; % from Solomon et al., 2015
FmfbBend = 10^logFmfbBend

FmfbBend = 20.9991

FdaRO = 50;
gMFB = 1.58; % reduce the value due to the embedding within the DA RG function
logFmfbRO = 2.5587; % from Solomon et al., 2015
FmfbRO = 10^logFmfbRO

FmfbRO = 361.9929

NnMFB = 126;
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RhoPiMFB = 5000; % RhoPi/N is within ~20% of 50, which is roughly consistent with Sonnenchein et al., 2003

FPmax = 1000;
FmfbHM = FpulseHMfun(C, D, FmfbBend, FPmax, FmfbRO, NnMFB, RhoPiMFB)

FmfbHM = 77.2222

In the vehicle condition of the current experiment, the median  value for oICSS was 27.1. The train

duration was 1 s, whereas it was 0.5 s in the corresponding eICSS study. The form and parameters of the

temporal-integration function for oICSS of midbrain dopamine neurons are unknown. Faut de mieux, we will

use the functional form and parameters obtained from eICSS to compute the Fhm value for a 0.5 s train that

corresponds to the value obtained in the current oICSS study for 1 s trains. 

In the series-circuit model, the output of the MFB neurons must pass through the midbrain dopamine neurons.

If so, the temporal-integration characteristics obtained in eICSS experiments reflect those of both the directly

stimulated and dopamine stages of the circuit. According to this model, integration in the dopamine stage

cannot be faster than estimated in the eICSS study.

It follows from

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='fH')))}));

Equation 17

that the Fhm value for a 0.5 s train that corresponds to an Fhm value for a 1 s train is given by

[eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, ...
    "FfiringD1D2", "calculates equivalently effective pulse frequencies at two different train durations");

This is equation #33: (FfiringD1D2)

Given the frequency-following function, the median  value for the vehicle condition (27.1) corresponds to

a firing frequency of 23.1. 

FpulseHMmedVeh = 27.094;
FfiringHMmedVeh = FilterFun(FpulseHMmedVeh, FdaBend, FdaRO)

FfiringHMmedVeh = 23.1475

Given these values

C = 0.473;
D1 = 1;
D2 = 0.5;
FfiringHmD1 = FfiringHMmedVeh

FfiringHmD1 = 23.1475

77

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867481doi: bioRxiv preprint 

https://doi.org/10.1101/867481
http://creativecommons.org/licenses/by/4.0/


FfiringHmD2 = FfiringHmD1 .* (1+(C./D2)) ./ (1+(C./D1))

FfiringHmD2 = 30.5805

FPmax = 1000;
FpulseHmD2 = FilterFunBS(FdaBend, FdaRO, FfiringHmD2,FPmax)

FpulseHmD2 = 37.6179

The MFB will have to deliver excitation equivalent to  to deliver a half-maximal reward intensity from

the dopamine neurons at a train duration of 0.5 s. We will determine the values of  and  so as to obtain

the above  value in the vehicle condition. 

We first set the number of activated dopamine neurons arbitrarily to 100.

NnDA = 100;

Then, we use 

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='FfiringD1D2')))}));

Equation 33

to find the required value of , keeping in mind that  is the aggregate firing rate required to produce a

half-maximal reward intensity with a train of infinite duration. Setting D1 to infinity makes the denominator of 

disp(string({strcat({'Equation '},num2str(eqn_tab.Number(eqn_tab.Name=='FfiringD1D2')))}));

Equation 33

equal to one, so the equation is simplified to:

RhoPiDA = NnDA * (FfiringHmD2/(1+(C/D2)))

RhoPiDA = 1.5715e+03

We are now positioned to compute the MFB pulse frequency that will drive the dopamine neurons to produce a

reward of half-maximal intensity.

Kda = [1,10^0.15]; % Effect of dopamine-transporter blockade on the frequency of firing required 
% to produce a reward of half-maximal intensity. Median Kda in current oICSS study: 10^0.1446
FPmax = 1000; % This pulse frequency well above FdaRO and can thus serve to estimate their firing rate
FdaHMkDA = FpulseHMfun(C, D2, FdaBend, FPmax, FdaRO, NnDA, RhoPiDA, Kda) % result is a two-element vector

FdaHMkDA = 1×2

   37.6179   25.1418

Now, we work backwards through the MFB input to find the electrical pulse frequency that will drive the

dopamine neurons to produce a reward of half-maximal intensity.

KrgEq = 63;
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FFmax = FilterFun(FPmax, FmfbBend, FmfbRO);
if FFmax > LogistNormBsFun(gMFB,FmfbHM,max(FdaHMkDA)/KrgEq)
    for j = 1:length(FdaHMkDA)
        FscHM(j) = FscHMbs(FdaHMkDA(j), FmfbBend, FmfbHM, FmfbRO, FPmax, gMFB, KrgEq) % result is a two-element vector
    end
else
    display("FscHM could not be calculated because KrgEq is too low.");
    display("Set KrgEq such that FFmax > FilterFun(FPmax, Fbend, Fro).");
    return
end

FscHM = 99.0574
FscHM = 1×2

   99.0574   59.5983

% Calculate PobjE for the vehicle and drug conditions
dotPhiObj = 1;
Kaa = 1;
Kec = 1;
KeffMod = Kda; % We tie the subjective effort cost to the effect of the drug 
Kda

Kda = 1×2

    1.0000    1.4125

% Median shift in Pe in the current oICSS study: 10^0.1525
Krg = 1;
dotRaa = 0.1; 
pObj = 1;
PsubBend = 0.5;
PsubMin = 1.82;

Felec = logspace(0,3,121)'; % column variable

To solve the time-allocation equation for the series-circuit model, we must first compute the drive on the

dopamine neurons that is produced by each value of the electrical pulse frequency ( ). We express this

drive in terms of the optical pulse frequency that produces equivalent firing in the dopamine neurons, .

The FoptEquivFun function first translates the electrical pulse frequency into the induced rate of firing in the

medial forebrain bundle neurons, then translates this firing rate into a normalized reward intensity, and then

converts the normalized reward intensity into the equivalent optical pulse frequency. Once this has been done,

time allocation can be computed using the same equation and parameter values that were used to generate

the reward mountain for optical stimulation. The FoptEquivFun function is the inverse of the FscHMbs function.

(See Functions composing the reward-mountain model below.) 

[fun_num, fun_tab] = add_fun(fun_num, fun_tab, "FoptEquivFun", ...
    "Felec, FmfbBend, FmfbHM, FmfbRO, gMFB, KrgE",...
    "Function to compute the optical pulse frequency that produces the same DA output as Felec");

This is function #40: (FoptEquivFun)

[sym_num, sym_tab] = add_sym(sym_num, sym_tab, "FoptEquiv", "optical pulse frequency that applies the same drive on the dopamine neurons as Felec");

FoptEquiv = FoptEquivFun(Felec, FmfbBend, FmfbHM, FmfbRO, gMFB, KrgEq);
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FPmaxEq = max(FoptEquiv) % This is the highest equivalent optical pulse frequency that the DA neurons will "see"

FPmaxEq = 57.9538

gDA = 5; % Use a value consistent with the oICSS study; median in vehicle condition was 4.61
RnormMax = fRbsrNorm(FPmaxEq, FdaBend, FdaHMkDA, FdaRO, gDA) 

RnormMax = 1×2

    0.6146    0.9228

% RnormMax is a 2-element vector
PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax, KeffMod) 

PobjE = 1×2

    6.1461   13.0354

% PobjE is a two-element vector

Pobj = logspace(0,3,121); % row variable

% Compute time allocation for the vehicle and drug conditions
a = 2; % median in vehicle condition was 1.84
Tsc1 = TAfun(a, FoptEquiv, FdaBend, FdaHMkDA(1), FdaRO, gDA, Pobj, ...
    PobjE(1), PsubBend, PsubMin, RnormMax(1));
Tsc2 = TAfun(a, FoptEquiv, FdaBend, FdaHMkDA(2), FdaRO, gDA, Pobj, ...
    PobjE(2), PsubBend, PsubMin, RnormMax(2));

title_str1 = strcat({'Kda = '}, sprintf('%2.2f', Kda(1)));
MTNkDA1sc = plot_MTN(Felec, Pobj, Tsc1, 'off', 'MTNkDA1sc', title_str1, ...
    graphs2files, FigDir);
title_str2 = strcat({'Kda = '}, sprintf('%2.2f', Kda(2)));
MTNkDA2sc = plot_MTN(Felec, Pobj, Tsc2, 'off', 'MTNkDA2sc', title_str2, ...
    graphs2files, FigDir);
MTNkDA1vskDA2sc = dual_subplot(MTNkDA1sc, MTNkDA2sc, 'MTNkDA1vskDA2sc',...
    graphs2files,FigDir);
if show_graphics
    MTNkDA1vskDA2sc.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "kDA1vskDA2_sc_mtns", ...
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    "Effect of dopamine-transporter blockade on the reward mountain");

This is figure #43: (kDA1vskDA2_sc_mtns)

FscHMstar = FilterFun(FdaHMkDA,FdaBend,FdaRO); 
% Computed on the basis of frequency following in the dopamine neurons

PsubE = PsubFun(PobjE,PsubBend,PsubMin);
PsubEstar = PsubE ./ RnormMax;
PobjEstar = PsubBsFun(PsubEstar,PsubBend,PsubMin);

ContkDA1sc = plot_contour(Felec, Pobj, Tsc1, PobjE(1), FscHM(1), 'off', 'ContkDA1sc', title_str1, ...
    strcat({'Kda = '}, num2str(Kda(1))), graphs2files, FigDir);
ContkDA2sc = plot_contour(Felec, Pobj, Tsc2, PobjE(2), FscHM(2), 'off', 'ContkDA2sc', title_str2, ...
    strcat({'Kda = '}, num2str(Kda(2))), graphs2files, FigDir);
bg_kDA1vskDA2sc = plot_bgStar(FscHM(1), FscHM(2), FscHMstar(1), FscHMstar(2),...
    PobjE(1), PobjE(2), PobjEstar(1), PobjEstar(2),...
    'off', 'kDA1vskDA2sc_bg', graphs2files, FigDir);
bg_root = 'bg_kDA1vskDA2sc';
quad_kDA1vskDA2sc = quad_subplot(ContkDA1sc, ContkDA2sc, bg_kDA1vskDA2sc, 'quad_kDA1vskDA2sc', bg_root, ...
    graphs2files, FigDir);
if show_graphics
    quad_kDA1vskDA2sc.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "kDA1vskDA2_sc_quad", ...
    "Effect of dopamine-transporter blockade on the reward mountain");
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This is figure #44: (kDA1vskDA2_sc_quad)

toc

Elapsed time is 9.650534 seconds.

tic
clear -regexp ^Cont ^dual ^MTN ^quad;

The following two figures compare the shifts in the position of the reward mountain predicted by the series-

circuit model and observed empirically when eICSS is challenged with GBR-12909, a dopamine-transporter

blocker:

GBR_eICSS_summary = make_fig_from_png(fullfile(ImpFigDir,'GBR_eICSS_summary.png'), 100);
GBReICSSVSsimBG = dual_subplot(GBR_eICSS_summary, bg_kDA1vskDA2sc, 'GBReICSSVSsimBG',...
    graphs2files,FigDir);
% rescale the right panel to 60% width, 80% height & center in right panel
GBReICSSVSsimBGrs = adjust_right_panel(GBReICSSVSsimBG, 0.75, 1); 
if show_graphics
    GBReICSSVSsimBGrs.Visible = 'on';
end

The predicted shift along the price axis is consistent qualitatively with the empirical results of the experiment in

which eICSS was challenged with GBR-12909: the mountain shifts rightwards along the price axis. However,

the predicted shift along the pulse-frequency axis is inconsistent with the empirical results. Whereas the

series-circuit model predicts a leftward shift along the pulse-frequency axis, the mountain was not displaced

systematically along the pulse-frequency axis in the empirical study. This discrepancy reveals a serious flaw in

the series-circuit model.

The reason for the failure of the series-circuit model becomes clear upon inspection of 

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='SeriesCircuit_eICSS_oICSS')))}));

Figure 42

The change in dopaminergic neurotransmission produced by GBR-12909 rescales the input to the downstream

reward-growth function (to the right of the dopamine neurons), changing its position parameter. In contrast to
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what is observed empirically in the eICSS studies, this causes the simulated mountain to shift along the pulse-

frequency axis, regardless of whether the dopamine neurons are activated directly by optical stimulation or

indirectly by synaptic input from the medial forebrain bundle neurons stimulated by an electrode. 

An observer positioned at the input to the downstream reward-growth function cannot know whether optical

or electrical stimulation was responsible for the phasic dopamine signal that constitutes the input to this

function. Thus, the series-circuit model cannot readily generate differential predictions in response to optical and

electrical inputs. 

toc

Elapsed time is 1.282094 seconds.

The qualitative predictions don't depend meaningfully on the value of the parameter than scales the

medial forebrain bundle drive on the dopamine neurons.

tic;
clear -regexp ^GBR;
if show_graphics
    close all;
end

The next set of graphs shows that the predictions don't change qualitatively when the maximum medial

forebrain bundle drive on the dopamine neurons is reduced: The mountain continues to shift along both the

price and pulse-frequency axes

KrgEqLo = 41; % Maximum MFB drive is reduced
% n.b. KrgEqLo must be sufficiently exceed FdaHMkDA so as to keep FscHMlo below the maximum firing rate
% Otherwise the back-solution function will generate an error message and return.

% Re-calculate the location-parameter values along the pulse-frequency axis for 
% the series-circuit model as a whole.
FFmax = FilterFun(FPmax, FmfbBend, FmfbRO);
if FFmax > LogistNormBsFun(gMFB,FmfbHM,max(FdaHMkDA)/KrgEqLo)
    for j=1:length(FdaHMkDA)
        FscHMlo(j) = FscHMbs(FdaHMkDA(j), FmfbBend, FmfbHM, FmfbRO, FPmax, gMFB, KrgEqLo) % result is a two-element vector
    end
else
    display("FscHM could not be calculated because KrgEqLo is too low.");
    display("Set KrgEqLo such that FFmax > FilterFun(FPmax, Fbend, Fro).");
    return    
end

FscHMlo = 380.5649
FscHMlo = 1×2

  380.5649  103.3750

% Recalculate the drive on the DA neurons
FoptEquivLo = FoptEquivFun(Felec, FmfbBend, FmfbHM, FmfbRO, gMFB, KrgEqLo);
FPmaxEq = max(FoptEquivLo) % This is the highest equivalent optical pulse frequency that the DA neurons will "see"
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FPmaxEq = 37.7159

RnormMax = fRbsrNorm(FPmaxEq, FdaBend, FdaHMkDA, FdaRO, gDA) 

RnormMax = 1×2

    0.2640    0.7290

PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax, KeffMod) 

PobjE = 1×2

    2.5324   10.2974

% Compute time allocation for the vehicle and drug conditions
Tsc3 = TAfun(a, FoptEquivLo, FdaBend, FdaHMkDA(1), FdaRO, gDA, Pobj, ...
    PobjE(1), PsubBend, PsubMin, RnormMax(1));
Tsc4 = TAfun(a, FoptEquivLo, FdaBend, FdaHMkDA(2), FdaRO, gDA, Pobj, ...
    PobjE(2), PsubBend, PsubMin, RnormMax(2));
title_str1 = strcat({'Kda = '}, sprintf('%2.2f', Kda(1)));
MTNkDA1scKrgEqLo = plot_MTN(Felec, Pobj, Tsc3, 'off', 'MTNkDA1scKrgEqLo', title_str1, ...
    graphs2files, FigDir);
title_str2 = strcat({'Kda = '}, sprintf('%2.2f', Kda(2)));
MTNkDA2scKrgEqLo = plot_MTN(Felec, Pobj, Tsc4, 'off', 'MTNkDA2scKrgEqLo', title_str2, ...
    graphs2files, FigDir);
MTNkDA1vskDA2scKrgEqLo = dual_subplot(MTNkDA1scKrgEqLo, MTNkDA2scKrgEqLo, 'MTNkDA1vskDA2scKrgEqLo',...
    graphs2files,FigDir);
if show_graphics
    MTNkDA1vskDA2scKrgEqLo.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "kDA1vskDA2_scKrgEqLo_mtns", ...
    "Effect of dopamine-transporter blockade on the reward mountain");

This is figure #45: (kDA1vskDA2_scKrgEqLo_mtns)

FscHMstar = FilterFun(FdaHMkDA,FdaBend,FdaRO); 
% Computed on the basis of frequency following in the dopamine neurons

PsubE = PsubFun(PobjE,PsubBend,PsubMin);
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PsubEstar = PsubE ./ RnormMax;
PobjEstar = PsubBsFun(PsubEstar,PsubBend,PsubMin);

ContkDA1scKrgEqLo = plot_contour(Felec, Pobj, Tsc3, PobjE(1), FscHMlo(1), 'off', 'ContkDA1scKrgEqLo', title_str1, ...
    strcat({'Kda = '}, num2str(Kda(1))), graphs2files, FigDir);
ContkDA2scKrgEqLo = plot_contour(Felec, Pobj, Tsc4, PobjE(2), FscHMlo(2), 'off', 'ContkDA2scKrgEqLo', title_str2, ...
    strcat({'Kda = '}, num2str(Kda(2))), graphs2files, FigDir);
bg_kDA1vskDA2scKrgEqLo = plot_bgStar(FscHM(1), FscHM(2), FscHMstar(1), FscHMstar(2),...
    PobjE(1), PobjE(2), PobjEstar(1), PobjEstar(2),...
    'off', 'kDA1vskDA2scKrgEqLo_bg', graphs2files, FigDir);
bg_root = 'bg_kDA1vskDA2scKrgEqLo';
quad_kDA1vskDA2scKrgEqLo = quad_subplot(ContkDA1scKrgEqLo, ContkDA2scKrgEqLo, bg_kDA1vskDA2scKrgEqLo, ...
    'quad_kDA1vskDA2scKrgEqLo', bg_root, graphs2files, FigDir);
if show_graphics
    quad_kDA1vskDA2scKrgEqLo.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "kDA1vskDA2_scKrgEqLo_quad", ...
    "Effect of dopamine-transporter blockade on the reward mountain");

This is figure #46: (kDA1vskDA2_scKrgEqLo_quad)

toc

Elapsed time is 9.818036 seconds.

tic;
clear -regexp ^bg ^Cont ^dual ^MTN ^quad;
close all;
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Next, we increase the medial forebrain bundle drive so that some of it is wasted. The firing rate of the dopamine

neurons now asymptotes at sub-maximal levels of medial forebrain bundle drive. Again, the predictions of the

series-circuit model do not change qualitatively: The mountain continues to shift along both the price and pulse-

frequency axes.

