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Abstract
In the context of flexible and adaptive animal behavior, the orbitofrontal cortex (OFC)
is found to be one of the crucial regions in the prefrontal cortex (PFC) influencing the
downstream processes of decision-making and learning in the sub-cortical regions.
Although OFC has been implicated to be important in a variety of related behavioral
processes, the exact mechanisms are unclear, through which the OFC encodes or
processes information related to decision-making and learning. Here, we propose a
systems-level view of the OFC, positioning it at the nexus of sub-cortical systems and
other prefrontal regions. Particularly we focus on one of the most recent implications
of neuroscientific evidences regarding the OFC - possible functional dissociation
between two of its sub-regions : lateral and medial. We present a system-level
computational model of decision-making and learning involving the two sub-regions
taking into account their individual roles as commonly implicated in neuroscientific
studies. We emphasize on the role of the interactions between the sub-regions within
the OFC as well as the role of other sub-cortical structures which form a network with
them. We leverage well-known computational architecture of thalamo-cortical basal
ganglia loops, accounting for recent experimental findings on monkeys with lateral and
medial OFC lesions, performing a 3-arm bandit task. First we replicate the seemingly
dissociate effects of lesions to lateral and medial OFC during decision-making as a
function of value-difference of the presented options. Further we demonstrate and
argue that such an effect is not necessarily due to the dissociate roles of both the
subregions, but rather a result of complex temporal dynamics between the interacting
networks in which they are involved.

Author summary
We first highlight the role of the Orbitofrontal Cortex (OFC) in value-based decision
making and goal-directed behavior in primates. We establish the position of OFC at
the intersection of cortical mechanisms and thalamo-basal ganglial circuits. In order to
understand possible mechanisms through which the OFC exerts emotional control over
behavior, among several other possibilities, we consider the case of dissociate roles of
two of its topographical subregions - lateral and medial parts of OFC. We gather
predominant roles of each of these sub-regions as suggested by numerous experimental
evidences in the form of a system-level computational model that is based on existing
neuronal architectures. We argue that besides possible dissociation, there could be
possible interaction of these sub-regions within themselves and through other
sub-cortical structures, in distinct mechanisms of choice and learning. The
computational framework described accounts for experimental data and can be
extended to more comprehensive detail of representations required to understand the
processes of decision-making, learning and the role of OFC and subsequently the
regions of prefrontal cortex in general.

Introduction 1

Psychological and economic accounts of human and animal decision making have 2

placed a great emphasis in the concept of value [1–3]. Value-based decision making is 3

a process of evaluation of alternatives in terms of subjective preference to their 4

potential consequences and their relevance to internal motivations. Thus often in the 5

context of decision-making of an animal, value remains a subjective, comparable 6

quantity, that spans across multiple neural pathways [4]. The Orbitofrontal Cortex 7
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(OFC) is one of the prominent regions of the Prefrontal Cortex (PFC) that is believed 8

to play a crucial role in value-based decision making [5, 6] and learning [7] where value 9

changes over time because of changes in internal states or external contingencies. 10

However, specific functional role of the OFC in value-based decision making is not 11

clear. Moreover, to some degree or the other, the OFC has been implicated in almost 12

all of the fundamental processes formally described to be involved in value-based 13

decision making [8] - Representation, Valuation, Action selection, Outcome evaluation 14

and Learning. 15

In the context of ‘Representation’ of a decision scenario, the OFC has been 16

proposed to represent a cognitive map of task space [9]. Further in the context of 17

‘Valuation’, the role of OFC has been implied in encoding the value of the offered and 18

chosen goods [10,11]. It might appear that there are other valuation systems in the 19

brain [12–14], but what makes OFC unique in valuation is that it encodes the value 20

irrespective of the visuo-spatial and motor aspects. For instance, the value 21

representation in the OFC has been argued, not only to guide choices consistent with 22

Transitivity [15], but also to represent largely varying subjective values in an adaptive 23

manner [16,17]. These representations were proposed to be based on a common 24

currency [1, 6, 18] that guide the comparison for the decision between different objects 25

that are otherwise incomparable. Alternative to the theory of common currency, it 26

was proposed that what the OFC facilitates is the process of common scaling [19–21] 27

which is qualitatively distinct from that of converting different rewards into a common 28

currency. Instead, common scaling corresponds to retaining the individual value of 29

each reward, and converting them to a different scale that makes them comparable. 30

Evidently, with complex possibilities in the process of valuation, arise different 31

possibilities of action selection processes. 32

Furthermore, exact representations and mechanisms through which the OFC 33

contributes to behavior are still up to active debate [22]. Moreover, several early 34

implications of the OFC in the paradigms related to reversal learning [23], response 35

inhibition [24,25], flexible stimulus-outcome associations [26,27] have been overturned 36

using the same experimental techniques [7] or even more accurate ones [28], modified 37

task structures [29,30] or pointing out the fact that the findings from other related 38

brain regions explain certain implications better [31–35]. 39

Dissociate roles of lateral and medial OFC 40

The evident underlying complexity of studying the role of the OFC in value-based 41

decision making and learning, and goal-directed behavior is underlined by the large 42

heterogeneity of the region, unlike the rest of PFC which is homogeneously granular. 43

The heterogeneity is multi-fold : different groups of neurons that encode different 44

aspects of choice process in a single task context [11], cyto-architecturally different 45

areas (granular and agranular) and their remarkably distinct connectivity pathways 46

through different brain structures [36–38]. The possibility of functionally dissociate 47

roles of topologically different sub-regions of the OFC has been of wide interest 48

recently. While there are other sub-divisions of the OFC reported to be playing 49

functionally distinct roles in behavior [39–41], the distinction that is most extensively 50

reported to imply strikingly different functional roles is the one between lateral and 51

medial parts of OFC [28,42,43]. In the scope of this article, as referred in most of the 52

related experimental works, ventromedial prefrontal cortex (vmPFC) is also 53

considered under the purview of medial OFC [44,45]. It has also been observed that 54

lateral and medial OFC have clear divergent connections to different networks [46]. 55

