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Abstract 
 
Diverse extracellular matrix patterns are observed in both normal and pathological tissue; 
however only piecemeal tools currently exist for quantitative analysis of matrix pattern 
features. Thus, there is a need for an automated pipeline for quantifying these matrix patterns. 
To this end we have developed an ImageJ plugin called TWOMBLI, which stands for The 
Workflow Of Matrix BioLogy Informatics. The aim of TWOMBLI is to quantify matrix patterns, 
including branch points, endpoints, curvature, gaps, and fractal dimension. It is designed to 
be easy-to-use, quick and versatile. TWOMBLI can be downloaded from 
https://github.com/wershofe/TWOMBLI together with detailed documentation. Here we 
present an overview of the pipeline and demonstrate its utility for quantifying extracellular 
matrix patterns in both experimental and clinical samples. 
 
 

Introduction 
 
The extracellular matrix (ECM) provides support and structure to multicellular organisms and 
also guides the migration of cells 1,2, including leukocytes engaged in immune surveillance 3. 
The ECM is re-built and remodelled in response to tissue damage, with changes in ECM 
composition and structure occurring during the aging process and in pathologies, such as 
cancer. The architecture of the ECM has lately been the subject of renewed focus 4–6. 
Numerous methods exist for revealing the organisation of the ECM, including both antibody-
based and chemical-based histochemistry protocols, such as picrosirius red staining7. 
However, formal quantification of ECM patterns, both for use in experimental studies and in 
pathological decision-making is lacking. The generation of metrics that describe ECM pattern 
could lead to insights into a wide range of fields, ranging from experimentalists interested in 
cell migration and remodelling of matrices, to clinicians researching conditions such as cancer 
and fibrosis. 
 
Despite the potential utility of quantitative metrics that describe the diverse extracellular 
matrix patterns observed in both normal and pathological tissue, current tools typically only 
report one feature of the ECM pattern. For example, pipelines already exist for quantifying 
alignment of ECM 8 (CTfire) and for the evaluation of gaps in the ECM9; however, they are 
encoded in different MatLab scripts. OrientationJ 10 is an automated ImageJ plugin that is able 
to create vector fields and perform directional analysis on fibres, but this does not lend itself 
to quantifying overall matrix patterns. Hence, current tools for quantifying ECM pattern are 
fragmented and require heavy manual intervention 11,12. Furthermore, methods for 
quantifying other spatial properties of the ECM are lacking. For example, the curvature of 
fibres or the fractal dimension of the matrix structure could be important characteristics. 
 
 
As outlined above, there is a need for an end-to-end pipeline for quantifying ECM patterns, 
which is automated and easy to use on versatile data sets. To this end, we have created the 
ImageJ macro plugin TWOMBLI. TWOMBLI stands for The Workflow Of Matrix BioLogy 
Informatics (the name TWOMBLI is also a nod to the American artist Cy Twombly whose works 
are full of diverse marks and patterning 13). The aim of TWOMBLI is to quantify matrix patterns 
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in an ECM image by deriving a range of metrics, which can then be analysed together with 
other metrics, such as transcriptomic and proteomic data, and correlated with clinical data. 
 

Results 
 
Our goal was to generate a comprehensive tool for analysis of ECM patterns, whereby a user 
could enter versatile matrix images (e.g. fibronectin staining, second harmonic collagen 
imaging, or picrosirius red staining) into the pipeline and derive a meaningful quantification 
of the matrix patterns as output (Figure 1). Image J was employed as the supporting platform 
for the plugin, since it enabled us to build on many existing tools and downloads already 
developed for use with Image J. With a history dating back to 1997, Image J (also known as 
Fiji when downloaded as a package containing plugins and documentation) is widely used by 
many scientists and clinicians14. We first selected metrics that covered a range of spatial 
features of matrix patterns (described in the following section), before assembling an 
integrated FIJI plug-in for generating the metrics. Finally, we tested our pipeline on both 
experimentally-generated images of ECM and human pathological samples. 
 
Metrics for matrix quantification 
Matrix patterns were quantified by deriving a number of metrics that can be split between 
those describing individual fibres and those describing general ECM pattern: number of fibre 
end points, number of fibre branchpoints, total length of fibres, fibre curvature, proportion 
of high-density matrix,  ECM fractal dimension, hyphal growth unit (a measure of the number 
of end points per unit length) and lacunarity (a measure of how the ECM fills the space) 15. 
These metrics together could characterise different matrix properties. A schematic diagram 
of some key metrics is shown in Figure 2 (left-hand panels). Human breast cancer samples 
stained with picrosirius red to highlight collagen fibres are shown alongside the diagrams to 
provide examples of tissue with low and high levels of endpoints, high density matrix, 
curvature, fractal dimension, and branchpoints (Figure 2, right-hand panels).  
 
Metrics relating to individual fibres 
The number of endpoints is an intuitive count of the number of ends of the mask fibres in the 
image. The number of branchpoints is the number of intersections of mask fibres in the image. 
Total length is the sum of the length of all mask fibres in the image. This quantity can be useful 
in normalising the number of branchpoints and endpoints. Curvature was measured as the 
mean change in angle moving incrementally along individual mask fibres by user-specified 
windows. A high curvature score is indicative of tight curvature, i.e. that which can be 
described with a small radius. 
 