KrgEqHi = 126; % Maximum MFB drive exceeds the DA frequency-following range

% Re-calculate the location-parameter values along the pulse-frequency axis for 
% the series-circuit model as a whole.
FFmax = FilterFun(FPmax, FmfbBend, FmfbRO);
if FFmax > LogistNormBsFun(gMFB,FmfbHM,max(FdaHMkDA)/KrgEqHi)
    for j=1:length(FdaHMkDA)
        FscHMhi(j) = FscHMbs(FdaHMkDA(j), FmfbBend, FmfbHM, FmfbRO, FPmax, gMFB, KrgEqHi) % result is a two-element vector
    end
else
    display("FscHM could not be calculated because KrgEqHi is too low.");
    display("Set KrgEqHi such that FFmax > FilterFun(FPmax, Fbend, Fro).");
    return
end

FscHMhi = 44.9730
FscHMhi = 1×2

   44.9730   32.0551

% Recalculate the drive on the DA neurons
FoptEquivHi = FoptEquivFun(Felec, FmfbBend, FmfbHM, FmfbRO, gMFB, KrgEqHi);
FPmaxEq = max(FoptEquivHi) % This is the highest equivalent optical pulse frequency that the DA neurons will "see"

FPmaxEq = 115.9075

RnormMax = fRbsrNorm(FPmaxEq, FdaBend, FdaHMkDA, FdaRO, gDA) 

RnormMax = 1×2

    0.8186    0.9713

PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RnormMax, KeffMod) 

PobjE = 1×2

    8.1862   13.7200

% Compute time allocation for the vehicle and drug conditions
Tsc5 = TAfun(a, FoptEquivHi, FdaBend, FdaHMkDA(1), FdaRO, gDA, Pobj, ...
    PobjE(1), PsubBend, PsubMin, RnormMax(1));
Tsc6 = TAfun(a, FoptEquivHi, FdaBend, FdaHMkDA(2), FdaRO, gDA, Pobj, ...
    PobjE(2), PsubBend, PsubMin, RnormMax(2));
title_str1 = strcat({'Kda = '}, sprintf('%2.2f', Kda(1)));
MTNkDA1scKrgEqHi = plot_MTN(Felec, Pobj, Tsc5, 'off', 'MTNkDA1scKrgEqHi', title_str1, ...
    graphs2files, FigDir);
title_str2 = strcat({'Kda = '}, sprintf('%2.2f', Kda(2)));
MTNkDA2scKrgEqHi = plot_MTN(Felec, Pobj, Tsc6, 'off', 'MTNkDA2scKrgEqHi', title_str2, ...
    graphs2files, FigDir);
MTNkDA1vskDA2scKrgEqHi = dual_subplot(MTNkDA1scKrgEqHi, MTNkDA2scKrgEqHi, 'MTNkDA1vskDA2scKrgEqHi',...
    graphs2files,FigDir);
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if show_graphics
    MTNkDA1vskDA2scKrgEqHi.Visible = 'on';
end

FscHMstar = FilterFun(FdaHMkDA,FdaBend,FdaRO); 
% Computed on the basis of frequency following in the dopamine neurons

PsubE = PsubFun(PobjE,PsubBend,PsubMin);
PsubEstar = PsubE ./ RnormMax;
PobjEstar = PsubBsFun(PsubEstar,PsubBend,PsubMin);

ContkDA1scKrgEqHi = plot_contour(Felec, Pobj, Tsc5, PobjE(1), FscHMhi(1), 'off', 'ContkDA1scKrgEqHi', title_str1, ...
    strcat({'Kda = '}, num2str(Kda(1))), graphs2files, FigDir);
ContkDA2scKrgEqHi = plot_contour(Felec, Pobj, Tsc6, PobjE(2), FscHMhi(2), 'off', 'ContkDA2scKrgEqHi', title_str2, ...
    strcat({'Kda = '}, num2str(Kda(2))), graphs2files, FigDir);
bg_kDA1vskDA2scKrgEqHi = plot_bgStar(FscHM(1), FscHM(2), FscHMstar(1), FscHMstar(2),...
    PobjE(1), PobjE(2), PobjEstar(1), PobjEstar(2),...
    'off', 'kDA1vskDA2scKrgEqHi_bg', graphs2files, FigDir);
bg_root = 'bg_kDA1vskDA2scKrgEqHi';
quad_kDA1vskDA2scKrgEqHi = quad_subplot(ContkDA1scKrgEqHi, ContkDA2scKrgEqHi, bg_kDA1vskDA2scKrgEqHi, ...
    'quad_kDA1vskDA2scKrgEqHi', bg_root, graphs2files, FigDir);
if show_graphics
    quad_kDA1vskDA2scKrgEqHi.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "kDA1vskDA2_scKrgEqHi_quad", ...
    "Effect of dopamine-transporter blockade on the reward mountain");

This is figure #47: (kDA1vskDA2_scKrgEqHi_quad)

This section demontrates that the inconsistency between the simulated and observed results is seen over a

broad range of values of the parameter that scales the MFB drive on the dopamine neurons. 

The problem with the series-circuit model is a fundamental one. It predicts shifts of the mountain along the

pulse-frequency axis in response to perturbation of dopaminergic neurotransmission. In contrast, systematic,

consistent shifts along the pulse-frequency axis are not seen in eICSS studies under the influence of the

dopamine transporter blocker, GBR-12909 (Hernandez et al. 2012); the dopamine, norepinephrine, and

serotonin blocker, cocaine (Hernandez et al., 2010); the D2, D3 and 5HT7 receptor blocker, pimozide (Trujillo-

Pisanty et al., 2014); or the cannabinoid CB-1 blocker, AM-251 (Trujillo-Pisanty et al., 2011). (AM-251 inhibits

dopamine release and attenuates the stimulation-induced increase in dopamine tone (Trujillo-Pisanty et al.,

2011)) . Thus, the series-circuit model fails to account for the eICSS data.

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 8.968485 seconds.

The convergence model

tic;
close all;
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The failure of the series-circuit model to account readily for the differential movement of the reward mountain

in the eICSS and oICSS studies motivates the search for an alternative. We investigate a new model here.

The challenge is to account for the stability of the reward mountain along the pulse-frequency axis under

dopaminergic challenge in the eICSS data, the observed displacement along the pulse-frequency axis in the

oICSS data, and the observed displacement along the price axis in both datasets.

if show_graphics
    show_imported_graphic('eICSS_oICSS_logistic+3Pe_noMasks_v1.png',30,ImpFigDir)
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "Convergence_model", ...
    "A model implementing converging pathways subserving oICSS and eICSS");

This is figure #48: (Convergence_model)

In this model, the circuitry underlying eICSS of the medial forebrain bundle and oICSS of midbrain dopamine

neurons includes parallel stages that are linked at two levels. The parallel limbs subserve oICSS and eICSS

between the directly stimulated neurons and the scaled output of the reward-growth functions. The upstream

link between the two limbs relays to midbrain dopamine neurons input from neurons activated by electrical

stimulation of the medial forebrain bundle. The downsteam link combines the outputs of the two limbs so as to

produce the signal representing the benefit of the experimenter-controlled reward.

The input from the MFB to the midbrain dopamine neurons
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It has long been known that electrical stimulation of the medial forebrain bundle provides trans-synaptic input

to midbrain dopamine neurons (Maeda & Mogenson, 1980) and drives phasic dopamine release from their

ventral striatal terminals (Gratton, Hoffer & Gerhardt, 1988; Yavich & Tiihonen, 2000a, 2000b; Wightman

& Robinson, 2002; Yavitch & Tanila, 2007). Recently, Cossette, Conover & Shizgal (2016) demonstrated

differences between the frequency-following characteristics of the MFB input to midbrain dopamine neurons

that project to the medial shell of the nucleus accumbens and the frequency-following characteristics of the

neurons subserving eICSS of the MFB. Whereas the neurons subserving the rewarding effect maintain high-

fidelity frequency following up to ~360 pulses  (Solomon et al., 2015), the input to the nucleus-accumbens

projecting dopamine neurons fails to follow pulse frequencies greater than 130 pulses . To accommodate

this difference, a second low-pass filter is inserted below the link between the medial forebrain bundle fibers and

the spike counter to the left of the dopamine neurons in

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=="Convergence_model")))}));

Figure 48

At pulse frequencies below 130 pulses , the amplitude of dopamine transients recorded in the nucleus

accumbens in response to electrical stimulation of the medial forebrain bundle grows as function of both current

and pulse frequency (Cossette, Conover & Shizgal, 2016). Increases in current can compensate for decreases

in pulse frequency so as to hold constant the amplitude of the transient (and vice-versa). This suggests that with

train duration held constant, the amplitude of the transient depends on the aggregate rate of firing in the medial

forebrain bundle fibers that drive the activation of the dopamine neurons. That is the reason for the second

spike counter. 

As in the case of the series-circuit model, the trans-synaptic drive on the dopamine neurons is represented in

terms of the optical pulse frequency that provides equivalent dopaminergic activation.

Summation between the outputs of the two parallel limbs

The convergence model retains the idea that there is a final common path for neural signals that encode

the predicted benefits of reward procurement. The two parallel circuit limbs, one subserving eICSS and the

other oICSS, converge on this final common path. A simple way to implement this convergence is to add the

outputs of the two limbs. This proposal faces a seemingly daunting challenge: electrical stimulation of the MFB

activates midbrain dopamine neurons. If so, one would expect such stimulation to drive signaling in both of the

hypothesized converging pathways. Wouldn't this produce at least some displacement of the reward mountain

along the pulse-frequency axis in response to dopamine-transporter blockade? We show below that this is not

necessarily the case. Indeed, the simulations show that given reasonable assumptions and values drawn from

the current data, a convergence model can replicate the eICSS findings.

The reward-intensity signal at the output of the eICSS limb of the circuit is computed as above, by applying 

disp(string({strcat({'Function '},num2str(fun_tab.Number(fun_tab.Name=='fRbsrFull')))}));

Function 34

The reward-intensity signal at the output of the oICSS limb of the circuit is computed in the same manner as

when the input consists of optical stimulation pulses. However, additional steps are required to compute the

output of this limb during eICSS, when electrically excited medial forebrain bundle neurons provide the input
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to the dopamine neurons. The electrical pulse frequency is translated in the input to the dopamine neurons

(expressed in terms of the equivalent optical pulse frequency) by the function, FmfbDAdriveFun.

% [fun_num, fun_tab] = add_fun(fun_num, fun_tab, ...
%     "FmfbDAdriveFun", "FbendMFBda, Felec, FroMFBda, Kmfb, NnMFBs",...
%     "Function that translates MFB drive on the DA neurons into an equivalent optical pulse frequency");
[fun_num, fun_tab] = add_fun(fun_num, fun_tab, ...
    "FFmfbDAbend", "Felec, FFmfbDAmax, FoptEquivVec, FmfbDAro",...
    "Function that translates MFB drive on the DA neurons into an equivalent optical pulse frequency");

This is function #41: (FFmfbDAbend)

We now simulate the output of the model in response to electrical stimulation of the medial forebrain bundle. 

% Reward intensity produced by the upper limb
C = 0.473; % median from Sonnenschein et al., 2003
Delec = 0.5;
logFelecBend = 1.3222; % from Solomon et al., 2015
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587; % from Solomon et al., 2015 
FelecRO = 10^logFelecRO; 
NnMFB = 126;
RhoPi = 5000;
FPmax = 1000;
FhmUpper = FpulseHMfun(C, Delec, FelecBend, FPmax, FelecRO, NnMFB, RhoPi)

FhmUpper = 77.2222

numF = 121;
numParamVals = 6;
Felec = logspace(0,3,numF);
FelecMat = repmat(Felec,numParamVals,1);

gElec = 5;
KrgUpper = 1;
Rupper = fRbsr(Felec, FelecBend, FhmUpper, FelecRO, gElec, KrgUpper);

The position-parameter value for the upper limb (77 pulses ) is typical for the eICSS studies entailing

measurement of the reward mountain.

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='RGfunsElecFhm')))}));

Figure 3

TitleStrSemi = 'Upper-limb reward intensity';
pnam = "Fhm";
fnam = "Fhm";
% The data to be plotted must be in columns. Thus, FelecMat and RelecMat are transposed.
RG_MFBda_upper_semilog = plot_RG(Felec',Rupper',pnam,FhmUpper,fnam,TitleStrSemi,'lin', 'upper');
axh = findall(RG_MFBda_upper_semilog,'Type','Axes');
axh.XLabel.String = "Electrical pulse frequency";
axh.YLabel.String = "Upper-limb reward intensity";
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if show_graphics
    RG_MFBda_upper_semilog.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RG_upper_semilog", ...
    "Growth of upper-limb reward intensity");

This is figure #49: (RG_upper_semilog)

Reward-intensity growth in the lower limb depends on the strength of the MFB drive,

% Reward intensity produced by the lower limb
% First compute the drive on the DA neurons in terms of the equivalent optical pulse frequency
FmfbDAbend = 40; % Make this gradual to match data in Cossette et al., 2016
FmfbDAro = 125; % Frequency following as described by Cossette et al., 2016 
FFmfbDAmax = FilterFun(FPmax,FmfbDAbend, FmfbDAro);
FoptEquivVec = [5;10;20;40;80;160];
FoptEquivMat = repmat(FoptEquivVec, 1, numF);

FmfbDAdriveMat = FmfbDAdriveFun(FmfbDAbend, Felec, FFmfbDAmax, FoptEquivVec, FmfbDAro);
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which is shown here:

% Columnar data are required to plot multiple lines. Thus the input matrices have been transposed.
FF_graphMFBda = plot_freqFoll(FelecMat',FmfbDAdriveMat','MFB_DA',1,1000,1,250);
% modify graph
lgnd = legend(num2str(FoptEquivVec),'Location','best');
lgnd.Title.String = "FoptEquiv";
axh = findall(FF_graphMFBda,'Type','Axes');
axh.XLabel.String = "Electrical pulse frequency";
axh.YLabel.String = "Equivalent optical pulse frequency";
if show_graphics
    FF_graphMFBda.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "FreqFolMFBda", ...
    "Electrically induced firing frequency in MFB input to the dopamine neurons");

This is figure #50: (FreqFolMFBda)

D = Delec;
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FdaBend = 20; 
FdaRO = 50;
gDA = 5;
KrgLower = 1;
NnDA = 100; % Same value as in the series-circuit section
RhoPiDA = 1572; % Same value as in the series-circuit section for D = 0.5
FPmax = 1000;
FdaHM = FpulseHMfun(C, D, FdaBend, FPmax, FdaRO, NnDA, RhoPiDA)

FdaHM = 37.6342

The FdaHM parameter positions the reward-growth curve for the dopamine neurons along the axis representing

the dopamine firing frequency:

logFopt = 0:0.025:2.4;
Fopt = 10.^logFopt;
Rlower = fRbsr(Fopt, FdaBend, FdaHM, FdaRO, gDA, KrgLower);

TitleStrSemi = 'Lower limb reward-intensity';
pnam = "FdaHM";
fnam = "FdaHM";
% The data to be plotted must be in columns. Thus, FelecMat and RelecMat are transposed.
RG_DA_LowerEquiv_semilog = plot_RG(Fopt',Rlower',pnam,FdaHM,fnam,TitleStrSemi,'lin', 'LowerEquiv');
RG_DA_LowerEquiv_semilog = modify_2D_graph(RG_DA_LowerEquiv_semilog, 'Axes', 'XLim', [1,250], ...
    'RG_FdaHM_LowerEquiv_semilog', graphs2files, FigDir);
axh = findall(RG_DA_LowerEquiv_semilog,'Type','Axes');
axh.XLabel.String = "Equivalent optical pulse frequency";
axh.YLabel.String = "Lower-limb reward intensity";
if show_graphics
    RG_DA_LowerEquiv_semilog.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RG_DA_LowerEquiv_semilog", ...
    "Lower-limb reward intensity as a function of equivalent optical pulse frequencies");

This is figure #51: (RG_DA_LowerEquiv_semilog)

In the following graph, we see how reward-intensity grows in the lower limb as a function of the electrical pulse

frequency.