Both in monkeys and humans lateral OFC is reported to receive extensive projections 56

from diverse sensory modalities through the somatosensory and insular cortices, and 57

also heavy projections from amygdala [47–49]. Whereas, the medial OFC has strong 58
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projections from hippocampus, hypothalamus, ventral striatum (VS), relatively less 59

projections from amygdala, and is strongly connected with the cingulate cortical 60

areas [50,51]. 61

In this current work, we present a recurrent neural network model of decision 62

making and learning involving the OFC. The OFC, together with some nuclei of the 63

basal ganglia (BG)(especially VS) and the thalamus (Th), forms a closed loop whose 64

dynamics leads to action selection by competition resolution. This loop is a part of 65

several similar generic loops that are formed between different cortical regions and 66

different nuclei of the BG. A generic loop will be referred hereafter as a CBG loop. 67

Notably, we separate the part involving the OFC into two CBG loops involving lateral 68

and medial OFC, accounting for the individual experimental implications of the lateral 69

and medial sub-regions. The input to the lateral OFC loop is provided with the 70

information that represents exteroception - the value information arising from external 71

factors like visual cues; the input to the medial OFC loop is predominantly the 72

interoception - value information more with respect to internal motivational processes 73

like satiety levels and internal needs [42]1. Across both these loops, we use the idea of 74

the Current Subjective Value (CSV) in the model as an input to lOFC and mOFC. 75

Besides the activation in the loops that represents the visual salience of the cues, CSV 76

represents the value based on which the sub-regions of OFC contribute to the 77

decision-making process. Such a subjective value is known to arise from a 78

comprehensive relation of lateral OFC with basolateral amygdala and the ventral 79

striatum in an ongoing task context [52–55] (see Materials, CSV). 80

We provide a plausible explanation for one of the prominent experimental 81

observations regarding the dissociate roles of lateral and medial OFC, studied in 82

individual lesions in monkeys [43]. We represent this proposed dissociation in terms of 83

the representation and processing of the task information. Furthermore we argue that, 84

in the context of learning vs choice notion of lateral and medial OFC [56], more than a 85

clear dissociation, it is the temporal interaction of both the sub-regions that highlights 86

their roles at different stages of a decision task. 87

Results 88

We first describe the performance of an existing model of decision-making and learning 89

on a 2-arm bandit task with probabilistic reward. We take the advantage of generic 90

nature of the task to highlight the fundamental dynamics of the model. We then show 91

that the model presented here with the distinct description of lateral and medial OFC 92

replicates the results of basic model, robustly and in more realistic timescales. We 93

further present complementary findings of separate lesions (simulated) of the lateral 94

and medial OFC components in the model. We discuss the effect of these findings on 95

the performance in different task contingencies, replicating a neuroscientific evidence 96

found in monkeys with lesions to different subregions of OFC. 97

2-Arm Bandit Task and Probabilistic Reward Learning 98

Multi-arm bandit task is a classic reinforcement learning problem that has been used 99

in the study of decision-making in experimental [7, 43,57] and computational 100

neuroscience [58–60]. Typically, in an N-arm bandit task, there are N possible cues 101

(bandits) each carrying a different probability of reward and requiring a particular 102

action to do, in order to select the cue. Fig. 1A shows an example trial of a 2-arm 103

bandit task that has been used to study the computational models of probabilistic 104

reward-based learning involving the basal ganglia (BG) [60,61]. In this case, cue is one 105

1What was referred to as OFC in this work actually recorded from the lateral areas of the OFC
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of the four possible shapes. The reinforcement in the model during the task is driven 106

by the probabilistic reward offered at the end of each trial, with a different probability 107

for each cue. It has been shown that monkeys learn to perform the task [57], learning 108

the reward contingencies over time and choosing always the best rewarding option 109

after learning. 110

The basic model (referred hereafter as OFC model) is a set of inter-connected CBG 111

loops and an associative network (ASC), each network processing different information 112

and contributing for a decision within the network (Fig 1C). In each trial, the CBGcue 113

labeled ’limbic’ takes as the input, the activation for the shapes that are presented in 114

the trial. This activation represents a constant visual salience component, that in the 115

simplest case, is same for every stimulus (shape). Similarly the other CBG position 116

loops (CBGpos) takes as the input, the activation of the positions where the shapes are 117

presented. Since the positions are chosen randomly and carry no significance in 118

obtaining reward, there is no value-learning in this CBGpos loop. Hence the activation 119

of a position represents just the presence of a cue at that position. Finally, the ASC 120

network takes as the input, the combined information of binding specific shape to a 121

specific position. The ASC network represent the associative loop through lateral PFC 122

and the dorsomedial striatum (DMS) which is believed to represent a multi-modal 123

information of stimulus-vs-position mapping [62]. This is implemented in the form a 2 124

dimensional mapping for each shape against all possible position and each position 125

against all possible shapes (Fig 1B, blue squares). The networks are inter-connected in 126

such a way that while each of the CBG loops independently processes the information 127

that it is activated with, it also affects the activities in the other through the ASC 128

network. The network architecture within each CBG loop that guarantees the 129

resolution of competition between the options is based on classical BG pathways that 130

have been previously explained with computational accounts [59,60,63]. 131

In each trial of the task, the model is presented with pseudo-randomized pairwise 132

presentation of the four possible shapes in any two of the four possible positions (’Cue 133

presentation’ phase in Fig 1A and first 6 panels in Fig 1D). Although the performance 134

of the model is assessed in terms of the shape it chooses for optimal reward 135

probability, the choice is confirmed only if the corresponding position of the shape is 136