Metrics of global pattern 
High-density matrix (HDM) is a measure of the proportion of pixels in an image above a user-
specified threshold intensity, indicating highly collagenous regions. Fractal dimension is an 
indicator of the self-similarity and complexity of the ECM and is bound between in the range 
[1,2] for a single 2D image slice. Specifically, the metric used is the box-counting dimension 
16. A grid with squares of side length 𝜖𝜖 is overlaid over the image. The number of squares 𝑁𝑁(𝜖𝜖) 
which are occupied by the non-background part of the image N is recorded. As 𝜖𝜖 gets smaller,  
𝑁𝑁(𝜖𝜖) increases. Fractal dimension is then computed as the limit of the following equation: 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/867507doi: bioRxiv preprint 

https://doi.org/10.1101/867507
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = lim
𝜖𝜖→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁(𝜖𝜖)
log (1/𝜖𝜖)

. 

 
In addition, an optional step in the plugin (step 7) allows the user to perform gap analysis on 
matrix patterns using the Max Inscribed Circle function available from the BIOP plugin in FIJI. 
The algorithm analyses spaces between objects (in this case, the fibres in the masks derived 
by TWOMBLI) by fitting circles of decreasing radius to fill in the gaps 17. Information on the 
size and location of these circles can provide additional insight into the structure of the matrix 
patterns.  
 
Development of the TWOMBLI pipeline 
 
TWOMBLI was developed so that a user can input tissue samples stained for ECM components 
and is then guided through image pre-processing before finally being given a comprehensive 
output of ECM metrics in csv files with accompanying processed images. Furthermore, an 
additional script is included in the TWOMBLI repository for optional cropping down of images 
to regions of interest. TWOMBLI exists as a user-friendly ImageJ plugin that can be 
downloaded with detailed documentation (see Documentation) from 
https://github.com/wershofe/TWOMBLI. A tutorial video is also available from 
https://bmm.crick.ac.uk/TWOMBLI/. TWOMBLI relies heavily on existing ImageJ plugins 
Ridge Detection 18 and AnaMorf 15 , providing an end-to-end pipeline for users. Figure 3A 
shows an example of user input together with the different outputs from the pipeline. Of note, 
the original image is converted into a skeletal mask that captures the matrix filaments. This is 
used as the basis of all metrics except the high density matrix metric, which is determined via 
a simple thresholding step. The principal stages of TWOMBLI are: prechecking, pre-processing 
and processing. The prechecks (steps 0-3) are carried out manually by the user, following 
prompts, to check the eligibility of potential input images. An image needs to be in focus, have 
high enough resolution and not contain too many artefacts or regions that are not pertinent 
for the analysis. A resolution of 1 micron per pixel or higher is recommended. In pre-
processing (steps 4-9), the user is guided through selecting a subset of test images and then 
choosing appropriate parameters for thresholding these test images. These parameters are 
saved so that in future runs, the user can skip directly to the processing stage. In processing 
(steps 10-14), all of the images are analysed in batch using the parameters generated in the 
pre-processing stage. An input image of 1MB in size takes approximately 30 seconds to 
process on a computer with 2.2 GHz Intel Core i7 and 16GB of memory. For tips on handling 
larger files and other troubleshooting see Documentation. 
 
Having established the TWOMBLI pipeline, we sought to test it. Figure 3B demonstrates that 
the pipeline can be used to analyse images of ECM acquired via a wide variety of imaging 
techniques and of varying file types: including fibronectin staining of in vitro generated cell-
derived matrices, second harmonic imaging of mouse tissue, and matrix patterns generated 
by in silico simulation of fibroblast behaviour. 
 
Output metrics are able to distinguish between different matrix patterns 
 
In Figure 4A we present specific examples of output metrics of matrix patterns using 
TWOMBLI. Importantly, the TWOMBLI pipeline is able to quantify differences in endpoints, 
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high density matrix, curvature, fractal dimension, and branch points in the representative 
examples of ECM shown in Figure 2 (highlighted with blue and beige shading in Figure 4). For 
metrics relating to individual fibres, endpoints and branch points, normalisation to the total 
fibre length is recommended. The normalised values are provided in brackets in Figure 4. 
Quantification of matrix from the breast cancer biopsies presented in Figure 2 shows how 
some metrics such as high-density matrix (HDM) are intuitively different, whilst other metrics 
such as curvature and branchpoints are more nuanced. This suggests that TWOMBLI could be 
particularly helpful in identifying patterning properties that are difficult to ascertain by eye 
(Figure 4A). Next, we wanted to test if TWOMBLI could extract additional information from 
images that had previously been reported to exhibit differing degrees of anisotropy. To this 
end, three images of anisotropic matrix and three images of isotropic matrix produced by 
FDM 4 were used as input and corresponding masks generated (Figure 4B). Encouragingly, the 
anisotropic matrix patterns were quantified as having lower normalised endpoints, curvature, 
fractal dimension and normalised branchpoints. Taken together, these analyses demonstrate 
that TWOMBLI is able to distinguish between clearly different matrix patterns. Importantly, 
TWOMBI is also able to determine less obvious quantitative difference in matrix patterns and 
provide additional classes of information not captured using existing tools. 
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Discussion 
 