Rlower = fRbsr(FmfbDAdriveMat, FdaBend, FdaHM, FdaRO, gDA, KrgLower);

TitleStrSemi = 'Lower-limb reward intensity';
pnam = "optDAeq";
fnam = "optDAeq";
% The data to be plotted must be in columns. Thus, FelecMat and RelecMat are transposed.
RG_MFBda_lower_semilog = plot_RG(FelecMat',Rlower',pnam,FoptEquivVec,fnam,TitleStrSemi,'lin', 'lower');
RG_MFBda_lower_semilog = modify_2D_graph(RG_MFBda_lower_semilog, 'Axes', 'XLim', [5,1000], ...
    'RG_optDAeq_lower_semilog', graphs2files, FigDir);
axh = findall(RG_MFBda_lower_semilog,'Type','Axes');
axh.XLabel.String = "Electrical pulse frequency";
axh.YLabel.String = "Lower-limb reward intensity";
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if show_graphics
    RG_MFBda_lower_semilog.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RG_lower_semilog", ...
    "Growth of lower-limb reward intensity at multiple values of Kmfb");

This is figure #52: (RG_lower_semilog)

The FmfbDAdrive function expresses the MFB drive on the dopamine neurons in units of equivalent optical

pulses, i.e., an FmfbDAdrive of 25 means that the effect of the trans-synaptic input from the MFB is equivalent

to that produced by 25 pulses  of direct optical stimulation.

The graph above shows that strong input is required to generate a substantial response from the lower limb.

The reason for this is that the  value is fairly close to the assumed frequency-following limit of the

dopamine cells. The parameter values used in this simulation yield a  value  close to the observed

median in the current study when the train duration was 1 s. An adjustment is then made to predict model
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output for a train duration of 0.5 s, which was used in the eICSS work. This calculation are described above

(see: The location parameter of the reward-growth function for BSR).

Growth curves for the summated reward intensity are shown here, at different values of the strength of the MFB

drive on the dopamine neurons. The equivalent optical pulse frequencies (FoptEquiv) are the maximum values

that the simulated MFB drive can achieve.

Rupper = repmat(Rupper,numParamVals,1); % add rows to Rupper so that it is the same size as Rlower
Rsum = Rupper + Rlower;

TitleStrSemi = 'Summated reward intensity';
pnam = "FoptEquiv";
fnam = "MFBsum";
% The data to be plotted must be in columns. Thus, FelecMat and RelecMat are transposed.
RG_MFBda_semilog = plot_RG(FelecMat',Rsum',pnam,FoptEquivVec,fnam,TitleStrSemi,'lin');
RG_MFBda_semilog = modify_2D_graph(RG_MFBda_semilog, 'Axes', 'XLim', [5,1000], ...
    'RG_MFBda_semilog', graphs2files, FigDir);
axh = findall(RG_MFBda_semilog, 'Type', 'Axes');
axh.XLabel.String = "Electrical pulse frequency";
axh.YLabel.String = "Upper + lower reward intensity";
if show_graphics
    RG_MFBda_semilog.Visible = 'on';
end
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The reduced slope of the early portion of the leftmost curve is due to the fact that reward intensity in the lower

limb begins rising at lower MFB pulse frequencies than reward intensity in the upper limb when the drive on the

dopamine neurons is highest.

% Section break here to force display of RG_MFBda_semilog

close all;
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RG_Kmfb_semilog", ...
    "Growth of summated reward intensity at at multiple values of Kmfb");

This is figure #53: (RG_Kmfb_semilog)

To prepare for simulation of the mountain generated by the convergence model, we first derive the electrical

pulse frequencies that produce half-maximal, summated reward intensity for each value of FoptEquiv

% Find FsumHM by means of interpolation
numF = 121;
Felec = logspace(0,3,numF);
[FsumHM, RsumMax] = find_FhmSum(Felec, Rsum);
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We generate a mountain surface, scaling the maximum MFB drive on the dopamine neurons to be equivalent to

an optical pulse frequency of 80 pulses , a maximal or near-maximal value in the current study. 

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='RG_Kmfb_semilog')))}));

Figure 53

FoptEquiv = 80;
RupperFoptEquiv = Rupper(FoptEquivVec==FoptEquiv,:); % Selects the appropriate row from the matrix
RupperMax = max(RupperFoptEquiv);
RlowerFoptEquiv = Rlower(FoptEquivVec==FoptEquiv,:); % Selects the appropriate row from the matrix
RlowerMax = max(RlowerFoptEquiv);

Rsum = Rsum(FoptEquivVec==FoptEquiv,:);
FsumHM = FsumHM(FoptEquivVec==FoptEquiv);
RsumMax = RsumMax(FoptEquivVec==FoptEquiv);

FPmax = 1000;
RupperNormMax = fRbsrNorm(FPmax, FelecBend, FhmUpper, FelecRO, gElec);
RlowerNormMax = fRbsrNorm(FoptEquiv, FdaBend, FdaHM, FdaRO, gDA);
RupperRatio =  RupperMax / (RlowerMax + RupperMax)

RupperRatio = 0.5671

RlowerRatio =  RlowerMax / (RlowerMax + RupperMax)

RlowerRatio = 0.4329

RsumNormMax = (RupperRatio * RupperNormMax) + (RlowerRatio * RlowerNormMax); % Weighted average

dotPhiObj = 1;
Kaa = 1;
Kec = 1;
Krg = 1;
dotRaa = 0.1; 
pObj = 1;
PsubBend = 0.5;
PsubMin = 1.82;

PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RsumNormMax)

PobjE = 8.9716

a = 3;
numP = numF;
Pobj = logspace(0,3,numP); % row variable
Tsum = TAsumFun(a, Pobj, PobjE, PsubBend, PsubMin, Rsum', RsumNormMax);
% n.b., numel(Rsumxx) = numel(Pobj). Rsumxx has been transposed. Thus, Tsumxx is a square matrix.

MTNsum = plot_MTN(Felec, Pobj, Tsum, 'off', strcat('MTNsum',num2str(FoptEquiv)), 'reward mountain', ...
    graphs2files, FigDir);
if show_graphics
    MTN.Visible = 'on';
end
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We now simulate the effect of dopamine-transporter blockade. 

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 11.751399 seconds.

tic;
close all;

The effect of dopamine transporter blockade in the convergence model

The reward-intensity signal produced by the upper and lower limbs of the circuit shown in 

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=="Convergence_model")))}));

Figure 48

will first be computed separately and then combined additively, with two different values of , one

representing the vehicle condition, and the second representing the condition in which the dopamine-transporter

blocker has been administered .

% Reward intensity produced by the upper limb
C = 0.473; % median from Sonnenschein et al., 2003
Delec = 0.5;
logFelecBend = 1.3222; % from Solomon et al., 2015
FelecBend = 10^logFelecBend;
logFelecRO = 2.5587; % from Solomon et al., 2015 
FelecRO = 10^logFelecRO; 
NnMFB = 126;
RhoPi = 5000;
FPmax = 1000;
FhmUpper = FpulseHMfun(C, Delec, FelecBend, FPmax, FelecRO, NnMFB, RhoPi)

FhmUpper = 77.2222

numF = 121;
numParamVals = 2; % for two values of Kda
Felec = logspace(0,3,numF);
FelecMat = repmat(Felec,numParamVals,1);
gElec = 5;
KrgUpper = 1;
Rupper = fRbsr(Felec, FelecBend, FhmUpper, FelecRO, gElec, KrgUpper);

% Reward intensity produced by the lower limb
% First compute the drive on the DA neurons in terms of the equivalent optical pulse frequency
FmfbDAbend = 40;
FmfbDAro = 125;
FFmfbDAmax = FilterFun(FPmax,FmfbDAbend, FmfbDAro);
FoptEquiv = 80; % maximal or near-maximal value in the current study
FmfbDAdrive = FmfbDAdriveFun(FmfbDAbend, Felec, FFmfbDAmax, FoptEquiv, FmfbDAro);
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% Calculate FdaHM for the vehicle and drug conditions
C = 0.473; % median from Sonnenschein et al., 2003
D = Delec;
FdaBend = 20; 
FdaRO = 50;
Kda = [1,10^0.15]; % Median for current oICSS study: 10^0.1446
gDA = 5; % Median in vehicle condition of current oICSS study: 4.61
KrgLower = 1;
NnDA = 100; % Make sure to use the same value as in the series-circuit section
RhoPiDA = 1572; % Same value as in the series-circuit section for D=0.5
FPmax = 1000;
FdaHMkDA = FpulseHMfun(C, D, FdaBend, FPmax, FdaRO, NnDA, RhoPiDA, Kda) % result is a two-element vector

FdaHMkDA = 1×2

   37.6342   25.1515

% Compute reward growth in the lower limb as a function of the equivalent optical pulse frequency
numFOpt = 97; % 0.025 log10 spacing from 0 to 2.4
numParamVals = 2; % 2 values of Kda
Fopt = logspace(0,2.4,numFOpt);
FoptMat = repmat(Fopt,numParamVals,1); % number of rows = number of Kda vals
KdaMat = repmat(Kda',1,numFOpt); % make matrix the same size as FoptMat
FdaHMmat = repmat(FdaHMkDA',1,numFOpt); % make matrix the same size as FoptMat
Rlower = fRbsr(FoptMat, FdaBend, FdaHMmat, FdaRO, gDA, KrgLower);

TitleStrSemi = 'Lower limb vs Fopt equivalent';
pnam = "Kda";
fnam = "Kda";
% The data to be plotted must be in columns. Thus, FoptMat and Rlower are transposed.
RG_MFB_DA_FoptEquiv_Kda = plot_RG(FoptMat',Rlower',pnam,Kda,fnam,TitleStrSemi,'lin', 'FoptEquiv');
RG_MFB_DA_FoptEquiv_Kda = modify_2D_graph(RG_MFB_DA_FoptEquiv_Kda, 'Axes', 'XLim', [1,250], ...
    'RG_Kda_FoptEquiv_semilog', graphs2files, FigDir);
axh = findall(RG_MFB_DA_FoptEquiv_Kda, 'Type','Axes');
axh.XLabel.String = "Equivalent optical pulse frequency";
axh.YLabel.String = "Lower-limb reward intensity";
if show_graphics
    RG_MFB_DA_FoptEquiv_Kda.Visible = 'on';
end
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RG_MFB_DA_FoptEquiv_Kda", ...
    "Reward growth in lower limb as a function of equivalent optical pulse frequency");

This is figure #54: (RG_MFB_DA_FoptEquiv_Kda)

The previous graph shows lower-limb reward intensity as a function of the equivalent optical pulse frequency

in the presence and absence of dopamine-transporter blockade. The next graph will plot lower-limb reward

intensity as a function of the electrical MFB pulse frequency, again in the presence and absence of dopamine

transporter blockade. 

KdaMat = repmat(Kda',1,numF); % make matrix the same size as FelecMat
FdaHMmat = repmat(FdaHMkDA',1,numF); % make matrix the same size as FelecMat
Rlower = fRbsr(FmfbDAdrive, FdaBend, FdaHMmat, FdaRO, gDA, KrgLower);

TitleStrSemi = 'Lower limb vs Felec';
pnam = "Kda";
fnam = "Kda";
% The data to be plotted must be in columns. Thus, FelecMat and RelecMat are transposed.
RG_MFB_DA_Felec_Kda = plot_RG(FelecMat',Rlower',pnam,Kda,fnam,TitleStrSemi,'lin', 'Felec');
RG_MFB_DA_Felec_Kda = modify_2D_graph(RG_MFB_DA_Felec_Kda, 'Axes', 'XLim', [5,500], ...
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    'RG_Kda_Felec_semilog', graphs2files, FigDir);
axh = findall(RG_MFB_DA_Felec_Kda, 'Type','Axes');
axh.XLabel.String = "Electrical pulse frequency";
axh.YLabel.String = "Lower-limb reward intensity";
if show_graphics
    RG_MFB_DA_Felec_Kda.Visible = 'on';
end

[fig_num, fig_tab] = add_fig(fig_num, fig_tab, "RG_MFB_DA_Felec_Kda", ...
    "Reward growth in lower limb as a function of electrical pulse frequency");

This is figure #55: (RG_MFB_DA_Felec_Kda)

In the convergence model, the reward-intensity signal in the upper limb is not changed by dopamine-transporter

blockade. Thus, we can simply add the reward-intensity signal already computed to the results for the lower-

limb reward-intensity signal to obtain the summated output of the two limbs. This corresponds to the 'benefit'

signal at the right of 

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=="Convergence_model")))}));

Figure 48
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Rupper = repmat(Rupper,numParamVals,1); % add rows to Rupper so that it is the same size as Rlower
Rsum = Rupper + Rlower;

The following graph shows the summated reward-intensity signal in response to MFB drive equivalent to an

optical pulse frequency of

FoptEquiv

FoptEquiv = 80

pulses 

[FsumHM, RsumMax] = find_FhmSum(FelecMat, Rsum)

FsumHM = 2×1

   75.2675
   63.0957
RsumMax = 2×1

    1.7626
    1.9598

% plot Rupper, Rlower, and Rxor for the vehicle and drug conditions
% Three curves will be plotted per graph; the matrices must be dimensioned accordingly
FelecMatPlot = repmat(Felec, 3, 1);
RmatVeh = [Rupper(1,:);Rlower(1,:);Rsum(1,:)];
RmatDrg = [Rupper(2,:);Rlower(2,:);Rsum(2,:)];

pnam = "1:up 2:lo 3:sum";
pVec = [1,2,3];
fnam = strcat("Sum",num2str(FoptEquiv),"Veh");
TitleStr = strcat("FoptEquiv=",num2str(FoptEquiv),"; vehicle");
RGsum_Rveh = plot_RG(FelecMatPlot',RmatVeh',pnam,pVec,fnam,TitleStr,'lin');
axh = findall(RGsum_Rveh, 'Type', 'Axes');
axh.XLabel.String = 'Electrical pulse frequency';
lh = findall(RGsum_Rveh, 'Type', 'Line');
lcolor = {'m','g','c'};
for j=1:3
    lh(j).Color = lcolor{j};
end
if show_graphics
    RGsum_Rveh.Visible = 'on';
end
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fig_nam = strcat("RGsum_Veh_FoptEquiv",num2str(FoptEquiv));
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, fig_nam, "Reward summation in the convergence model");

This is figure #56: (RGsum_Veh_FoptEquiv80)

fnam = strcat("sum",num2str(FoptEquiv),"Drg");
TitleStr = strcat("FoptEquiv=",num2str(FoptEquiv),"; drug");
RGsum_Rdrg = plot_RG(FelecMatPlot',RmatDrg',pnam,pVec,fnam,TitleStr,'lin');
axh = findall(RGsum_Rdrg, 'Type', 'Axes');
axh.XLabel.String = 'Electrical pulse frequency';
lh = findall(RGsum_Rdrg, 'Type', 'Line');
lcolor = {'m','g','c'};
for j=1:3
    lh(j).Color = lcolor{j};
    lh(j).LineStyle = '--';
end
if show_graphics
    RG_RDrg.Visible = 'on';
end
fig_nam = strcat("RGsum_Drg_FoptEquiv",num2str(FoptEquiv));
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[fig_num, fig_tab] = add_fig(fig_num, fig_tab, fig_nam, "Reward summation in the convergence model");

This is figure #57: (RGsum_Drg_FoptEquiv80)

shg

pnam = "Kda";
pVec = [Kda(1),Kda(2)];
fnam = strcat("Sum",num2str(FoptEquiv),"VehDrg");
TitleStr = strcat("FoptEquiv=",num2str(FoptEquiv),"; sum");
RGsum_Rvehdrg = plot_RG(FelecMat',Rsum',pnam,pVec,fnam,TitleStr,'lin');
axh = findall(RGsum_Rvehdrg, 'Type', 'Axes');
axh.XLabel.String = 'Electrical pulse frequency';
lh = findall(RGsum_Rvehdrg, 'Type', 'Line');
for j=1:2
    lh(j).Color = 'm';
end
lh(1).LineStyle = '--';
lgndh = findall(RGsum_Rvehdrg,'Type','Legend');
lgndh.Title.String = 'condition';
lgndh.String = {'vehicle','drug'};
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if show_graphics
    RGsum_Rvehdrg.Visible = 'on';
end

fig_nam = strcat("RGsum_VehDrg_FoptEquiv",num2str(FoptEquiv));
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, fig_nam, "Drug modulation of reward summation in the convergence model");

This is figure #58: (RGsum_VehDrg_FoptEquiv80)

At this high value of MFB drive, a small leftward curve shift is produced.