chosen as the ’motor’ decision (Fig 1A, black + sign under ’Decision’ phase, dashed 137

lines under ’CBG’ in Fig 1D). Thus, after the ’Decision’ phase of the trial, the shape 138

at the chosen position is considered as the choice of ’cue’ and the reward is delivered 139

according to the predetermined probability associated to that cue. 140

Fig 1. 2-arm bandit task. A. Sample trial from a 2-arm bandit task. Out of four
possible shapes (cues) are shown at two random positions (of the four cardinal
positions). The position that is chosen implies the choice of the shape made. B. Basic
model involving two CBG loops and an associative loop (ASC), one CBG loop leading
to a choice between the two cues and the other between the two positions. The final
output that is considered from the model within a trial is that of the decision of CBG
position, the cue shown at the chosen position is considered as the chosen cue. Note
the CBG Cue is labelled limbic, as it will be developed more into components
representing sub-regions of the OFC. Blue arrow represents the connection that can be
modified by learning. C. The proposed change in the original model which will be
described in detail in the following section. D. Activation of each cue that is shown in
a choice, its position and the combined information. Also, the evolution of activity in
a CBG loop - solid lines for cue, dashed lines for positions.

The performance of the model is demonstrated under two conditions : EASY and 141

DIFFICULT. EASY is the condition where the reward probabilities related to each 142
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shape are fairly separated and DIFFICULT is the condition where the reward 143

probabilities are either lower or closer, thus making the reinforcement difficult (Fig 144

2A). The effect of learning in the model after each trial can be observed in terms of 145

the decision times over the duration of the task. A decrease in decision times of both 146

cue and position is observed (Fig 2B, left). A running average over the choice of 10 147

trials is considered for the performance over 120 trials. The performance of the model 148

under the EASY condition replicates animals’ behavior [57] (Fig 2D, blue). In the 149

DIFFICULT condition (Fig. 2A, right), the reward probabilities of both the shapes 150

are lower or closer. This should result in lower rate of reinforcement and thereby make 151

it difficult to make a correct choice. Animals however, with considerable amount of 152

training, were shown to identify the option with more chance of reward and thus make 153

correct choices [7, 43]. We tested the same model as in the previous EASY case (Fig 154

2A, left), but the model couldn’t learn the appropriate contingencies well. The 155

Decision Times (DTs) were longer compared to the previous case (Fig 2C) and the 156

overall performance was sub-optimal (Fig 2D, red). 157

Fig 2. N-arm bandit task. The task described in Fig 1A has two possible cues
(shapes) each with a predetermined probability of reward upon choice. A. Left and
right figures show two different reward probability schemes, in EASY and DIFFICULT
task scenarios. Each color represents a particular shape, as in the legend of right
sub-figure. B, C. Decision Times (DTs) in the model after cue presentation. 120 trials
are divided into 6 bins, with 20 trials per bin, and the DTs of both cue decisions and
the position decisions are averaged per bin. B shows the DTs in EASY condition of
the task and C in DIFFICULT condition. D. Performance of the model. Running
average of number of correct choices across 10 trials, averaged over 10 sessions.
Correct choice means the shape that rewards the most according to the predetermined
probabilities. Lighter color filling represents the standard deviation.

Precise Value Comparison 158

We then extend the ’limbic’ CBG loop to individually describe two separate CBG 159

loops - one representing the lateral OFC and the other representing the medial OFC. 160

Here after this version of the model will be referred as lmOFC model. The CBG loop 161

involving lateral OFC builds on the top of the single limbic loop from the basic model 162

(described in Fig 1B). In addition to the activation (Iext) to the network, a Current 163

Subjective Value (CSV) for each shape is also added to the input. CSV represents the 164

subjective value of a shape at any moment taking the externally learned reward 165

contingencies and internal bodily desire for the reward that the shape leads to (see 166

Materials, CSV). Another key aspect of lOFC is that it properly assigns the obtained 167

reward to the appropriate choice made in that trial (referred as credit assignment). 168

There has been evidence that neurons in lateral OFC are particularly active after the 169

reward delivery in a choice [42] and also the fact that medium spiny neurons neurons 170

which are extensively involved in decision-making are consistently active for a while 171

after reward delivery [55]. These evidences support the possibility that cortico-striatal 172

synaptic plasticity is a plausible phenomenon in the context of obtaining reward. 173

Similar arguments were made by other experimental findings [7]. 174

The CBG loop with medial OFC receives input from the CSV layer. Medial OFC 175

has a separate value comparison mechanism implemented as a simple ’recurrent 176

excitation lateral inhibition’ model, activated by the CSVs received. It was shown that 177

the activity in medial OFC correlated to the value difference between the options [64]. 178

Supporting the view that the relative difference of the presented options is represented 179

in vmPFC, multiple value comparison mechanisms have been proposed. This value 180
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difference signal further allows vmPFC to perform a value comparison to facilitate the 181

choice through principles of recurrent excitation and lateral inhibition [21,65–67]. The 182

output activities of mOFC are fed into its CBG loop. It has been shown that one of 183

the general function of populations in the PFC is to maintain history of decision 184

events such as previous action, previous reward etc [68]. Accordingly, we implemented 185

a simple history of rewards in mOFC, without cue-specific information. As the lOFC 186

maintains the current choice until the reward delivery and later [42], possibly a history 187

of choices is maintained in lOFC. It was shown that lesions to lOFC affect the 188

appropriate consolidation of the reward history with the choice history [7]. Hence, for 189

the sake of simplicity, both the histories in lOFC and mOFC are combined within the 190

lOFC to provide a combined choice-reward history up to one previous choice and 191

reward, and it is fed into the CBG loop of lOFC along with the activation of the cue. 192