Much work has focused on identifying patterns of cells in tissues 19–21. However, ECM 
organisation, which plays a crucial part in tissue architecture, has been largely neglected. We 
have developed TWOMBLI to quantify matrix patterns, enabling further understanding of the 
relevance of ECM organisation in a wide range of contexts, from tissue damage 22–24 to ageing 
25, development 26 and  fibrotic disease. Analysis of the metrics generated in multidimensional 
space will enable a numerical description of the types of ECM observed in both normal 
physiology and pathology. Furthermore, the inter-relationship between the metrics may shed 
light on the mechanisms of pattern formation and the limits of classes of pattern. Based on 
the limited analysis presented here, the inter-relationship of branch point, curvature, and 
fractal dimension warrants further analysis. 
 
It is our sincere hope that this tool will be of use to researchers working with ECM. In 
particular, the ability to derive quantitative metrics will enable researchers to objectively 
compare data sets with associated benefits in the robustness of observations. and to 
correlate matrix patterns with other classes of data, including transcriptomic, proteomic, and 
clinical datasets. Linking to gene expression and proteomic data should provide new insights 
into the underlying mechanisms that generate matrix pattern, while correlation with clinical 
data should inform us about the consequences of variation in ECM pattern. 
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Methods 
 
Computational analysis 
All computational methods are described in detail in the TWOMBLI documentation which can 
be found at https://github.com/wershofe/TWOMBLI. 
Picrosirius red staining 
Samples were stained using ABCAM ab150681 Picrosirius Red Kit. Briefly, stains were 
deparaffinised and hydrated, we applied Picro-Sirius Red Solution for 60 minutes, rinsed twice 
in acetic acid, then alcohol dehydration. Slides were then scanned at 10x using Zeiss Axio 
Scan.Z1. 
FDM assay 
The FDM assay was performed as described in Park et al (Nat materials paper). Briefly, glass-
bottom dishes (MatTek, P35-1.5-14-C) were pre-prepared with 0.2% gelatin solution (1h, 
37 °C), then 1% glutaraldehyde for 30 min at room temperature (RT). After PBS buffer solution 
wash, the plate was incubated with 1 M ethanolamine for 30 min (RT). After two washes with 
PBS we seeded 7 × 104 cells in media with 100 μg ml−1 ascorbic acid ((+)-sodium L-ascorbate, 
Sigma, A4034). Cells were kept for 6 days and media changed every 2 days. We used 
extraction buffer and washed several times with PBS before immunofluorescence for ECM 
using anti-fibronectin-FITC (1:50 dilution; Abcam, ab72686). Samples were imaged using a 
Zeiss LSM 780 microscope. 
Collagen Imaging 
Second harmonic generation imaging for collagen was performed using a Zeiss LSM 780 
microscope with Mai Tai multi-photon laser 
 

Supplementary Information 
 
Supplementary Text 1 = TWOMBLI Documentation 
 
Supplementary Video = TWOMBLI Tutorial 
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Figure 1: Workflow diagram of quantification of matrix patterns. End-to-end pipeline from obtaining the samples through 
matrix quantification to survival analysis based on this matrix metrology. A list of metrics is given in the right-most box. 
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Figure 2: Schematics and example tissue biopsies of ECM metrics. 
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Figure 3: Input and outputs of TWOMBLI pipeline. (A) User inputs an image of a sample stained for ECM components (in this 
case, collagen is stained with picosirius red). Outputs consist of a mask, a csv file containing matrix metrics based on the mask, 
a processed image thresholded for HDM and a corresponding csv file giving HDM. (B) Example input images can be acquired 
from FDM in vitro, second harmonic imaging in vivo and in silico ECM (from left to right – VCAF8-derived matrix, NF2-derived 
matrix, mouse liver, mouse dermis, and in silico5). 
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Figure 4: Using TWOMBLIi for quantification of ECM patterns: (A) Output metrics for the corresponding tumour biopsies 
shown in Figure 2. Pairs (A, B), (C, D) etc. show contrasting biopsies with low and high values of each metric as indicated in 
the table in blue/orange respectively. For endpoints and branchpoints, normalised values are given in brackets below the raw 
value. The normalised value is computed by dividing the raw value by the total length of the fibres in the mask. (B) FDM 
imaging of fibronectin produced by six different fibroblast lines in vitro these are (from left to right): hNLF, VCAF2B, VCAF8, 
NF2, CAF1, CAF2 4. Three patterns are anisotropic (left) and three patterns are isotropic (right). Corresponding masks derived 
in TWOMBLI are displayed underneath. (C) Quantification of matrix patterns from (B) across a number of metrics. The 
anisotropic matrices have lower number of normalised end points, HDM, curvature, fractal dimension and normalised branch 
points then the isotropic matrices. Normalisation is performed by dividing the raw value by the total length of fibres in the 
masks. 
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