With the reward-intensity signal in hand, we can proceed to generate the mountains predicted in the presence

and absence of dopamine-transporter blockade.

close all;

FPmax = 1000;
FhmUpperVec = repmat(FhmUpper,1,2); % Upper limb output is independent of Kda
RupperNormMax = fRbsrNorm(FPmax, FelecBend, FhmUpperVec, FelecRO, gElec)';
RlowerNormMax = fRbsrNorm(FoptEquiv, FdaBend, FdaHMkDA, FdaRO, gDA)';

107

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867481doi: bioRxiv preprint 

https://doi.org/10.1101/867481
http://creativecommons.org/licenses/by/4.0/


RupperMax = max(Rupper, [], 2);
RlowerMax = max(Rlower, [], 2);
RupperRatio =  RupperMax ./ (RlowerMax + RupperMax)

RupperRatio = 2×1

    0.5671
    0.5100

RlowerRatio =  RlowerMax ./ (RlowerMax + RupperMax)

RlowerRatio = 2×1

    0.4329
    0.4900

RsumNormMax = (RupperRatio .* RupperNormMax) + (RlowerRatio .* RlowerNormMax); % Weighted average

dotPhiObj = 1;
Kaa = 1;
Kec = 1;
Krg = 1;
dotRaa = 0.1; 
pObj = 1;
PsubBend = 0.5;
PsubMin = 1.82;
PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RsumNormMax)

PobjE = 2×1

    8.9716
    9.8029

a = 3;
numP = numF;
Pobj = logspace(0,3,numP); % row variable
TsumKda1 = TAsumFun(a, Pobj, PobjE(1), PsubBend, PsubMin, Rsum(1,:)', RsumNormMax(1));
TsumKda2 = TAsumFun(a, Pobj, PobjE(2), PsubBend, PsubMin, Rsum(2,:)', RsumNormMax(2));
% n.b., numel(Rsum(x)) = numel(Pobj). Rsum(x) has been transposed. Thus, TsumKda(x) is a square matrix.

% Plot the individual mountains for the two values of Kda
title_str1 = strcat({'Kda = '}, sprintf('%2.2f', Kda(1)));
MTNsumKda1 = plot_MTN(Felec, Pobj, TsumKda1, 'off', 'MTNsumKda1', title_str1, ...
    graphs2files, FigDir);
title_str2 = strcat({'Kda = '}, sprintf('%2.2f', Kda(2)));
MTNsumKda2 = plot_MTN(Felec, Pobj, TsumKda2, 'off', 'MTNsumKda1', title_str2, ...
    graphs2files, FigDir);

% Plot the pair of mountains for the two values of Kda
dual_sum_plot = dual_subplot(MTNsumKda1, MTNsumKda2, 'MTNsum_Kda1_Kda2',...
    graphs2files,FigDir);
if show_graphics
    dual_sum_plot.Visible = 'on';
end
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% Estimate the weighted average of the firing frequencies that produce half-maximal reward intensity in the
% upper and lower limbs
FhmUpperStar = FilterFun(FhmUpper,FelecBend,FelecRO);

FhmLowerDrive = FmfbDAdriveFun(FmfbDAbend, FsumHM, FFmfbDAmax, FoptEquiv, FmfbDAro);
FFhmLower = FilterFun(FhmLowerDrive,FdaBend, FdaRO);

FsumHMstar = FsumHM .* ...
    ((RupperRatio .* (FhmUpperStar ./ FsumHM)) + (RlowerRatio .* (FFhmLower ./ FhmLowerDrive)));
% Weighted average of the frequency-following fidelity in the upper and lower limbs
PsubE = PsubFun(PobjE,PsubBend,PsubMin);
PsubEstar = PsubE ./ RsumNormMax;
PobjEstar = PsubBsFun(PsubEstar,PsubBend,PsubMin);

ContkDA1sum = plot_contour(Felec, Pobj, TsumKda1, PobjE(1), FsumHM(1), 'off', 'ContkDA1sum', title_str1, ...
    strcat({'Kda = '}, num2str(Kda(1))), graphs2files, FigDir);
ContkDA2sum = plot_contour(Felec, Pobj, TsumKda2, PobjE(2), FsumHM(2), 'off', 'ContkDA2sum', title_str2, ...
    strcat({'Kda = '}, num2str(Kda(2))), graphs2files, FigDir);

bg_kDA1vskDA2sum = plot_bgStar(FsumHM(1), FsumHM(2), FsumHMstar(1), FsumHMstar(2),...
    PobjE(1), PobjE(2), PobjEstar(1), PobjEstar(2),...
    'off', 'kDA1vskDA2sum_bg', graphs2files, FigDir, -0.3, 0.3);
% Set a scale for the y-axis of this bar graph that ressembles the scales for the others
bg_root = 'bg_kDA1vskDA2sum';

quad_kDA1vskDA2sum = quad_subplot(ContkDA1sum, ContkDA2sum, bg_kDA1vskDA2sum, 'quad_kDA1vskDA2sum', bg_root, ...
    graphs2files, FigDir);
if show_graphics
    quad_kDA1vskDA2sum.Visible = 'on';
end
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fig_nam = strcat("quad_kDA1vskDA2sum",num2str(FoptEquiv));
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, ...
    fig_nam, "Modest downward shift of the reward mountain induced by dopamine-transporter blockade");

This is figure #59: (quad_kDA1vskDA2sum80)

% Insert section break to force display of the last graph

close all;

As expected from the small leftward displacement of the reward-intensity growth function by dopamine

transporter blockade shown in 

disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=="RGsum_VehDrg_FoptEquiv80")))}));

Figure 58

the mountain is shifted modestly along the pulse-frequency axis. None of the eight subjects in the Hernandez et

al. (2012) eICSS study showed such a shift. 

Adding dopaminergic modulation of effort cost (i.e., a drug-induced reduction in these costs) boosts the shift

along the price axis. The same effect could be produced by boosting the output of the reward-growth function(s)

 or decreasing the value of alternate activities.

With dopaminergic modulation of effort cost:

KeffMod = [1;10^0.15]; % Median shift in Pe in the current oICSS study: 10^0.1525
PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RsumNormMax, KeffMod)
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PobjE = 2×1

    8.9716
   13.8470

TsumEffModKda1 = TAsumFun(a, Pobj, PobjE(1), PsubBend, PsubMin, Rsum(1,:)', RsumNormMax(1));
TsumEffModKda2 = TAsumFun(a, Pobj, PobjE(2), PsubBend, PsubMin, Rsum(2,:)', RsumNormMax(2));
% n.b., numel(Rsum(x)) = numel(Pobj). Rsum(x) has been transposed. Thus, TsumKda(x) is a square matrix.

% Plot the individual mountains for the two values of Kda
title_str1 = strcat({'Kda = '}, sprintf('%2.2f', Kda(1)));
MTNsumEffModKda1 = plot_MTN(Felec, Pobj, TsumEffModKda1, 'off', 'MTNsumEffModKda1', title_str1, ...
    graphs2files, FigDir);
title_str2 = strcat({'Kda = '}, sprintf('%2.2f', Kda(2)));
MTNsumEffModKda2 = plot_MTN(Felec, Pobj, TsumEffModKda2, 'off', 'MTNsumEffModKda2', title_str2, ...
    graphs2files, FigDir);

% Plot the pair of mountains for the two values of Kda
dual_sum_plot = dual_subplot(MTNsumEffModKda1, MTNsumEffModKda2, 'MTNsumEffMod_Kda1_Kda2',...
    graphs2files,FigDir);
if show_graphics
    dual_sum_plot.Visible = 'on';
end

% Use value of FsumHMstar calculated above; 
PsubE = PsubFun(PobjE,PsubBend,PsubMin);
PsubEstar = PsubE ./ RsumNormMax;
PobjEstar = PsubBsFun(PsubEstar,PsubBend,PsubMin);

ContkDA1sumEffMod = plot_contour(Felec, Pobj, TsumEffModKda1, PobjE(1), FsumHM(1), 'off', ...
    'ContkDA1sumEffMod', title_str1, ...
    strcat({'Kda = '}, num2str(Kda(1))), graphs2files, FigDir);
ContkDA2sumEffMod = plot_contour(Felec, Pobj, TsumEffModKda2, PobjE(2), FsumHM(2), 'off', ...
    'ContkDA2sumEffMod', title_str2, ...
    strcat({'Kda = '}, num2str(Kda(2))), graphs2files, FigDir);

bg_kDA1vskDA2sumEffMod = plot_bgStar(FsumHM(1), FsumHM(2), FsumHMstar(1), FsumHMstar(2),...
    PobjE(1), PobjE(2), PobjEstar(1), PobjEstar(2),...
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    'off', 'kDA1vskDA2sumEffMod_bg', graphs2files, FigDir, -0.3, 0.3);
% Set a scale for the y-axis of this bar graph that ressembles the scales for the others
bg_root = 'bg_kDA1vskDA2sumEffMod';

quad_kDA1vskDA2sumEffMod = quad_subplot(ContkDA1sumEffMod, ContkDA2sumEffMod, bg_kDA1vskDA2sumEffMod, ...
    'quad_kDA1vskDA2sumEffMod', bg_root, graphs2files, FigDir);
if show_graphics
    quad_kDA1vskDA2sumEffMod.Visible = 'on';
end

fig_nam = strcat("quad_kDA1vskDA2sumEffMod",num2str(FoptEquiv));
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, ...
    fig_nam, "Dual shifts of the reward mountain induced by dopamine-transporter blockade");

This is figure #60: (quad_kDA1vskDA2sumEffMod80)

close all;
vars2save = who;
ws_name = fullfile(pwd, 'WS_convergence_vars80.mat');
save_ws;

Saving workspace to /Users/shizgal/Work/Research/papers/In_Progress/Opto_GBR2/Simulations/WS_convergence_vars80.mat
Copying backup to /Users/shizgal/Work/Research/papers/In_Progress/Opto_GBR2/Simulations/WS_convergence_vars80_bk191201.mat

The small shift along the pulse-frequency axis can be eliminated by reducing the MFB drive. We will illustrate

this by means of reward-growth graphs.
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% Rupper is unchanged - no need to regenerate it
% Regenerate Rlower using weaker MFB drive
FoptEquiv = 40; % Value was 80 in above simulations
FmfbDAdrive = FmfbDAdriveFun(FmfbDAbend, Felec, FFmfbDAmax, FoptEquiv, FmfbDAro);
FdaHMkDA = FpulseHMfun(C, D, FdaBend, FPmax, FdaRO, NnDA, RhoPiDA, Kda) % result is a two-element vector

FdaHMkDA = 1×2

   37.6342   25.1515

KdaMat = repmat(Kda',1,numF); 
FdaHMmat = repmat(FdaHMkDA',1,numF); 
Rlower = fRbsr(FmfbDAdrive, FdaBend, FdaHMmat, FdaRO, gDA, KrgLower);
Rsum = Rupper + Rlower;
[FsumHM, RsumMax] = find_FhmSum(FelecMat, Rsum)

FsumHM = 2×1

   84.1920
   84.2963
RsumMax = 2×1

    1.3105
    1.7715

RmatVeh = [Rupper(1,:);Rlower(1,:);Rsum(1,:)];
RmatDrg = [Rupper(2,:);Rlower(2,:);Rsum(2,:)];

pnam = "1:up 2:lo 3:sum";
pVec = [1,2,3];
fnam = strcat("Sum",num2str(FoptEquiv),"Veh");
TitleStr = strcat("FoptEquiv=",num2str(FoptEquiv),"; vehicle");
RGsum_Rveh = plot_RG(FelecMatPlot',RmatVeh',pnam,pVec,fnam,TitleStr,'lin');
axh = findall(RGsum_Rveh, 'Type', 'Axes');
axh.XLabel.String = 'Electrical pulse frequency';
lh = findall(RGsum_Rveh, 'Type', 'Line');
lcolor = {'m','g','c'};
for j=1:3
    lh(j).Color = lcolor{j};
end
if show_graphics
    RGsum_Rveh.Visible = 'on';
end
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fig_nam = strcat("RGsum_Veh_FoptEquiv",num2str(FoptEquiv));
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, fig_nam, "Reward summation in the convergence model");

This is figure #61: (RGsum_Veh_FoptEquiv40)

pnam = "1:up 2:lo 3:sum";
pVec = [1,2,3];
fnam = strcat("Sum",num2str(FoptEquiv),"Drg");
TitleStr = strcat("FoptEquiv=",num2str(FoptEquiv),"; drug");
RGsum_Rdrg = plot_RG(FelecMatPlot',RmatDrg',pnam,pVec,fnam,TitleStr,'lin');
axh = findall(RGsum_Rdrg, 'Type', 'Axes');
axh.XLabel.String = 'Electrical pulse frequency';
lh = findall(RGsum_Rdrg, 'Type', 'Line');
lcolor = {'m','g','c'};
for j=1:3
    lh(j).Color = lcolor{j};
    lh(j).LineStyle = '--';
end
if show_graphics
    RGsum_Rdrg.Visible = 'on';
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end

fig_nam = strcat("RGsum_Drg_FoptEquiv",num2str(FoptEquiv));
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, fig_nam, "Reward summation in the convergence model");

This is figure #62: (RGsum_Drg_FoptEquiv40)

pnam = "Kda";
pVec = [Kda(1),Kda(2)];
fnam = strcat("Sum",num2str(FoptEquiv),"VehDrg");
TitleStr = strcat("FoptEquiv=",num2str(FoptEquiv),"; sum");
RGsum_Rvehdrg = plot_RG(FelecMat',Rsum',pnam,pVec,fnam,TitleStr,'lin');
axh = findall(RGsum_Rvehdrg, 'Type', 'Axes');
axh.XLabel.String = 'Electrical pulse frequency';
lh = findall(RGsum_Rvehdrg, 'Type', 'Line');
lh(1).LineStyle = '--';
for j=1:2
    lh(j).Color = 'm';
end
lgndh = findall(RGsum_Rvehdrg, 'Type', 'Legend');
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lgndh.Title.String = "condition";
lgndh.String = {'vehicle','drug'};
if show_graphics
    RGsum_Rvehdrg.Visible = 'on';
end

fig_nam = strcat("RGsum_VehDrg_FoptEquiv",num2str(FoptEquiv));
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, fig_nam, "Drug modulation of reward summation in the convergence model");

This is figure #63: (RGsum_VehDrg_FoptEquiv40)

At this weaker value of MFB drive, the reward-growth curve is shifted to the right. At this value of  (~median

for the current study), the drug cannot shift the reward-growth curve far enough to the left to displace

the summated curve leftwards. Thus, we learn from this that shifts along the pulse-frequency axis in the

convergence model depend on the strength of the MFB drive.

close all;

FPmax = 1000;
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FhmUpperVec = repmat(FhmUpper,1,2); % Upper limb output is independent of Kda
RupperNormMax = fRbsrNorm(FPmax, FelecBend, FhmUpperVec, FelecRO, gElec)';
RlowerNormMax = fRbsrNorm(FoptEquiv, FdaBend, FdaHMkDA, FdaRO, gDA)';
RupperMax = max(Rupper, [], 2);
RlowerMax = max(Rlower, [], 2);
RupperRatio =  RupperMax ./ (RlowerMax + RupperMax)

RupperRatio = 2×1

    0.7627
    0.5643

RlowerRatio =  RlowerMax ./ (RlowerMax + RupperMax)

RlowerRatio = 2×1

    0.2373
    0.4357

RsumNormMax = (RupperRatio .* RupperNormMax) + (RlowerRatio .* RlowerNormMax); % Weighted average

dotPhiObj = 1;
Kaa = 1;
Kec = 1;
Krg = 1;
dotRaa = 0.1; 
pObj = 1;
PsubBend = 0.5;
PsubMin = 1.82;
PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, dotRaa, pObj, PsubBend, PsubMin, RsumNormMax, KeffMod)

PobjE = 2×1

    8.3618
   12.7179

a = 3;
numP = numF;
Pobj = logspace(0,3,numP); % row variable
TsumEffModLoFoeqKda1 = TAsumFun(a, Pobj, PobjE(1), PsubBend, PsubMin, Rsum(1,:)', RsumNormMax(1));
TsumEffModLoFoeqKda2 = TAsumFun(a, Pobj, PobjE(2), PsubBend, PsubMin, Rsum(2,:)', RsumNormMax(2));
% n.b., numel(Rsum(x)) = numel(Pobj). Rsum(x) has been transposed. Thus, TsumKda(x) is a square matrix.