In addition, a synaptic connection is added to the ASC layer outside the limbic 193

network, from each cue population in lOFC to all the possible position populations in 194

the 2-D mapping of ASC network. However the learning in these connections would be 195

less influential on the decision, compared to that in the lOFC network, since the 196

learning happens with respect to all four possible positions corresponding to the cue in 197

the 2-D mapping of ASC (Fig 1B, input to ASC). Although it has been shown that 198

mOFC / vmPFC encodes action-outcome associations in several task settings [69–72], 199

the design of the n-arm bandit task setting does not allow much of learning 200

action-values. The reason is that the task randomizes the positions where the cues are 201

present and hence the action required to chose a cue. 202

We then tested the lmOFC model on the DIFFICULT condition as in the previous 203

task. The model performed considerably well compared to the previous OFC model, 204

with much faster DTs. Both the models have an estimated value difference for the 205

ongoing task, across all the trials. Interestingly, the precise value comparison in 206

mOFC estimates the value difference across all the trials better than that estimated by 207

the OFC model under DIFFICULT condition (Fig 3D). 208

Fig 3. lmOFC Model : CBG loops with lateral and medial OFC. A. lmOFC
Model. Changes in the ’limbic’ CBG loop, compared to the basic model. Lateral OFC
(lOFC) has access to cue identity (shape), hence drives learning the connections to its
CBG loop. lOFC also activates the Current Subjective Value (CSV) for each of the
presented cues from elsewhere. Medial OFC (mOFC) has a value comparison
mechanism to compare the CSVs of the presented cues it receives. mOFC further
drives its CBG loop with the ongoing value comparison outputs. Both lOFC and
mOFC also maintain general history of chosen cue-reward association and reward
respectively. This input is also used in the activation to their respective loops. B. The
average DTs of decisions choosing cue and position, across 120 trials binned every 20
trials. C. The performance of the lmOFC model (green) in comparison with the
performance of the basic model in DIFFICULT condition (red). D. Average value
difference of the presented options estimated in lmOFC model (green) and basic model
under DIFFICULT condition (red).

Proximity of Values and Decision Making 209

We tested the lmOFC model on a 3-arm bandit task (Fig 4). Each of the three cues 210

that are shown in every trial has a reward probability upon its choice. As shown in 211

Fig 4, V1, V2 and V3 are the reward probabilities associated to the cues plus, delta 212

and star respectively in a given experimental session. The task is carried out under 213

three different reward schedules (Fig 5A-C). In all the sessions, V1 and V3 are fixed to 214

be .7 and 0.05. V2 value is changed across three types of sessions : V2_HIGH, 215
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V2_MID and V2_LOW where V2 is set to 0.6, 0.3 and 0.1. Similar task schedule was 216

used on animals to test the effects of lesions of lateral and medial OFC separately [43]. 217

Fig 4. 3-arm bandit task A sample trial from the 3-arm bandit task. Three
possible shapes (cues) are shown in three random positions (of the four cardinal
positions). The position that is chosen implies the choice of the shape made. Upon
selection of a shape, a reward is delivered with a probability (p), which is different for
each of the shapes (V1, V2 and V3).

The lmOFC model is used without any changes. At the time of presentation in 218

every trial, 3 cues are activated simultaneously (along with their positions in the 219

CBGpos loop and in the ASC network). In terms of the model parameters, just the 220

input activation which represents the cue salience had to be increased as compared to 221

when the choice was between 2 options (as in the previous tasks). In this task, a 222

correct choice or a good choice is a V1 choice. The model reached optimal 223

performance (more than 80% V1 choices) in less than 150 trials in each session, in all 224

three reward schedules (V2_HIGH, V2_MID and V2_LOW). This is referred as the 225

’Control’ condition, green in Fig 4E-J. 226

Fig 5. Effects of lateral and medial OFC lesions in the model. A-C. 3
conditions of the task (each column). Of the reward probabilities V1, V2 and V3
described in Fig 4, V1 and V3 are fixed in all 3 task conditions (A-C, red and green
respectively). The 3 conditions depend on the value V2 (A-C, blue) : V2_HIGH,
V2_MID and V2_LOW. D-F. Lesion of mOFC under each task condition. The
average performance in each condition with a lesion to mOFC (blue) is compared to
the control performance (green). G-I. Lesion of lOFC under each task condition. The
average performance in each condition with a lesion to lOFC (pink) is compared to the
control performance (green).

Furthermore we simulated lesions of lateral and medial OFC in the model. Since 227

the model generates a decision through at least one of the ’limbic’ CBG loops and the 228

other ASC and CBGpos loop, even in case of a lesion to lOFC or mOFC, a valid 229

decision should be made. We first describe the changes in the model with respect to 230

each of the lesions and the corresponding results. 231

Medial OFC Lesion 232

A lesion of mOFC to the lmOFC model shown in Fig 3A makes the model slightly 233

similar to the basic OFC model described in Fig 1B. The credit assignment still works 234

by lOFC during the period after reward (Fig 1D, CBG, after ’Reward’ phase), because 235

the identity of the chosen cue maintained in lOFC is available for learning after the 236

reward. However, in the absence of mOFC, the input to lOFC from the ongoing 237

precise value comparison in mOFC is absent. 238

In all the control experiments, the model reached optimal performance within 150 239

trials. In the case of medial OFC lesions however, the performance was significantly 240

impaired in the case of V2_HIGH scenarios, when V1 and V2 values were proximate. 241