% Plot the individual mountains for the two values of Kda
title_str1 = strcat({'Kda = '}, sprintf('%2.2f', Kda(1)));
MTNsumEffModLoFoeqKda1 = plot_MTN(Felec, Pobj, TsumEffModLoFoeqKda1, 'off', 'MTNsumEffModLoFoeqKda1', title_str1, ...
    graphs2files, FigDir);
title_str2 = strcat({'Kda = '}, sprintf('%2.2f', Kda(2)));
MTNsumEffModKLoFoeqda2 = plot_MTN(Felec, Pobj, TsumEffModLoFoeqKda2, 'off', 'MTNsumEffModLoFoeqKda2', title_str2, ...
    graphs2files, FigDir);

% Plot the pair of mountains for the two values of Kda
dual_sum_plot = dual_subplot(MTNsumEffModLoFoeqKda1, MTNsumEffModKLoFoeqda2, 'MTNsumEffModLoFoeq_Kda1_Kda2',...
    graphs2files,FigDir);
if show_graphics
    dual_sum_plot.Visible = 'on';
end
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% Estimate the weighted average of the firing frequencies that produce half-maximal reward intensity in the
% upper and lower limbs
FhmUpperStar = FilterFun(FhmUpper,FelecBend,FelecRO);

FhmLowerDrive = FmfbDAdriveFun(FmfbDAbend, FsumHM, FFmfbDAmax, FoptEquiv, FmfbDAro);
FFhmLowerStar = FilterFun(FhmLowerDrive,FdaBend, FdaRO);

FsumHMstar = FsumHM .* ...
    ((RupperRatio .* (FhmUpperStar ./ FsumHM)) + (RlowerRatio .* (FFhmLowerStar ./ FhmLowerDrive)));

PsubE = PsubFun(PobjE,PsubBend,PsubMin);
PsubEstar = PsubE ./ RsumNormMax;
PobjEstar = PsubBsFun(PsubEstar,PsubBend,PsubMin);

ContkDA1sumEffMod = plot_contour(Felec, Pobj, TsumEffModLoFoeqKda1, PobjE(1), FsumHM(1), 'off', ...
    'ContkDA1sumEffModLoFoeq', title_str1, ...
    strcat({'Kda = '}, num2str(Kda(1))), graphs2files, FigDir);
ContkDA2sumEffMod = plot_contour(Felec, Pobj, TsumEffModLoFoeqKda2, PobjE(2), FsumHM(2), 'off', ...
    'ContkDA2sumEffModLoFoeq', title_str2, ...
    strcat({'Kda = '}, num2str(Kda(2))), graphs2files, FigDir);

bg_kDA1vskDA2sumEffMod = plot_bgStar(FsumHM(1), FsumHM(2), FsumHMstar(1), FsumHMstar(2),...
    PobjE(1), PobjE(2), PobjEstar(1), PobjEstar(2),...
    'off', 'kDA1vskDA2sumEffMod_bg', graphs2files, FigDir, -0.3, 0.3);
% Set a scale for the y-axis of this bar graph that ressembles the scales for the others
bg_root = 'bg_kDA1vskDA2sumEffMod';

quad_kDA1vskDA2sumEffMod = quad_subplot(ContkDA1sumEffMod, ContkDA2sumEffMod, bg_kDA1vskDA2sumEffMod, ...
    'quad_kDA1vskDA2sumEffMod', bg_root, graphs2files, FigDir);
if show_graphics
    quad_kDA1vskDA2sumEffMod.Visible = 'on';
end
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fig_nam = strcat("quad_kDA1vskDA2sumEffMod",num2str(FoptEquiv));
[fig_num, fig_tab] = add_fig(fig_num, fig_tab, ...
    fig_nam, "Dual shifts of the reward mountain induced by dopamine-transporter blockade");

This is figure #64: (quad_kDA1vskDA2sumEffMod40)

close all;
vars2save = who;
ws_name = fullfile(pwd, 'WS_convergence_vars.mat');
save_ws;

Saving workspace to /Users/shizgal/Work/Research/papers/In_Progress/Opto_GBR2/Simulations/WS_convergence_vars.mat
Copying backup to /Users/shizgal/Work/Research/papers/In_Progress/Opto_GBR2/Simulations/WS_convergence_vars_bk191201.mat

clearvars('-except',keepVars{:})
keepVars = who; % Restore cell array containing names of variables to be retained
toc

Elapsed time is 42.313713 seconds.

tic;

Remarks concerning the convergence model

The results in 
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disp(string({strcat({'Figure '},num2str(fig_tab.Number(fig_tab.Name=='quad_kDA1vskDA2sumEffMod')))}));

Figure 

above resemble those obtained in the eICSS study in which the reward mountain was measured under

the influence of GBR-12901 (Hernandez et al., 2012). Thus, given moderate MFB drive and  values

compatible with those obtained in the present study (adjusted for a train duration of 0.5 s), the convergence

model can generate outputs that match our earlier eICSS results.

The dependence of the output of the convergence model on experimental parameters is of interest. Although

failure to observe shifts along the pulse-frequency axis was the most common result of the experiments

in which the eICSS reward-mountain was measured under the influence of drugs that alter dopaminergic

neurotransmission (27 of 32 cases reported by Hernandez et al., 2010, Trujillo-Pisanty et al., 2011, Hernandez

et al., 2012, and Trujillo-Pisanty et al., 2014), it is not the only result. Reward mountains obtained from three

subjects in the cocaine study (Hernandez et al., 2010) showed fairly substantial, reliable, shifts along the pulse-

frequency axis. (The shift was marginally reliable in a fourth subject when tested initially but disappeared upon

re-test.) Although no subject in the GBR-12909 (Hernandez et al., 2012) or pimozide (Trujillo-Pisanty et al.,

2014) studies showed such shifts, one subject in the AM-251 study (Trujillo-Pisanty et al., 2011) did. Could

variation in the strength of MFB drive on the dopamine neurons and in the individual  values for the

dopamine pathway explain these findings?

Please see the main body of the manuscript for more detailed discussion.

Sort tables and write to files

Formatted equations

if tabdir
    writetable(sortrows(eqn_tab,2),...
        fullfile(tabdir,strcat('eqn_tab_v',num2str(version),'.csv')),...
        'WriteVariableNames', true);
end

Figures

if tabdir
    writetable(sortrows(fig_tab,2),...
    fullfile(tabdir,strcat('fig_tab_v',num2str(version),'.csv')),...
    'WriteVariableNames', true);
end

Functions

if tabdir
    writetable(sortrows(fun_tab,2),...
    fullfile(tabdir,strcat('fun_tab_v',num2str(version),'.csv')),...
    'WriteVariableNames', true);
end
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Symbols

if tabdir
    writetable(sortrows(sym_tab,2),...
    fullfile(tabdir,strcat('sym_tab_v',num2str(version),'.csv')),...
    'WriteVariableNames', true);
end

Save workspace

if saveWS
    ws_name = fullfile(pwd, strcat('WS_GBR_eICSS_oICSS_v',num2str(version),'.mat'));
    save_ws;
end

Saving workspace to /Users/shizgal/Work/Research/papers/In_Progress/Opto_GBR2/Simulations/WS_GBR_eICSS_oICSS_v10.mat
Copying backup to /Users/shizgal/Work/Research/papers/In_Progress/Opto_GBR2/Simulations/WS_GBR_eICSS_oICSS_v10_bk191201.mat

Last revised on:

datetime('now')

ans = datetime
   01-Dec-2019 18:52:43

toc % elapsed time for this section

Elapsed time is 1.230854 seconds.

toc(t_start) % elapsed time for the entire script

Elapsed time is 226.200086 seconds.

Tools for this live script

function init_all
    global eqn_num eqn_tab fig_num fig_tab fun_num fun_tab sym_num sym_tab
    eqn_num = 0; % initialize counter
    eqn_nam = ""; % initialize equation-name string array
    eqn_desc = ""; % initialize equation-description string array;
    eqn_tab = table(eqn_num, eqn_nam, eqn_desc,'VariableNames', {'Number'; 'Name'; 'Description'});
    eqn_tab(1,:)=[]; % clear the table
    disp("The equation table has been initialized.");
    
    fig_num = 0; % initialize counter
    fig_nam = ""; % initialize figure-name string array
    fig_desc = ""; % initialize figure-description string array;
    fig_tab = table(fig_num, fig_nam, fig_desc,'VariableNames', {'Number'; 'Name'; 'Description'});
    fig_tab(1,:)=[]; % clear the table
    disp("The figure table has been initialized.");

    fun_num = 0; % initialize counter
    fun_nam = ""; % initialize function-name string array
    fun_args = ""; %initialize function-argument string array
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    fun_desc = ""; % initialize function-description string array;
    fun_tab = table(fun_num, fun_nam, fun_args, fun_desc, ...
        'VariableNames', {'Number'; 'Name'; 'Arguments'; 'Description'});
    fun_tab(1,:)=[]; % clear the table
    disp("The function table has been initialized.");

    sym_num = 0; % initialize counter
    sym_nam = ""; % initialize symbol-name string array
    sym_desc = ""; % initialize symbol-description string array;
    sym_tab = table(sym_num, sym_nam, sym_desc,'VariableNames', {'Number'; 'Name'; 'Description'});
    sym_tab(1,:)=[]; % clear the table
    disp("The symbol table has been initialized.");
    
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "init_all", "", "initialize tables");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "add_eqn", "eqn_num, eqn_tab, EqnNam, EqnDesc",...
        "add equation to table");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "add_fig", "fig_num, fig_tab, FigNam, FigDesc",...
        "add figure to table");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "add_fun", "fun_num, fun_tab, FunNam, FunArgs, FunDesc",...
        "add local function to table");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "add_sym", "sym_num, sym_tab, SymNam, SymDesc",...
        "add symbol to table");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "FilterFun", "F, Fbend, Fro",...
        "Frequency-following function");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "FilterFunBS", "Fbend, Fro, Frate, FPmax",...
        "Back-solution of frequency-following function");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "LogistNormFun", "exponent, input, location",...
        "Rising logistic function");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "LogistNormBsFun", "exponent, location, output",...
        "Back-solution of logistic function to return the input");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "LogistNormBsLocFun", "exponent, input, output",...
        "Back-solution of logistic function to return the location parameter");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "PsubFun", "Pobj, PsubBend, PsubMin",...
        "Subjective-price function");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "PsubBsFun", "Psub, PsubBend, PsubMin",...
        "Back-solution of subjective-price function");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "ScalarDivFun", "dividend, divisor",...
        "Scalar-division function");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "ScalarDivBsFun", "divisor, quotient",...
        "Back-solution of scalar-division function");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "ScalarMultFun", "multiplicand, multiplier",...
        "Scalar-multiplication function");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "ScalarMultBsFun", "multiplier, product",...
        "Back-solution of scalar-multiplication function");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "PsubEfun", "Ceff, Rmax, Ue",...
        "Function to compute subjective equivalent of the objective-price location parameter");
    [fun_num, fun_tab] = add_fun(fun_num, fun_tab, "PobjEfun", "Ceff, PsubBend, PsubMin, Rmax, Ue",...
        "Function to compute objective-price location parameter");
end % end of init_all function

function [eqn_num, eqn_tab] = add_eqn(eqn_num, eqn_tab, EqnNam, EqnDesc)
    if any(strcmp(EqnNam,eqn_tab.Name))
       disp(strcat({'Equation '}, EqnNam, {' has already been entered.'}));
       return;
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    else
        eqn_num = eqn_num+1;
        eqn_tab(eqn_num,:) = {eqn_num, ...
            string(EqnNam), ...
            string(EqnDesc)};
        disp(strcat({'This is equation #'} , num2str(eqn_tab.Number(height(eqn_tab))), ...
            {': ('}, eqn_tab.Name(height(eqn_tab)), {')'}));
    end
end

function [fig_num, fig_tab] = add_fig(fig_num, fig_tab, FigNam, FigDesc)
    if any(strcmp(FigNam,fig_tab.Name))
       disp(strcat({'Figure '}, FigNam, {' has already been entered.'}));
       return;
    else
        fig_num = fig_num+1;
        fig_tab(fig_num,:) = {fig_num, ...
            string(FigNam), ...
            string(FigDesc)};
        disp(strcat({'This is figure #'} , num2str(fig_tab.Number(height(fig_tab))), ...
            {': ('}, fig_tab.Name(height(fig_tab)), {')'}));
    end
end

function [fun_num, fun_tab] = add_fun(fun_num, fun_tab, FunNam, FunArgs, FunDesc)
    if any(strcmp(FunNam,fun_tab.Name))
       disp(strcat({'Function '}, FunNam, {' has already been entered.'}));
       return;
    else
        fun_num = fun_num+1;
        fun_tab(fun_num,:) = {fun_num, ...
            string(FunNam), ...
            string(FunArgs), ...
            string(FunDesc)};
        disp(strcat({'This is function #'} , num2str(fun_tab.Number(height(fun_tab))), ...
            {': ('}, fun_tab.Name(height(fun_tab)), {')'}));
    end
end

function [sym_num, sym_tab] = add_sym(sym_num, sym_tab, SymNam, SymDesc)
    if any(strcmp(SymNam,sym_tab.Name))
       disp(strcat({'Symbol '}, SymNam, {' has already been entered.'}));
       return;
    else
        sym_num = sym_num+1;
        sym_tab(sym_num,:) = {sym_num, ...
            string(SymNam), ...
            string(SymDesc)};
%         disp(strcat({'This is symbol #'} , num2str(sym_tab.Number(height(sym_tab))), ...
%             {': ('}, sym_tab.Name(height(sym_tab)), {')'}));
    end
end

function FigDir = set_figdir(figdirnam, graphs2files)
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    global Figdir
    FigDir = fullfile(pwd,figdirnam);
    if graphs2files
        if ~exist(FigDir, 'dir')
           mkdir(FigDir);
        end
    end
end

function ImpFigDir = set_impfigdir(impfigdirnam)
    ImpFigDir = fullfile(pwd,impfigdirnam);
    if ~exist(ImpFigDir, 'dir')
        disp(strcat({'Exiting because Imported-files directory '}, impfigdirnam, {' does not exist.'}));
        return
    end
end

function tabdir = set_tabdir(tabdirnam, tabs2files)
    tabdir = fullfile(pwd,tabdirnam);
    
    if tabs2files
        if ~exist(tabdir, 'dir')
           mkdir(tabdir);
        end
    end
end

Functional building blocks for the simulations

function Frate = FilterFun(F, Fbend, Fro) % Frequency-following function
    Frate = Fbend.*(log(1+exp(Fro./Fbend))-log(1+exp((Fro-F)./Fbend)));
end
% see: 
% Breton, Y.-A., Mullett, A., Conover, K., & Shizgal, P. (2013). 
% Validation and extension of the reward-mountain model. 
% Frontiers in Behavioral Neuroscience, 7, 125. https://doi.org/10.3389/fnbeh.2013.00125
% Solomon, R. B., Trujillo-Pisanty, I., Conover, K., & Shizgal, P. (2015). 
% Psychophysical inference of frequency-following fidelity in the neural substrate for brain stimulation reward. 
% Brain Research, 292, 327–341. https://doi.org/10.1016/j.bbr.2015.06.008

% Last revised by Peter Shizgal on 2019-09-05 09:57
function Fpulse = FilterFunBS(Fbend, Fro, FF, FPmax) % Back-solution of frequency-following function
    % Estimate the maximum achievable firing rate, given FPmax, Fbend, and Fro
    FFmax = FilterFun(FPmax, Fbend, Fro);
    FpulseRI = Fro - Fbend.*log(exp(-FF/Fbend).*(exp(Fro/Fbend) + 1) - 1);
    % FpulseRI is a complex number. When FF < FFmax, the imaginary part = zero. When Fpulse RI = FFmax, then Fpulse = Inf. 
    % We retain the real component when FF < FFmax & >= 0. returning NaN when FF > FFmax | FF < 0 and Inf when FF = FFmax.
    sz = size(FF);
    Fpulse = zeros(sz); % pre-allocate

    neg = FF < 0;
    below = (FF < FFmax & FF >= 0);
    eq = FF == FFmax;
    above = FF > FFmax;
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    Fpulse(neg) = NaN;
    Fpulse(below) = real(FpulseRI(below)); % Complex portion, if it exists, equals zero
    Fpulse(eq) = Inf;
    Fpulse(above) = NaN;
end
% This back-solution can be verified from the following code snippet, which requires the 
% Matlab Symbolic-Math Toolbox. It is commented out here to allow this Live Script to run 
% on systems that lack the Symbolic-Math toolbox.
% syms FdaRate FdaBend FdaRO Fopt positive;
% simplify(solve(FdaRate == FdaBend * (log(1+exp(FdaRO/FdaBend)) - (log(1+exp((FdaRO-Fopt)/FdaBend)))),Fopt))
% Fopt = FdaRO - FdaBend*log(exp(-FdaRate/FdaBend)*(exp(FdaRO/FdaBend) + 1) - 1)
%%
% This function returns imaginary numbers. The imaginary portion equals zero provided that Frate (the firing rate) 
% is less than its maximum achievable value. That maximum is estimated from the forward solution, using FPmax
% as the input.
%%
% see: 
% Breton, Y.-A., Mullett, A., Conover, K., & Shizgal, P. (2013). 
% Validation and extension of the reward-mountain model. 
% Frontiers in Behavioral Neuroscience, 7, 125. https://doi.org/10.3389/fnbeh.2013.00125
% Solomon, R. B., Trujillo-Pisanty, I., Conover, K., & Shizgal, P. (2015). 
% Psychophysical inference of frequency-following fidelity in the neural substrate for brain stimulation reward. 
% Behavioural Brain Research, 292, 327–341. https://doi.org/10.1016/j.bbr.2015.06.008

function output = LogistNormFun(exponent, input, location)
    output = ...
            ((input .^ exponent) ./...
            ((input .^ exponent) + (location .^ exponent)));
end
% The symbol for the logistic function in the flow diagrams is a rising S-shaped curve in a box. 
%

% Revised by Peter Shizgal on 2019-10-29 21:25
% The argument called "output" must be scalar
function input = LogistNormBsFun(exponent, location, output)
% Logistic function back-solved to return the input
    if (output >= 1) || (output <= 0)
        disp("Illegal value. Call with 0 < output < 1");
        return
    end

    input = location .* (output./(1-output)).^(1./exponent);
end

% Revised by Peter Shizgal on 2019-10-29 21:25
function location = LogistNormBsLocFun(exponent, input, output)
% The argument called "output" must be scalar
% Logistic function back-solved to return the location parameter
    if  output >= 1 || output <= 0
        disp("Illegal value. Call with 0 < output < 1");
        return
    end
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    location = input .* ((1 - output) ./output).^ (1./exponent);
end

% The symbol for the subjective-price function in the flow diagrams is a 
% hockey-stick-shaped curve in a box. 
%
% Solomon, R. B., Conover, K., & Shizgal, P. (2017). 
% Valuation of opportunity costs by rats working for rewarding electrical brain stimulation. 
% PLOS ONE, 12(8), e0182120. https://doi.org/10.1371/journal.pone.0182120
function Psub = PsubFun(Pobj, PsubBend, PsubMin) % Subjective-price function
    Psub = PsubMin + PsubBend .* (log(1 + exp((Pobj - PsubMin)./PsubBend)));
end

% The equation for PsubBsFun will return -Inf when Psub = PsubMin and a complex number when Psub includes one more values less
% than PsubMin. When Psub includes values between PsubMin and Pobj_0 (the value of Pobj at which Psub = 0),
% PsubBsFun returns negative values. The definition of PsubBsFun has thus been couched so as to return real values
% > 0 when Psub > Pobj_0, 0 when Psub = Pobj_0, and NaN otherwise. The reason that 0 is returned when obj_0, 0 when Psub = Pobj_0
% is to ensure consistency between the forward and backward solutions.
% Last revised by Peter Shizgal on 2019-09-08 15:06
function Pobj = PsubBsFun(Psub, PsubBend, PsubMin) % Back-solution of subjective-price function
    Psub_Pobj_0 = PsubMin + PsubBend .* log(1 + exp((-PsubMin)./PsubBend));
    above = Psub > Psub_Pobj_0;
    eq = Psub == Psub_Pobj_0;
    below = Psub < Psub_Pobj_0;
    
    Pobj = PsubMin + PsubBend .* log(-1 + exp((Psub(above) - PsubMin)./PsubBend));
    % Output will be real because Psub(above) > the value that drives Pobj to zero
    Pobj(eq) = 0;
    Pobj(below) = NaN;
end

% The next four functions are defined for consistency in formatting when composing more complex functions from the
% five building blocks (FilterFun, PsubFun, LogistNormFun, ScalarDivFun, ScalarMultFun) and their 
% six back-solutions (FilterFunBS, PsubBsFun, LogistNormBsFun, LogistNormBsLocFun, ScalarDivBsFun, ScalarMultBsFun).
% Obviously, ScalarDiv function == "/", ScalarDivBsFun == "*", ScalarMultFun == "*", and 
% ScalarMultBsFun == "/".

function quotient = ScalarDivFun(dividend, divisor)
    quotient = (dividend ./ divisor);
end

function dividend = ScalarDivBsFun(divisor, quotient) 
    % Back solution of the scalar-division function (scalar multiplication)
    dividend = (quotient .* divisor);
end

function product = ScalarMultFun(multiplicand, multiplier)
    product = (multiplicand .* multiplier);
end
% Scalar multiplication is represented in the flow diagrams in three ways:
% 1) as a product operator (Pi notation) in a box (to compute the aggregate firing rate),
% 2) as a right-facing triangle (representing amplification), and
% 3) as a standard multiplication sign
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function multiplicand = ScalarMultBsFun(multiplier, product)
    % Back solution of the scalar-multiplication function (scalar division)
    multiplicand = (product ./ multiplier);
end

Functions composing the reward-mountain model

% Dummy function to relate the duration of the burst of increased firing in the directly stimulated neurons to
% the pulse frequency. We set the two to be equal, a reasonable assumption if frequency-following fidelity is
% high.
function Dburst = fD(Dtrain)
    Dburst = Dtrain;
end

% Function to compute the aggregate rate of firing required to produce a reward of half-maximal intensity
% see: Sonnenschein, B., Conover, K., & Shizgal, P. (2003). 
% Growth of brain stimulation reward as a function of duration and stimulation strength. 
% Behavioral Neuroscience, 117(5), 978–994. http://psycnet.apa.org/journals/bne/117/5/978

function FFaggHM = fH(C, D, RhoPi)
    FFaggHM = ScalarMultFun(...
                           RhoPi,...
                           (1 + ScalarDivFun(...
                                             C,...
                                             D...
                                             )...
                            )...
                          );       
end

% Function to compute the average rate of firing required to produce a reward of half-maximal intensity
% see: Sonnenschein, B., Conover, K., & Shizgal, P. (2003). 
% Growth of brain stimulation reward as a function of duration and stimulation strength. 
% Behavioral Neuroscience, 117(5), 978–994. http://psycnet.apa.org/journals/bne/117/5/978
function FFhm = fHfiring(C, D, N, RhoPi, varargin)
    if size(varargin,2) == 0 
        FFhm = ScalarDivFun(...
                           fH(...
                                     C, ...
                                     D, ...
                                     RhoPi...
                                     ),...
                           N...
                           );
    else 
        Kin = varargin{1};
        FFhm = ScalarDivFun(...
                           fH(...
                                     C, ...
                                     D, ...
                                     ScalarDivFun(...
                                                  RhoPi,...
                                                  Kin...
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                                                  )...
                                     ),...
                           N...
                           );
    end
end

% Function to compute the average pulse frequency required to produce a reward of half-maximal intensity
% see: Sonnenschein, B., Conover, K., & Shizgal, P. (2003). 
% Growth of brain stimulation reward as a function of duration and stimulation strength. 
% Behavioral Neuroscience, 117(5), 978–994. http://psycnet.apa.org/journals/bne/117/5/978
function FpulseHM = FpulseHMfun(C, D, Fbend, FPmax, Fro, N, RhoPi, varargin)
    if size(varargin,2) == 0    
        FpulseHM = FilterFunBS(...
                               Fbend, ...
                               Fro, ...
                               fHfiring(C, ...
                                      D, ...
                                      N, ...
                                      RhoPi),...
                               FPmax...
                               );
    else
        Kin = varargin{1};
        FpulseHM = FilterFunBS(...
                               Fbend, ...
                               Fro, ...
                               fHfiring(C, ...
                                      D, ...
                                      N, ...
                                      RhoPi,...
                                      Kin...
                                      ),...
                               FPmax...
                               );        
    end
end

% Function to find the pulse frequency that produces a reward of half-maximal intensity given power growth of
% reward intensity
% FFmax, the maximal induced firing rate is obtained by setting the pulse frequency to 1000
function FPhmPG = find_FhmPG(FPmax, Fbend, Fro, g, Kin, Kout, RmaxPG)
    FFmax = FilterFun(FPmax,Fbend,Fro);
    FFhmPG = Kin .* ((0.5 .* RmaxPG) ./ Kout).^(1./g);
    FPhmPG = FilterFunBS(Fbend, Fro, FFhmPG, FPmax);
end

% Function to translate the effect of an electrical input to the directly stimulated mfb stage 
% of the series circuit model into an equivalent optical input to the dopaminergic stage. 
% Both inputs produce the same level of firing in the dopamine neurons.
function FoptEquiv = FoptEquivFun(Felec, FmfbBend, FmfbHM, FmfbRO, gMFB, KrgE)
    FoptEquiv = fRbsr(...
                      Felec,...
                      FmfbBend,...
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                      FmfbHM,...
                      FmfbRO,...
                      gMFB,...
                      KrgE);
end

% Function to compute the equivalent optical drive on midbrain dopamine neurons 
% due to trans-synaptic input from electrically excited MFB neurons
function FmfbDAdrive = FmfbDAdriveFun(FmfbDAbend, Felec, FFmfbDAmax, FoptEquiv, FmfbDAro)
    FmfbDAdrive = ScalarMultFun(...
                              ScalarDivFun(...
                                            FilterFun(...
                                                      Felec,...
                                                      FmfbDAbend,...
                                                      FmfbDAro...
                                                      ),... % Filtered firing rate in MFB input
                                            FFmfbDAmax...
                                        ),... % Proportion of maximum firing rate achieved
                              FoptEquiv...
                              ); % Maximum equivalent optical pulse frequency applied to the dopamine neurons
end

% Find the electrical pulse frequency that produces half-maximal, summated reward intensity 
% The solution is obtained by means of interpolation
%function [FsumHM, RsumMax] = find_FhmSum(Felec, Rsum)
function [FsumHM, RsumMax, CindAbove, CindBelow] = find_FhmSum(Felec, Rsum)
    RsumMax = max(Rsum, [], 2); % max along each row
    Rcrit = RsumMax./2;
    RsumHMlog = Rsum > Rcrit;
    RsumHMlogDiff = diff(RsumHMlog==1,1,2); % indices (offset by 1) marking transition from zero to one
%     RsumHMlogDiff = diff(RsumHMlog); % indices (offset by 1) marking transition from zero to one
    siz = size(RsumHMlogDiff);
    IndDiffAbove = find(RsumHMlogDiff==1); % linear indices for first elements > Rcrit
    [Rind Cind] = ind2sub(siz,IndDiffAbove); 
    % row & column indices for first elements > Rcrit offset by -1
    CindSort(Rind) = Cind; % column indices sorted by row number of Rsum matrix
    CindAbove = CindSort + 1; % row index of value just above Fh
    CindBelow = CindSort;

    % find exact Fhm by interpolation
    siz = size(Rsum); % one more column than diff matrix
    IndAbove = sub2ind(siz,1:length(Rind),CindAbove);
    IndBelow = IndAbove - siz(1); 
    % The indices increment down the columns, so adjacent row indices are separated by the number of rows
    RsumAbove = Rsum(IndAbove);
    RsumBelow = Rsum(IndBelow);
    slp = (RsumAbove - RsumBelow) ./ (Felec(CindAbove) - Felec(CindBelow));    
    FsumHM = (((Rcrit' - RsumBelow) ./ slp) + Felec(1,CindBelow))';
    % All rows of Felec are the same
    % Rcrit is a column vector but RsumBelow and Felec are row vectors
    % Return FsumHM as a column vector so that it has the same dimensions as RsumMax
end

% Function to compute the normalized value of the reward-growth function
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% F is a pulse frequency, whereas FFhm is a firing frequency
function RbsrNorm = fRbsrNorm(F, Fbend, FFhm, Fro, g)
   RbsrNorm = LogistNormFun(...
                     g,...
                     FilterFun(...
                               F,...
                               Fbend,...
                               Fro...
                               ),...
                     FFhm...
                     ); 
end

% Function to compute the scaled value of the reward-growth function
% F is a pulse frequency, whereas Fhm is a firing frequency
function Rbsr = fRbsr(F, Fbend, Fhm, Fro, g, Krg)
   Rbsr = ScalarMultFun(...
                     Krg,...
                     LogistNormFun(...
                                   g,...
                                   FilterFun(...
                                             F,...
                                             Fbend,...
                                             Fro...
                                             ),...
                                   Fhm...
                                   )...
                     );
end

function Rbsr = fRbsrFull(C, D, F, Fbend, Fro, g, Krg, N, RhoPi, varargin)
    if size(varargin,2) == 0   
        Rbsr = ScalarMultFun(...
                          Krg,...
                          LogistNormFun(...
                                        g,...
                                        FilterFun(...
                                                  F,...
                                                  Fbend,...
                                                  Fro...
                                                  ),...
                                       fHfiring(...
                                              C, ...
                                              D, ...
                                              N, ...
                                              RhoPi...
                                              )...
                                       )...
                         );
    else
        Kin = varargin{1};
        Rbsr = ScalarMultFun(Krg,...
                          LogistNormFun(g,...
                                       FilterFun(...
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                                                 F,...
                                                 Fbend,...
                                                 Fro...
                                                 ),...
                                       fHfiring(...
                                              C, ...
                                              D, ...
                                              N, ...
                                              RhoPi,...
                                              Kin...
                                              )...
                                       )...
                         );        
    end    
end

% Back solution of the full reward-growth function for the series-circuit (sc) model
% KrgE translates the normalized output of the upstream reward-growth function into 
% the equivalent of an optical pulse frequency applied to the dopamine neurons
function FscHM = FscHMbs(FhmDA, FmfbBend, FhmMFB, FmfbRO, FPmax, gMFB, KrgEq)
    FscHM = FilterFunBS(... % Electrical pulse frequency that produces HM reward intensity
                       FmfbBend,...
                       FmfbRO,...
                       LogistNormBsFun(... % MFB firing-rate that produces HM reward intensity
                                      gMFB,... % exponent of MFB RG function
                                      FhmMFB,... % location parameter of MFB RG function
                                      ScalarMultBsFun(... % normalized output of MFB RG function
                                                     KrgEq,...
                                                     FhmDA...
                                                     )... % normalized output of MFB RG function
                                      ),...  % MFB firing-rate that produces HM reward intensity
                        FPmax... % pulse frequency sufficient to maximize firing
                        ); % Electrical pulse frequency that produces HM reward intensity
end

% Power function to compute reward growth
% Kin scales the firings, and the product is raised to the power of g
function R = fRpg(F, Fbend, Fro, g, Kin, Kout)
   R = ScalarMultFun(...
                     Kout,...
       ScalarDivFun(...
                                  FilterFun(F,...
                                            Fbend,...
                                            Fro...
                                            ),...
                                  Kin...
                                  )...
                                   .^g...
                    );
end
% Power function to compute reward growth, normalized to output values between 0 & 1
% A pulse frequency of 1000 is used to estimate Rmax
function Rnorm = RGpgNormFun(F, Fbend, Fro, g, Kin, Kout)
   Rnorm = ScalarDivFun(...
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                         fRpg(F, Fbend, Fro, g, Kin, Kout),...
                         fRpg(1000, Fbend, Fro, g, Kin, Kout)...
                         );
end

% Dummy function to compute subjective probability (output = input)
% Breton, Y.-A., Conover, K., & Shizgal, P. (2014). 
% The effect of probability discounting on reward seeking: a three-dimensional perspective. 
% Frontiers in Behavioral Neuroscience, 8, 284. https://doi.org/10.3389/fnbeh.2014.00284
% found that subjective and objective reward probabilites in an eICSS experiment
% were indistiguishable when the objective probability was 0.5 or greater. 
% Thus, subjective and objective probabilities are equated here. 
% We do not know at what point this equivalence breaks down, so use of
% this function is invalid for objective probabilities <0.5.
function ProbSub = ProbSubFun(ProbObj)
    ProbSub = ProbObj;
end

% Function to compute subjective effort cost (output = input)
% This function is certainly not scalar! However, we haven't measured it yet. 
% We make the assumption that the rate of subjective exertion is held constant 
% under the conditions of our experiment, and we thus impose a fixed value on the subjective rate of exertion. 
% Due to factors such as fatigue, this can't be entirely right. We hope
% that violations of this assumption aren't serious.
% To accommodate the hypothesis that subjective effort costs are modulated by dopamine tone,
% the optional KeffMod parameter scales the subjective effort cost.
% We use this function to set the subjective rates of exertion for both work and leisure.
function dotPhiSubScaled = fphiSc(dotPhiSub, Kec, varargin)
    if size(varargin,2) == 0
        dotPhiSubScaled = ScalarMultFun(...
                               dotPhiSub,...
                               Kec...
                               );
    else
        KeffMod = varargin{1};
        dotPhiSubScaled = ScalarMultFun(...
                               dotPhiSub,...
                               ScalarDivFun(...
                                            Kec,...
                                            KeffMod...
                                            )...
                               );
    end
end