In the case of V2_MID and V2_LOW, the performance was observed to be similar to 242

that of controls, except for a slight delay in reaching better performance. Such a 243

normal performance in the case of V2_MID and V2_LOW can be attributed to the 244

appropriate credit assignment by lateral OFC happening during learning. When the 245

value difference is sufficiently large, and the credit correctly assigned to the correct 246

choice, as the V2 anyway does not reward as much as V1, it is easily learned between 247
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the lOFC-CBGcue synaptic connections and they can drive the decision without a 248

precise comparison (Fig. 4 D-F). 249

Lateral OFC Lesion 250

One of the major changes in case of the lateral lesion is the credit assignment. In the 251

control condition, when there is a reward delivered, the activation of the chosen cue in 252

lOFC is active (Fig 1D, CBG, after ‘Reward’ until 2500ms). When there is no lOFC in 253

the network, the association of current reward to only current choice can no longer be 254

done. In this case, we still consider that the CSV for each cue is sent as an input to 255

mOFC, because mOFC/vmPFC has been shown to receive projections from the 256

ventral striatum [50,51,73], which is a crucial component of the CSV layer. 257

Striking of the observations, in the case when the difference between V1 and V2 258

was close, monkeys with mOFC lesions showed impaired performance while the 259

controls and animals with lOFC lesions fairly performed well as V1 and V2 were 260

distinct. Such an impairment argued for the role of mOFC to be more sensitive to the 261

value difference between the options. Conversely, when the difference between the 262

values was more, quite surprisingly animals with lOFC lesions were impaired whereas 263

the controls and animals with mOFC lesions could steadily perform optimal choices. 264

While it was an interesting observation to see how mOFC could not compensate even 265

when the difference between the values is high (meaning it is an easy choice), it 266

highlighted the role of lOFC in appropriate credit assignment, i.e. assigning the 267

reward to the appropriate choice made in the current trial rather than to the previous 268

or even the succeeding choice or even to the choice that rewarded the most historically. 269

In the case of lOFC lesions, the performance was affected in rather contrasting 270

manner. Although eventually the performances reached near-optimal in all three cases 271

of V2_HIGH, V2_MID and V2_LOW, the performance was sub-optimal for most of 272

the earlier part of the sessions especially in the cases where the value difference was 273

larger. This highlights the importance of lOFC in appropriately assigning the credit of 274

reward to the correct option. Impairment of performance in the absence of lateral OFC 275

in the case of V2_MID and V2_LOW was observed for the initial part of the session. 276

This may be due to partial learning in the form of reward-based history maintained in 277

medial OFC (as it was maintained when lateral OFC in intact) (Fig. 4 H-I). 278

Discussion 279

We demonstrated the OFC on top of classical sub-cortical decision-making systems, 280

with the descriptions of experimentally observed roles of its individual sub-regions. We 281

explain the seemingly dissociated yet more complicated effects of the sub-regions of 282

the OFC on the task performance depending on the task structure (value difference 283

between the options). The OFC is clearly a crucial prefrontal region with 284

heterogeneous representations and dynamics that result in complex behavior. 285

Therefore clearly it is not a feasible idea to attempt a simplistic representation that 286

relies on a unique way of information processing within the OFC, without implying 287

several other brain regions that closely interact with the OFC during the behavior. 288

Instead, we acknowledge the positioning of the OFC in the grand picture of several 289

prefrontal and sub-cortical brain regions, as well as the heterogeneity within itself. 290

Before attempting to model the possible mechanisms within the sub-regions of OFC in 291

detail, it is crucial to build a framework that embeds a representation of environment 292

in an embodied manner (with bodily needs and relevant behavior protocols for 293

testing). Hence this work points towards the interest for modeling the dynamics of 294

OFC as a part of a larger framework of related brain systems that the OFC interacts 295
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with, and the valuation systems it employs to guide decisions and learning. We chose 296

one of the well-accounted frameworks of decision-making and reinforcement learning 297

involving the BG (CBG loops) and complemented it with the specialized 298

representations of the sub-regions of the OFC. We show that a simplistic model as in 299

Fig 1B is sufficient for simple tasks. We further demonstrate that a more informed 300

decomposed model (lmOFC model, Fig 3), while performing equally well on the 301

simple tasks, also allows to study performance on more complex tasks in which the 302

basic model cannot perform well. 303

Choice 304

Although the primary role of lateral OFC has been implied to be appropriate credit 305

assignment, here we use the fact that lateral OFC still plays an important role in 306

driving the activities in the downstream BG loops with the dynamic subjective values 307

added to the visual salience. Since the synaptic weights that are changed through 308

learning are the ones connecting lOFC to the CBGcue loop, the dynamics would 309

passively favor a choice whose connection weights have been sufficiently learned. For 310

instance, in the case of a lesion to mOFC (Fig 5), the initial decisions before any 311

learning may be guided by lOFC through the CBG loop, randomly with the help of 312

intrinsic noise. However, as in the case of Fig 5E,F where only cue rewards 313

significantly more, the learning can rapidly increase the synaptic weights in the 314

network corresponding to that cue and thus guide the subsequent decisions to that cue. 315

This could be one reason why the performance slowly picked up towards the latter end 316

of the trials, in the cases of V2_MID and V2_LOW in case of medial OFC lesions. 317

Whereas in the case of mOFC lesion under V2_HIGH condition, since V1 and V2 318

almost similarly reward, even if appropriate credit assignment is done between the 319

cues corresponding to V1 and V2, the network may not be able to definitively guide 320

the decision necessarily towards V1. 321

Learning 322

Learning in the system occurs at the level of both CSV (for expected values) and 323

cortico-striatal synapses. The learning that occurs at the level of cortico-striatal 324

synapses indirectly represents the reward contingencies of stimuli in terms of their 325

probability. One of the possible motivations behind multiple learning mechanisms in 326

the system is the feasibility of a shift of control from the value-comparison based 327

processes in the mOFC/vmPFC at the beginning of the trials to a faster, network 328

strength based decision through the lOFC-BG loops driven by the learned connection 329

weights, in the trials after substantial learning. Such a distinction was reported where 330

activities in vmPFC were more remarkably distinct between more deliberative 331

situations with slower reaction times as opposed to trials towards the end of the 332

experiment or even no-brainer trials (highly probable high reward versus the opposite). 333