% Dummy function to compute subjective value of alternate ("leisure") activities (output = input)
% Again, we impose a fixed value, faute de mieux.
function RaaScaled = fRaa(Raa,Kaa)
    RaaScaled = ScalarMultFun(...
                          Raa,...
                          Kaa...
                          );
end
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% Function to compute the subjective equivalent of the objective-price location parameter
function PsubE = PsubEfun(dotPhiObj, Kaa, Kec, Krg, Raa, pObj, RnormMax, varargin)
    if size(varargin,2) == 0
        PsubE = ScalarDivFun(...
                             ScalarMultFun(...
                                           ProbSubFun(pObj),...
                                           ScalarMultFun(... % compute Rmax
                                                         Krg,...
                                                         RnormMax...
                                                         )...
                                           ),...
                             ScalarMultFun(...
                                           fphiSc(dotPhiObj, Kec),...
                                           fRaa(Raa, Kaa)...
                                           )...
                             );
    else
        KeffMod = varargin{1};
            PsubE = ScalarDivFun(...
                                 ScalarMultFun(...
                                               ProbSubFun(pObj),...
                                               ScalarMultFun(... % compute Rmax
                                                             Krg,...
                                                             RnormMax...
                                                             )...
                                               ),...
                                 ScalarMultFun(...
                                               fphiSc(dotPhiObj, Kec, KeffMod),...
                                               fRaa(Raa, Kaa)...
                                               )...
                                 );
    end
end

% Function to compute the subjective-price location parameter for the power-growth model
function PsubEpg = PsubEpgFun(dotPhiObj, Kaa, Kec, Krg, ObjAA, pObj, Rmax)
    PsubEpg = ScalarDivFun(...
                         ScalarMultFun(...
                                       Rmax,...
                                       ProbSubFun(pObj)...
                                       ),...
                         ScalarMultFun(...
                                       fphiSc(dotPhiObj, Kec),...
                                       fRaa(ObjAA, Kaa)...
                                       )...
                         );
end

% Function to compute the objective-price location parameter
% This is the back-solution of the function that computes PsubE 
function PobjE = PobjEfun(dotPhiObj, Kaa, Kec, Krg, ObjAA, pObj, PsubBend, PsubMin, RnormMax, varargin)
    if size(varargin,2) == 0
        PobjE = PsubBsFun(...
                          PsubEfun(dotPhiObj, Kaa, Kec, Krg, ObjAA, pObj, RnormMax), ...
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                          PsubBend, ...
                          PsubMin...
                          );
    else
        KeffMod = varargin{1};
        PobjE = PsubBsFun(...
                          PsubEfun(dotPhiObj, Kaa, Kec, Krg, ObjAA, pObj, RnormMax, KeffMod), ...
                          PsubBend, ...
                          PsubMin...
                          );
    end
end

% Function to compute time allocation
% This function builds the mountain surface
% The values of the location parameters, FpulseHM & PobjE, are inputs
% These must be computed before this function is called
function T = TAfun(a, F, Fbend, FpulseHM, Fro, g, Pobj, PobjE, PsubBend, PsubMin, RnormMax)
    T = LogistNormFun(...
                      a, ...
                      fRbsrNorm(...
                                F, ...
                                Fbend, ...
                                FpulseHM, ...
                                Fro, ...
                                g...
                                ), ...
                      ScalarDivFun(...
                                   ScalarMultFun(...
                                                 PsubFun(Pobj, ...
                                                         PsubBend, ...
                                                         PsubMin),...
                                                         RnormMax...
                                                 ),...
                                   PsubFun(PobjE, ...
                                           PsubBend, ...
                                           PsubMin)...
                                   )...
                      );
end

% Function to compute time allocation using power growth of reward intensity
% This function builds the mountain surface
% The values of the location parameter, PsubEpg, is an input and must be computed before this function is called
function T = TApgFun(a, F, Fbend, Fro, g, Kin, Kout, Pobj, PsubBend, PsubEpg, PsubMin)    
    T = LogistNormFun(...
                      a, ...
                      RGpgNormFun(F, Fbend, Fro, g, Kin, Kout),...
                      ScalarDivFun(...
                                   PsubFun(Pobj, ...
                                           PsubBend, ...
                                           PsubMin),...
                                   PsubEpg...
                                   )...
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                      );
end

% Function to compute time allocation for the convergence model
% The reward-growth function must be computed beforehand. Its output, RGvec, must be a column vector.
function T = TAsumFun(a, Pobj, PobjE, PsubBend, PsubMin, RGvec, RnormMax)
    T = LogistNormFun(...
                      a, ...
                      RGvec, ...
                      ScalarDivFun(...
                                   ScalarMultFun(...
                                                 PsubFun(Pobj, ...
                                                         PsubBend, ...
                                                         PsubMin),...
                                                         RnormMax...
                                                 ),...
                                   PsubFun(PobjE, ...
                                           PsubBend, ...
                                           PsubMin)...
                                   )...
                      );
end

Functions that plot graphs and set attributes

% Plot of the frequency-following function 
% function FF_graph = plot_freqFoll(F, FR, fnroot, graphs2files, figdir, varargin)
function FF_graph = plot_freqFoll(F, FR, fnroot, varargin)
    global graphs2files FigDir 
    if size(varargin,2) == 0
        % To accommodate multiple plots based on input matrices, must compute {min, max} in 2 stages
        % Revise this section to operate in the log domain and then transform back to linear
        xmin = min(min(F)) - (0.1*(max(max(F))-min(min(F))));
        xmax = max(max(F)) + (0.1*(max(max(F))-min(min(F))));
        ymin = min(min(FR)) - (0.1*(max(max(FR))-min(min(FR))));
        ymax = max(max(FR)) + (0.1*(max(max(FR))-min(min(FR))));
    else
        xmin = varargin{1};
        xmax = varargin{2};
        ymin = varargin{3};
        ymax = varargin{4};
    end

    FF_graph = figure;
    FF_graph.Visible = 'off';
    FF_graph.Position = [0 0 600 600];
    gmfbfr = loglog(F,FR);
%    gmfbfr.LineWidth = 4;
    arrayfun(@(x) set(x,'LineWidth',4), gmfbfr); % Needed if plot includes multiple lines
    grid on;
    ax1 = gca;
    ax1.XLim = [xmin xmax];
    ax1.YLim = [ymin ymax];
    ax1.XLabel.String = 'Pulse Frequency_{ }';
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    ax1.YLabel.String = 'Firing Frequency_{ }';
    ax1.FontSize = 24; 
    ax1.XLabel.FontAngle = 'italic';
    ax1.YLabel.FontAngle = 'italic';
    arrayfun(@(x) set(ax1, 'XTickLabel', x), {num2str(ax1.XTick')});
    arrayfun(@(x) set(ax1, 'YTickLabel', x), {num2str(ax1.YTick')});
    
    if graphs2files
        saveas(gca,fullfile(FigDir,strcat(fnroot,'_freq_resp.fig')));
        saveas(gca,fullfile(FigDir,strcat(fnroot,'_freq_resp.png')));
    end
end

% Plot of the strength-duration function for trains
function SDT_graph = plot_StrDurTrains(Delec,FelecHM)
    global graphs2files FigDir
    SDT_graph = figure;
    SDT_graph.Visible = 'off';
    SDT_graph.Position = [0 0 600 600];
    gmfbfr = loglog(Delec,FelecHM);
    gmfbfr.LineWidth = 4;
    grid on;
    ax1 = gca;
    ymax = max(FelecHM)*10^0.1;
    ymin = min(FelecHM)*10^-0.1;
    ax1.YLim = [ymin ymax];
    ax1.XLabel.String = 'Train Duration (s)_{ }';
    ax1.YLabel.String = 'F_{hm }';
    ax1.FontSize = 24; 
    ax1.XLabel.FontAngle = 'italic';
    ax1.YLabel.FontAngle = 'italic';
    ax1.XTickLabels = {'0.1', '1', '10', '100'};
        
    if graphs2files
        saveas(gca,fullfile(FigDir,'mfb_StrDurTrains.fig'));
        saveas(gca,fullfile(FigDir,'mfb_StrDurTrains.png'));
    end
end

% Plot one or more reward-growth functions
function out_graph = plot_RG(Fmat,RMat,pnam,pVec,fnam,TitleStr,linlog, varargin)
    global graphs2files FigDir
    fh = figure;
    fh.Position = [0 0 600 600];
    fh.Visible = 'off';

    plab = regexprep(regexprep(pnam,'\W',''),'_','');        
    
    switch linlog
        case 'lin' % linear y-axis, logarithmic x-axis
            gRG = semilogx(Fmat,RMat);
            ymin = -0.05;
            ymax = max(max(RMat)) * 1.05;
            if graphs2files
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                if size(varargin,2) == 0
%                     figfile = fullfile(FigDir,char(strcat('RG_',fnam','_','semilog.fig')));
%                     pngfile = fullfile(FigDir,char(strcat('RG_',fnam','_','semilog.png')));
                    figfile = fullfile(FigDir,char(strcat('RG_',fnam,'_','semilog.fig')));
                    pngfile = fullfile(FigDir,char(strcat('RG_',fnam,'_','semilog.png')));
                else
                    name_suffix = varargin{1};
                    figfile = ...
                        fullfile(FigDir,char(strcat('RG_',fnam','_',name_suffix,'_','semilog.fig')));
                    pngfile = ...
                        fullfile(FigDir,char(strcat('RG_',fnam','_',name_suffix,'_','semilog.png')));
                end
            end
        case 'log' % logarithmic y-axis, logarithmic x-axis
            gRG = loglog(Fmat,RMat);
            ymin = 0.01;
            ymax = max(max(RMat)) * 10^0.1;
            if graphs2files
                if size(varargin,2) == 0
                    figfile = fullfile(FigDir,char(strcat('RG_',fnam','_','loglog.fig')));
                    pngfile = fullfile(FigDir,char(strcat('RG_',fnam','_','loglog.png')));
                else
                    name_suffix = varargin{1};
                    figfile = ...
                        fullfile(FigDir,char(strcat('RG_',fnam','_',name_suffix,'_','loglog.fig')));
                    pngfile = ...
                        fullfile(FigDir,char(strcat('RG_',fnam','_',name_suffix,'_','loglog.png')));
                end
            end
    end

    for j = 1:length(gRG)
        gRG(j).LineWidth = 4;
    end
    grid on;
    ax1 = gca;
    ax1.Position = [0.175 0.15 0.75 0.75];
    ax1.XLim = [10 1000];
    ax1.YLim = [ymin ymax];
    ax1.XLabel.String = 'Pulse Frequency_{ }';
    ax1.YLabel.String = 'Reward Intensity_{ }';
    ax1.FontSize = 24; 
    ax1.XLabel.FontAngle = 'italic';
    ax1.YLabel.FontAngle = 'italic';
    ax1.XTick = [1 10 100 1000];
    ax1.XTickLabels = {'1', '10', '100', '1000'};
    ax1.LineWidth = 1;
    
    switch linlog
        case 'lin'
            XlabPos = ax1.XLabel.Position;
            XlabPos(2) = ax1.YLim(1) - ((ax1.YLim(2) - ax1.YLim(1)) * 0.075); % 7.5% below lower limit
            ax1.XLabel.Position = XlabPos;
        case 'log'
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            XlabPos = ax1.XLabel.Position;
            XlabPos(2) = 10^(log10(ax1.YLim(1)) - ((log10(ax1.YLim(2)) - log10(ax1.YLim(1)))*0.075)); % 7.5% below lower limit
            ax1.XLabel.Position = XlabPos;
    end    
    YlabPos = ax1.YLabel.Position;
    YlabPos(1) = 10^(log10(ax1.XLim(1)) - ((log10(ax1.XLim(2)) - log10(ax1.XLim(1)))*0.1)); % 10% below lower limit
    ax1.YLabel.Position = YlabPos;

%     if min(pVec) < 0.01
%         formatstring = '%3.2e';
%     else
%         formatstring = '%0.2f';
%     end
    if min(pVec) < 10
        formatstring = '%3.2f';
    else
        formatstring = '%3.0f';
    end

% Make a cell array of the legend values and pass to the legend function
    lgnd = legend(arrayfun(@(x) sprintf(formatstring,x), pVec, 'UniformOutput', false),...
                  'Location', 'best'); 
    lgnd.Title.String = strjoin(pnam,'\n');
    
    title(ax1, TitleStr, 'FontSize', 30);
    
    out_graph = gcf;

    if graphs2files
        saveas(gca,figfile);
        saveas(gca,pngfile);
    end
end

% Plot of the subjective-price function
function SP_graph = plot_PsubFun(Pobj,Psub,graphs2files, figdir)
    SP_graph = figure;
    SP_graph.Visible = 'off';
    SP_graph.Position = [0 0 600 600];

    gPsub = loglog(Pobj,Psub);
    gPsub.LineWidth = 4;
    grid on;
    ax1 = gca;
    ax1.XLim = [0.1 100];
    ax1.YLim = [0.5 100];
    ax1.XTickLabels = {'0.1', '1', '10', '100'};
    ax1.YTickLabels = {'1', '10', '100'};
    ax1.LineWidth = 1;
    ax1.XLabel.String = 'Objective Price (s)_{ }';
    ax1.YLabel.String = 'Subjective Price (s)_{ }';
    ax1.FontSize = 24; 
    ax1.XLabel.FontAngle = 'italic';
    ax1.YLabel.FontAngle = 'italic';
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    if graphs2files
        saveas(gca,fullfile(figdir,'Subj_price.fig'));
        saveas(gca,fullfile(figdir,'Subj_price.png'));
    end
end

% Function to plot a single mountain
% F is a logarithmically spaced vector of pulse-frequencies
% Pobj is a logarithmically spaced vector of prices
% T is a square matrix of time-allocation values computed with price as the row variable
% and pulse frequency as the column variable.
% Visible is a character vector ('on', or 'off') that determines whether or not the figure is displayed.
% The optional arguments are xmin, xmax, ymin, ymax.
function gh3d2 = plot_MTN(F, Pobj, T, Visible, mtn_root, title_str, ...
    graphs2files, figdir, varargin)
    logF = log10(F);
    logP = log10(Pobj);
    [X,Y] = meshgrid(logP, logF);
    Z = T;
    
    if size(varargin,2) == 0
        xmin = 0;
        xmax = 2.6;
        ymin = 1;
        ymax = 3;
    else
        xmin = varargin{1};
        xmax = varargin{2};
        ymin = varargin{3};
        ymax = varargin{4};
    end
    
    gh3d = figure;
    gh3d.Visible = Visible;
    gh3d.Position = [0 0 600 600];
    surface(X, Y, Z, 'CData', Z,...
        'FaceLighting','gouraud',...
        'FaceColor',[0.5 0.5 0.5], 'FaceAlpha', 0.5,...
        'EdgeColor', [0.5 0.5 0.5],...
        'SpecularColorReflectance',0.5, 'SpecularExponent',4, 'SpecularStrength',1);
    light('Parent',gca,'Position',[10 -5 2]);
    view([40 30]);
    
    ax3d = findall(gca,'Type','Axes');
    title(ax3d, title_str, 'FontSize', 36);
    ax3d.Position = [0.15, 0.15, 0.75, 0.75];
    ax3d.FontSize = 16;
    ax3d.XLabel.String = 'Objective Price (s)';
    ax3d.XLabel.FontSize = 22;
    ax3d.XLabel.Rotation = -27;
    ax3d.XLabel.Units = 'Normalized';
    ax3d.XLabel.Position = [0.325 -0.0625 0];
    ax3d.XAxis.Scale = 'linear';
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    ax3d.XLim = [xmin,xmax];
    ax3d.XTick = [0, 0.5, 1, 1.5, 2, 2.5];
    ax3d.XTickLabel = {'1.0','3.2','10','32','100','316'};
    ax3d.YLabel.String = 'Pulse frequency (pps)';
    ax3d.YLabel.FontSize = 22;
    ax3d.YLabel.Rotation = 32;
    ax3d.YLabel.Units = 'Normalized';
    ax3d.YLabel.Position = [0.85 0.05 0];
    ax3d.YAxis.Scale = 'linear';
    ax3d.YLim = [ymin,ymax];
    ax3d.YTick = [0, 0.5, 1, 1.5, 2, 2.5, 3];
    ax3d.YTickLabel = {'1','3.2','10','32', '100', '316', '1000'};
    ax3d.ZLim = [0,1.1];
    ax3d.ZLabel.String = 'Time Allocation';
    ax3d.ZLabel.FontSize = 22;
    ax3d.ZLabel.Rotation = 91;
    ax3d.ZLabel.Units = 'Normalized';
    ax3d.ZLabel.Position = [-0.125 0.475 0];
    ax3d.DataAspectRatio = [1 0.75 0.8];
    
    hold on;
    z_shim = 0.01;
    z_shim = Z + z_shim;
    contvec = 0.1:0.1:0.9;
    [~, ch] = contour3( X, Y, z_shim, contvec);
    colormap('jet');
    set(ch, 'LineWidth', 2);
    gh3d2 = figure(gcf);
    gh3d2.Visible = Visible;
    grid on;
    hold off;

    if graphs2files
        saveas(gca,fullfile(figdir,strcat(mtn_root,'.fig')));
        saveas(gca,fullfile(figdir,strcat(mtn_root,'.png')));
    end
end

% Function to plot a single contour graph
% F is a logarithmically spaced vector of pulse-frequencies.
% Pobj is a logarithmically spaced vector of prices.
% T is square matrix of time-allocation values computed with price as the row variable
% and pulse frequency as the column variable.
% Visible is a character vector ('on', or 'off') that determines whether or not the figure is displayed.
% The optional arguments are xmin, xmax, ymin, ymax.
function cont1 = plot_contour(F, Pobj, T, Pobj_e, Fhm, Visible, mtn_root, ...
        title_str, annot_str, graphs2files, figdir, varargin)
    logF = log10(F);
    logP = log10(Pobj);
    [X,Y] = meshgrid(logP, logF);
    Z = T;
    
    if size(varargin,2) == 0
        xmin = 0;
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        xmax = 2.6;
        ymin = 1;
        ymax = 3;
    else
        xmin = varargin{1};
        xmax = varargin{2};
        ymin = varargin{3};
        ymax = varargin{4};
    end
    
    contvec = 0.1:0.1:0.9;

    cont1 = figure;
    cont1.Visible = Visible;
    cont1.Position = [0 0 600 600];
    contour(X,Y,Z,contvec,'LineWidth',1.25);
    colormap('jet');
    hold on;
    
    axc1 = findall(gca,'Type','Axes');
    title(axc1, title_str, 'FontSize', 36);
    axc1.Position = [0.15, 0.175, 0.825, 0.75];
    axc1.FontSize = 18;
    
    axc1.XLim = [xmin,xmax];
    
    axc1.XLabel.String = 'Objective Price (s)';
    axc1.XLabel.FontSize = 24;
    % Adjust position of X-axis label
    xlpos = axc1.XLabel.Position;
    xlpos(2) = ymin - ((ymax - ymin) * 0.1);
    axc1.XLabel.Position = xlpos;
    
    axc1.XTick = [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5];
    axc1.XTickLabel = {'','','0.1','0.32','1.0','3.2','10','32','100', '316'};

    axc1.YLim = [ymin,ymax];

    axc1.YLabel.String = 'Pulse Frequency (pps)';
    axc1.YLabel.FontSize = 24;
    % Adjust position of Y-axis label
    ylpos = axc1.YLabel.Position;
    ylpos(1) = xmin - ((xmax - xmin) * 0.125);
    axc1.YLabel.Position = ylpos;
    
    axc1.YTick = [0. 0.5, 1, 1.5, 2, 2.5, 3];
    axc1.YTickLabel = {'1', '3.2', '10', '31.6', '100', '316', '1000'};
    
    FhmLine1 = line('XData', axc1.XLim,'YData', [log10(Fhm), log10(Fhm)]);
    FhmLine1.Color = 'r';
    FhmLine1.LineWidth = 4;
    FhmLine1.LineStyle = '--';
    PeLine1 = line('XData', [log10(Pobj_e), log10(Pobj_e)],'YData', axc1.YLim);
    PeLine1.Color = 'b';
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    PeLine1.LineWidth = 4;
    PeLine1.LineStyle = '--';
    
    tb2 = annotation('textbox');
    tb2.String = annot_str;
    tb2.FontSize = 18;
    tb2.Position = [0.7, 0.25, 0.15, 0.075];
    hold off;
    
    legend([FhmLine1, PeLine1], [{'F_{hm }'}, {'P_e '}], 'Location','northwest');

    if graphs2files
        saveas(gca,fullfile(figdir,strcat(mtn_root,'.fig')));
        saveas(gca,fullfile(figdir,strcat(mtn_root,'.png'))); 
    end
end

% Function to produce a bargraph showing changes in the location parameters
function bg = plot_bg(Fhm1, Fhm2, Pobj_e1, Pobj_e2, Visible, bg_root,...
        graphs2files, figdir, varargin)
    logFhmShift = log10(Fhm2) - log10(Fhm1);
    logPobjShift = log10(Pobj_e2) - log10(Pobj_e1);

    if size(varargin,2) == 0
        span = max(logFhmShift, logPobjShift) - min(logFhmShift, logPobjShift);
        ymax = max(logFhmShift, logPobjShift) + 0.2 * span;
        ymin = min(logFhmShift, logPobjShift) - 0.2 * span;
    else
        ymin = varargin{1};
        ymax = varargin{2};
    end
    
    bg = figure;
    bg.Visible = Visible;
    bg.Position = [0 0 600 800];
    bar(1,logFhmShift, 'r');
    hold on;
    bar(2,logPobjShift, 'b');
    hold off;
    ax = findall(gca,'Type','Axes');
    ax.Position = [0.2 0.15 0.6 0.8]; %[left bottom width height]
    ax.XLim = [0.5,2.5];
    ax.YLim = [ymin, ymax];
    ax.YLabel.String = 'Shift';
    ylabpos = ax.YLabel.Position;
    ylabpos(1) = 0.15;
    ax.YLabel.Position = ylabpos;    
    ax.XAxis.FontSize = 22;
    ax.YAxis.FontSize = 22;
    ax.YGrid = 'on';
    ax.XTick = [1,2];
    ax.XTickLabel = {'log_{10 }(F_{hm })', 'log_{10 }(P_e )'};
    bh = findall(gcf,'Type','Bar');
    bh(1).BarWidth = 0.6;
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    bh(2).BarWidth = 0.6;

    if graphs2files
        saveas(gca,fullfile(figdir,strcat(bg_root,'.fig')));
        saveas(gca,fullfile(figdir,strcat(bg_root,'.png')));
    end
end

% Function to produce a bargraph showing changes in the location parameters
function bg = plot_bgStar(Fhm1, Fhm2, FhmStar1, FhmStar2, Pobj_e1, Pobj_e2, PobjEstar1, PobjEstar2, ...
    Visible, bg_root, graphs2files, figdir, varargin)
    logFhmShift = log10(Fhm2) - log10(Fhm1);
    logPobjShift = log10(Pobj_e2) - log10(Pobj_e1);
    logFhmStarShift = log10(FhmStar2) - log10(FhmStar1); % These are the corrected values
    logPobjStarShift = log10(PobjEstar2) - log10(PobjEstar1); % These are the corrected values

    if size(varargin,2) == 0
        span = max(logFhmShift, logPobjShift) - min(logFhmShift, logPobjShift);
        ymax = max(logFhmShift, logPobjShift) + 0.2 * span;
        ymin = min(logFhmShift, logPobjShift) - 0.2 * span;
    else
        ymin = varargin{1};
        ymax = varargin{2};
    end
    
    bwidth = 0.6; % width of bars
    FhmStarX = [1-(bwidth/2), 1+(bwidth/2)];
    FhmStarY = [logFhmStarShift, logFhmStarShift];
    PeStarX = [2-(bwidth/2), 2+(bwidth/2)];
    PeStarY = [logPobjStarShift, logPobjStarShift];
    
    bg = figure;
    bg.Visible = Visible;
    bg.Position = [0 0 600 800];
    
    bar(1,logFhmShift, 'r');
    hold on;
    bar(2,logPobjShift, 'b');
    
    bh = findall(gcf,'Type','Bar');
    bh(1).BarWidth = bwidth;
    bh(2).BarWidth = bwidth;

    % Add lines showing corrected location parameters
    plot(FhmStarX, FhmStarY, 'Color','c', 'LineStyle', '-.', 'LineWidth',6);
    plot(PeStarX, PeStarY, 'Color','c', 'LineStyle', '-.', 'LineWidth',6);
    hold off;
    
    ax = findall(gca,'Type','Axes');
    ax.Position = [0.2 0.15 0.6 0.8]; %[left bottom width height]
    ax.XLim = [0.5,2.5];
    ax.YLim = [ymin, ymax];
    ax.YLabel.String = 'Shift';
    ylabpos = ax.YLabel.Position;
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    ylabpos(1) = 0.15;
    ax.YLabel.Position = ylabpos;    
    ax.XAxis.FontSize = 22;
    ax.YAxis.FontSize = 22;
    ax.YGrid = 'on';
    ax.XTick = [1,2];
    ax.XTickLabel = {'log_{10 }(F_{hm })', 'log_{10 }(P_e )'};
    bh = findall(gcf,'Type','Bar');
    bh(1).BarWidth = 0.6;
    bh(2).BarWidth = 0.6;

    if graphs2files
        saveas(gca,fullfile(figdir,strcat(bg_root,'.fig')));
        saveas(gca,fullfile(figdir,strcat(bg_root,'.png')));
    end
end

% Modify attributes of a 2D graph. handle_attribute and attribute_value can be cell arrays, 
% in which case attribute value must have the same number of rows as the length of the handle
% and the same number of columns as the number on handle_attributes.
% The restrictions of the set command apply. For example, this function cannot modify legend attributes.
function out_graph = modify_2D_graph(in_graph, handle_type, handle_attribute, attribute_value, ...
    gFileNam, graphs2files, figdir)
    gh = findall(in_graph, 'Type', handle_type);
    set(gh, handle_attribute, attribute_value);
    
    if strcmp(handle_attribute,'XLim') || strcmp(handle_attribute,'YLim')
        ax = findall(gcf, 'Type', 'Axes');
        XlabPos = ax.XLabel.Position;
        YlabPos = ax.YLabel.Position;
    
        LinLogX = ax.XAxis.Scale;
        switch LinLogX
            case 'linear'
                XlabPos(1) = ax.XLim(1) + ((ax.XLim(2) - ax.XLim(1)) / 2);
                YlabPos(1) = ax.Xlim(1) - ((ax.XLim(2) - ax.XLim(1)) * 0.1); % 10% below lower limit
            case 'log'
                XlabPos(1) = 10^(log10(ax.XLim(1)) + ((log10(ax.XLim(2)) - log10(ax.XLim(1))) / 2));
                YlabPos(1) = 10^(log10(ax.XLim(1)) - ((log10(ax.XLim(2)) - log10(ax.XLim(1)))*0.1)); % 10% below lower limit
        end
        ax.XLabel.Position = XlabPos;            
    
        LinLogY = ax.YAxis.Scale;
        switch LinLogY
            case 'linear'
                XlabPos(2) = ax.YLim(1) - ((ax.YLim(2) - ax.YLim(1)) * 0.0/075); % 7.5% below lower limit;
                YlabPos(2) = ax.YLim(1) + (ax.YLim(1) + ((ax.YLim(2) - ax.YLim(1)) / 2));
            case 'log'
                XlabPos(2) = 10^(log10(ax.YLim(1)) - ((log10(ax.YLim(2)) - log10(ax.YLim(1)))*0.075)); % 7.5%  below lower limit
                YlabPos(2) = 10^(log10(ax.YLim(1)) + ((log10(ax.YLim(2)) - log10(ax.YLim(1))) / 2));
        end
        ax.YLabel.Position = YlabPos;
    end
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    out_graph = gcf;

    if graphs2files
        figfile = fullfile(figdir, strcat(gFileNam, '.fig'));
        saveas(gcf,figfile);
        pngfile = regexprep(figfile, '.fig','.png');
        saveas(gcf,pngfile);
    end
end

Functions that display multi-panel Matlab figures

function dual_sub = dual_subplot(g1, g2, dual_sub_out, graphs2files, figdir)
    dual_sub = figure;
    dual_sub.Visible = 'off';
    dual_sub.Units = 'pixels';
    dual_sub.Position = [0 0 1500 600];
    colormap 'jet';
    
    ax(1) = findall(g1, 'Type', 'Axes');
    ax(2) = findall(g2, 'Type', 'Axes');
    
    % Collect legend properties if a legend exists in the input figures
    for j = 1:2
        lg(j) = false;
        if ~isempty(ax(j).Legend)
            lg(j) = true;
            lgh = ax(j).Legend;
            lgstr(j).str = lgh.String;
            lgstr(j).tstr = lgh.Title.String;
        end
    end
    
    for j = 1:2
        ax_copy(j) = copyobj(ax(j), dual_sub);
        sph(j) = subplot(1,2,j,ax_copy(j));
        
%         if ~isempty(ax(j).Legend)
        if lg(j)
%            splg(j) = legend(sph(j),lgstr(j).str,'Location','southeast');
            % This position is rigid, but it should work in this specific case.
            % The reward-growth graphs have legends; the mountain plots do not.
            splg(j) = legend(sph(j),lgstr(j).str,'Location','best');
            splg(j).Title.String = lgstr(j).tstr;
        end
    end
    
    if graphs2files
        saveas(dual_sub,fullfile(figdir,strcat(dual_sub_out,'.fig')));
        saveas(dual_sub,fullfile(figdir,strcat(dual_sub_out,'.png')));
    end
end

% function to plot the quad-panel display of the contour and bar graphs
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% cont1 is plotted twice, once in the upper left and once in the lower right
function quad_sub = quad_subplot(cont1, cont2, bg, quad_sub_out, bg_root, ...
        graphs2files, figdir)
    quad_sub = figure;
    quad_sub.Visible = 'off';
    quad_sub.Units = 'pixels';
    quad_sub.Position = [0 0 1500 1500];
    colormap 'jet';
    
    fh(1) = cont1;
    fh(2) = bg;
    fh(3) = cont2;
    fh(4) = cont1;
    
    for j = 1:4
        ax(j) = findall(fh(j), 'Type', 'Axes');
    end

    % Collect textbox properties if a textbox exists in the input figure
    for j = 1:4
    tbh = findall(fh(j),'Type','TextBox');
        tb(j) = false;
        if ~isempty(tbh)
            tb(j) = true;
            tbstr(j) = tbh.String;
        end
    end

    bg_str = findall(ax(2), '-Property', 'FontSize');
    bg_str = findall(bg_str(:),'-Property','FontSize');

    for j = 1:length(bg_str)
        bg_str(j).FontSize = bg_str(j).FontSize * 1.75;
    end
    
    for j = 1:4
        ax_copy(j) = copyobj(ax(j), quad_sub);
        sph(j) = subplot(2,2,j,ax_copy(j));
        
        if tb(j)
            axpos = sph(j).Position;
            x_offset = axpos(3) * 0.7;
            y_offset = axpos(4) * -0.1;
            tbdim = [(axpos(1) + x_offset) (axpos(2) + y_offset) 0.1 0.1];
            ann(j) = annotation('textbox', tbdim, 'String', tbstr(j),'FitBoxToText','on');
            ann(j).FontSize = 16;
        end
    end
    if graphs2files
        saveas(quad_sub,fullfile(figdir,strcat(quad_sub_out,'.fig')));
        saveas(quad_sub,fullfile(figdir,strcat(quad_sub_out,'.png')));
    end    
end
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function out_fig = adjust_right_panel(dual_sub, h, v)
    out_fig = dual_sub;
    out_fig.Visible = 'off';
    ax = findall(out_fig,'Type','Axes');
    
    ax1_pos = ax(1).Position;
    ax1_ip = ax(1).InnerPosition;
    ax1_op = ax(1).OuterPosition;
    ax(1).InnerPosition = ax(1).OuterPosition; % tight borders
    
    lgutter = ax1_op(1) - 0.5;
    panel_width = 0.5 - lgutter;
    panel_height = 1;
    
    new_ax_width = ax1_pos(3) * h; % rescale height
    new_ax_height = ax1_pos(4) * v; % rescale width
    
    new_hmargin = (panel_width - new_ax_width) / 2;
    new_vmargin = (panel_height - new_ax_height) / 2; 
    
    ax1_newxpos = 0.5 + lgutter + new_hmargin;
    ax1_newpos(1)= ax1_newxpos;
    
    ax1_newvpos = new_vmargin; % unnecessary, but included for consistency
    ax1_newpos(2) = ax1_newvpos;
    
    ax1_newpos(3) = new_ax_width;
    ax1_newpos(4) = new_ax_height;
    
    ax(1).Title.String = 'simulated data';
    
    ax(1).Position = ax1_newpos;
end

Functions that create & display images from stored files

function show_imported_graphic(gnam, mag, ImpFigDir)
    imshow(fullfile(ImpFigDir,gnam),'Border','tight','InitialMagnification',mag);
end

function F = make_fig_from_png(png_file, mag)
    img = imread(png_file, 'png');
    sz = size(img);
    F = figure;
    image(img);
    pos = F.Position; % the conventional x and y dimensions are reversed
    pos(3) = sz(2) * mag;
    pos(4) = sz(1) * mag;
    F.Position = pos;
    axis tight;
    ah = findall(F,'Type','Axes');
    ah.Visible = 'off';
    F.Visible = 'off';
end
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