Moreover, the involvement of value-difference signal in vmPFC consistently decreased 334

towards the later trials of the task [74]. However, it is important to note that, in a 335

different formal description, it has been highlighted that ventrolateral PFC (vlPFC) 336

encodes the Availability (probability) of rewards whereas the OFC was shown to 337

encode the Desirability (palatability) of rewards [75]. However it was shown activity in 338

medial and lateral orbitofrontal cortex, extending into vmPFC, was correlated with 339

the probability assigned to the action actually chosen on a given trial [70]. 340
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Lateral and Medial in Learning and Choice : Dissociation or Interaction ? 341

What is important to note here is that the dissociate effect observed does not 342

necessarily imply that both the sub-regions have dissociate roles in decision-making 343

and learning, as recently suggested [56]. The dissociation might be observed in terms 344

of the anatomical connectivity in the sense that lateral OFC predominantly receives 345

inputs from sensory regions about external environment whereas medial OFC has more 346

inputs from internal bodily states and visceral responses. But we argue that seeming 347

dissociation in terms of internal processes within these sub-regions is a possible 348

network effect as a result of their temporal dynamics. Because, as we have shown here, 349

both the sub-regions are involved in the circuitry that is capable of both guiding 350

decisions and learning from outcomes. Albeit, the dissociation might be apparent 351

because of the fact that each of them might have access to different information about 352

the state of the environment and exert control at a different stage of the behavior. 353

Extensions 354

The task structures used in this work are related to only one type of outcome and 355

assuming the motivational value of the outcome is always non-zero. And ventral 356

striatum particularly plays an important role in learning action-values as well [4]. By 357

incorporating computational accounts of emotional value learning in BLA, and taking 358

the internal motivation into account through ventral striatum and lateral 359

hypothalamus, experimental results of the role of OFC in paradigms like Reinforcer 360

Devaluation [28,42,52] can be explained. Possibly, interesting findings like the one in 361

Reversal Learning paradigm can be explored where neither lateral nor medial lesions 362

of OFC do not affect the behavior whereas the lesion of OFC as a whole affects. As 363

mentioned earlier, the OFC has been proposed to represent a cognitive map of task 364

space [9] and to encode the value of the offered and chosen goods [10,11] 365

State/Task space representation in the OFC 366

The OFC has been proposed to encode the task states and represent a cognitive map 367

of this task space [9]. It has also been shown that OFC lesions in animals cause 368

deficits in acquiring information about the task [27,76]. In this work, related to the 369

simple 2-arm bandit task done under a DIFFICULT condition (Fig 2D, red), the 370

model fails to perform as good as in the EASY condition. However, with a slight 371

change in the task structure, the model can be shown to perform better. That is, 372

instead of presenting the same pair of shapes, imagine there are four possible shapes 373

and the 6 possible pairs are presented for choice pseudo-randomly. Even if the reward 374

probabilities of both the shapes used in Fig. 2A remain the same, besides two other 375

possible options, the options with which these cues are presented change. This can be 376

due to the modified learning rates because of the state-change across each trial 377

(because no pair is presented consecutively). Alternatively it can also be remarked 378

that, even though the value of the first two shapes did not change, the overall value of 379

each trial or that of the entire task has changed in the presence of other options. 380

These two factors can be hypothesized to be represented in terms of state prediction 381

errors and value difference signals in lateral and medial OFC respectively. 382

Temporal Dynamics : Delayed presentations, Opportunistic behaviors 383

One of the clear limitations of the model presented in this work is that the temporal 384

dynamics at various stages of decision-making processes with respect to the discussed 385

sub-regions of OFC is not entirely accounted for. Particularly an intracranial EEG 386

recordings of OFC in humans showed that lOFC was encoding experienced value in 387
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the reward delivery phase [77]. This model needs to extended further by incorporating 388

the cortico-cortical interactions, within the subregions of OFC as well as other related 389

prefrontal regions like the ACC which are believed to be rather interactive in their 390

roles in behavior [78]. Furthermore, the role of any possible interaction between both 391

the sub-regions of OFC, given their connectivity through the medial orbital sulci [46], 392

has not been explored much. However, even if it is the case that the lateral OFC 393

represents identity specific rewards and vmPFC represents general, scaled reward 394

signals, it is unclear how these two signals could be linked to sub-serve goal-directed 395

behavior. To this extent, there is not much evidence except one study that showed the 396

functional connectivity was predictive of satiety related changes in choice 397

behaviour [79]. Similarly, the role of VS also becomes crucial in serving such value 398

signals that combine both value and internal motivation before the comparison 399

processes in the mOFC/vmPFC. 400

Conclusion 401

The anatomical description implicitly highlights the difference in the accessibility of 402

lateral and medial OFC for experimentation procedures. The same applies to imaging 403

studies, which happen to be a major contribution of studies in humans, that the 404

regions highlighted by BOLD signals cannot be precise enough within the scope of 405

subregions. Another challenge is the homologies of the OFC among humans, 406

nonhuman primates and rodents. Since a good part of the literature on OFC is almost 407

equally contributed by the studies in all three species, it would be major task at hand 408

to be wary of the similarities and the differences among what is defined as OFC in 409

each of these species. Functionally, it is also not straightforward to identify whether a 410

difference in an ability of one species (say humans) to demonstrate a faculty and that 411

of another (say rats) is a difference in kind or a difference in degree. Although, it 412

would be fairly possible to extend the conclusions from one species to another 413

depending on what is being studied (for example, the findings related to 414

action-outcome contingencies or basic behavior in rats might extend well to primates 415

beyond which more flexible representations might emerge). 416

Challenges in studying the representation and mechanisms in 417

OFC 418

As far as the interest in the dissociate contribution of subregions of OFC is concerned, 419

there are not so many experimental evidences that could establish a double 420

dissociation between different subregions [28,42,43,80]. Importantly, it has been found 421

out that both lateral and medial regions of OFC represent the perceived value of task 422

events, albeit with different levels of participation in different task settings [42]. It is 423

generally single-neuron recording studies or lesion studies in macaques or rats [81] 424

predominantly on the better accessible lateral OFC than the medial OFC, and BOLD 425

signal correlation from fMRI studies in humans. Few behavioral studies on frontal 426

damage patients have also discussed separate roles of OFC and vmPFC [4,26,82,83]. 427

However, owing to the different techniques and methodologies used, there are few 428

inconsistencies where both lateral and medial regions were exclusively implied for 429

signals during the anticipation of rewards [84]. Another interesting theory about the 430

dissociating role of lOFC and mOFC that probably requires closer look is that while 431

mOFC might represent the values of options in a context where there is no choice to 432

be made, lOFC doesn’t represent the value in a choice-free context [80]. 433

Notwithstanding some complementary [85,86] as well as contrasting [87,88] 434

findings, separable representations of absolute values and relative values seem to be a 435
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key dissociation between the medial [5, 19,89,90] and lateral [91] OFC. Future studies 436

that could effectively dissociate the factors such as salience of the stimuli, internal 437

motivation and thereby investigate the difference between absolute and relative value 438

encoding, should provide more insights into whether lateral and medial OFC play 439

dissociate role to represent them. 440

Well within one species, reported counter-intuitive findings also might encourage 441

the need to dissociate the roles of lateral and medial OFC. Quite often the ambiguity 442

arises from the task structure which doesn’t sufficiently dissociate closely related 443

aspects of a certain behavior. In the few studies that have described the nature of 444

dissociation between lateral and medial OFC, certain results were difficult to explain 445

and there appears to be several possibilities for such results. For instance, when it is 446

observed that neither of the individual lesions of lateral and medial OFC impair the 447

animal in Reversal Learning while the lesion of OFC as a whole does [83,92], it could 448

be possibly mediated by other sub regions of OFC (central, anterior or posterior) or 449

there might very well be a possible mechanism through which they partially 450

compensate for one another interacting with other parts of the brain. In consecutive 451

reinforcer-devaluation tests, while monkeys with lOFC lesion showed significant 452

impairment, the ones with mOFC lesion were less consistent in their choices across 453

sessions contrasting overall performance similar to that of lateral lesions immediately 454

after the lesion, and with that of the controls in the later sessions after the lesion [28]. 455

Materials and methods 456

We use a neuro-computational connectionist modeling approach to highlight the 457

organization of subsystems that drive decision-making and learning. The subsystems 458

are built with simplified representations of the experimental findings related to the 459

roles of lateral and medial OFC. The comprehensive model accommodates 460

representations of a fairly complete set of phases involved in decision-making [8]. 461

Besides the component of OFC, the information processing in the model for 462

decision-making and learning also involves minimized yet biologically plausible 463

representation of several sub-cortical mechanisms involved. However, we emphasize 464

more on the contributions of the lateral and medial OFC, maintaining the generic 465

nature of rest of the mechanisms. We first introduce the kind of tasks on which the 466

model is tested, that would demonstrate both the dynamics of a decision as well as the 467

progression of behavior through the task. Then the major computational aspects of 468

the model will be presented, referring to the representations required for the tasks 469

described. 470

Thalamo-Cortical Basal Ganglia (CBG) Loops 471

The fundamental decision making networks and learning in the system are 472

implemented in the form of schematic thalamo-cortical basal ganglia (CBG) loops 473

which process the information of the cues, estimated values of the cues and the actions 474

required to select the cues. The core action selection mechanism between multiple 475

options - cues or actions, is implemented using an architecture of the basal ganglia 476

(BG) similar to that has been described in classical descriptions of pathways in BG 477

(summarized well in [93]). Thus we define a CBG loop as a thalamo-cortical BG loop, 478

an example of which is described in S1 Fig. The architecture presents a general idea of 479

the connectivity between the input structures of BG - Subthalamic Nucleus (STN) 480

and Striatum (STR) and the output structures - Globus Pallidus pars Interna (GPi) 481

and Substantia Nigra pars Reticulata (SNr). 482

December 3, 2019 13/24

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2019. ; https://doi.org/10.1101/867515doi: bioRxiv preprint 

https://doi.org/10.1101/867515
http://creativecommons.org/licenses/by/4.0/


We implement computational model of parallel loops of three kinds, which were 483

originally described as : limbic, sensori-motor and associative [94]. The limbic loops 484

originate in the orbitomedial prefrontal cortex (generally comprised of OFC and ACC, 485

through amygdala, hypothalamus and the subdivisions of VS (nucleus accumbens) and 486

end back in the medial PFC. The limbic loops, besides processing external 487

information, are based on interoceptive information. They are organized around the 488

selection of the goal of the behavior, according to its motivational value, in response to 489

perceived needs or according to its hedonic value. Individual sub-regions of medial 490

prefrontal cortex form the feedback loop through different nuclei of VS [95,96]. It is 491

these limbic loops that we focus on in this work, specifically emphasizing the role of 492

the OFC and possible dissociate roles of its sub-regions, since lateral and medial OFC 493

also are part of this network of parallel loops. For example, in a 2-arm bandit task 494

shown in Fig 1A, the cues (shapes) that are presented in each trial are represented 495

within these limbic loops (CBGcue in Fig 1A). The information about the position of 496

the cue (thus the required action to select the cue) is represented in the sensori-motor 497

loops (CBGpos in Fig 1A), from the regions in Parietal Cortex to form the feedback 498

loop through the dorsolateral striatum (DLS) [97,98]. The lateral prefrontal cortex 499

(lPFC) forms an associative loop with the dorsomedial striatum (DMS), receiving 500

multimodal information from the associative regions of the posterior cortex (ASC in 501

Fig 1A). The combined information of which cue is present in which position, which 502

solves the binding-problem, is represented in the lPFC and DMS [62]. 503

The population dynamics and the learning mechanisms described below have been 504

adapted from similar works before on the thalamo-cortical BG loops [59,60]. 505

Population Dynamics 506

All the structures within a CBG loop are implemented as populations that are part of 507

a recurrent neuronal network, with neuron units of similar dynamics. The dynamics of 508

a neural population unit is described in equation 1, similar to previous computational 509

accounts of decision-making in the BG [63]. Assuming each population unit represents 510

an ensemble tuned towards a particular option : Iext is the external input representing 511

the salience of the option, Is is the input to the unit from its connections (synaptic 512

input) and τ is the decay time constant of the synaptic input and V is the resultant 513

activity of the unit. External input, IExt is provided only in cortical structures (for 514

the other structures IExt = 0), and T is the threshold of a neuron, depending on the 515

population. Also, symmetry breaking is generated by Gaussian noise δ to the activity 516

of each ensemble at each time step. 517

τ
dV
dt

= -V + Is + Iext − T (1)

U = fn(V + δ) (2)

The activation function fn in Eq. 2 is the same for all the structures within a CBG 518

loop and it is a clamping function, except for the striatal structures. The activation of 519

striatal populations, due to their neuronal properties [99–101], can be obtained by 520

applying a sigmoidal transfer function to the activation of CTX-STR inputs in the 521

form of the Boltzmann equation S1 Equation. 522

The synaptic input to a unit j, Ijs , which is the input as a result of the connections 523

from units of other structures (say i), depends on the connection weights (wij) 524

between units i and j , as shown in the equation 3. Except the synaptic connections 525
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that can be learned, the rest remains to be constant connection weights chosen at the 526

beginning, within the range of 0.25 and 0.75, generally chosen around 0.5. 527

Ijs = Σiwij ∗ Ĝij ∗mi (3)

Also, there is a fixed gain parameter that characterizes the strength of interaction 528

between the two populations to which i and j belong. For example, for any pair of 529

connections ij between CTX(i) and STR(j), the gain ĜCTX_STR is fixed. A positive 530

or negative Ĝ defines the connection as excitatory or inhibitory respectively. In the 531

”direct” pathway, as a result of two inhibitory and one excitatory connection, it is 532

referred as a positive feedback loop. In the ”hyperdirect” pathway, as a result of two 533

excitatory and one inhibitory connection, it is referred as a negative feedback loop [63]. 534

Learning 535

The connections between the OFC and the CBGcue loop in the basic model (Fig. 1B) 536

are modifiable. Similarly, after the model is changed to lmOFC model (Fig. 3), the 537

connections between lOFC and its CBG loop, as well as mOFC and ASC are 538

modifiable. The modifiable connections between lOFC and its CBG loop are 539

One-To-One between cue populations in lOFC and cue specific populations in the 540

structures of CBG loop. Whereas the modifiable connections between mOFC and the 541

ASC network are One-To-All i.e, from each cue population in mOFC to all four 542

position populations possible. After every decision and verifying the outcome, the 543

weights are updated. Like in the previous models, all synaptic weights are initialized 544

to 0.5 (SD, 0.005). The weight update term ∆Wt is calculated as a function of reward 545

prediction error (RPE), which is believed to be signalled by dopamine at the level of 546

cortico-striatal synapses. However, it was specifically found that striatal neurons 547

involved in cortico-striatal synapses show long term potentiation (LTP) and long term 548

depression (LTD) with respect to positive or negative prediction error, respectively 549

( [102]). RPE precisely is the difference between the perceived reward value and the 550

expected reward value. In the model, similar to a standard critic-learning RL 551

framework, expected reward values of each stimulus population are maintained and 552

updated. 553

∆Wij = α ∗ δt ∗ Uj (4)

α =

{
αLTP , if δt > 0

αLTD, otherwise
(5)

The RPE, δt is calculated using a simple critic learning algorithm given below. 554

δt = R− vi (6)

where R, the reward, is 0 or 1, depending on whether a reward was given or not on 555

that trial. After the ∆Wt is calculated, the synaptic weights are updated according to 556

S2 Equation. And upon weight changes, to make sure the weights stay within the 557

initial bounds, every weight update is followed by a normalization of weights (S3 558

Equation). vi is the CSV of the cue represented by neuron i in the CBG. The CSV of 559

the chosen cue is then updated by : 560

vi ← vi + (δt ∗ αc) (7)
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where αc is the critic learning rate and is set to 0.025 and αLTP and αLTD are set to 561

0.004 and 0.002 respectively. 562

Current Subjective Value (CSV) 563

OFC is known to represent a current subjective value (CSV) of a stimulus with respect 564

to the body’s internal state (like satiety or desirability of the outcome the stimulus 565

announces). Two primary brain structures that crucially involve with the OFC in this 566

regard are : the amygdala and the ventral striatum (VS). The basolateral amygdala 567

(BLA) has been shown to interact with the OFC and update its stimulus-outcome 568

associations and hence the subjective value of a stimulus [53,54]. On the other hand, 569

the ventral striatum was found to represent a unified quantity as a combination of 570

subjective value and internal motivation using different kind of neurons [55]. Several 571

computational accounts have explained possible implementations of such 572

representations [103–107]. A much detailed representation and role of ventral striatum 573

and its distinct relation to lateral and medial OFC also could be a key factor to 574

study [108–111]. 575

Supporting information 576

S1 Fig High level architecture of Thalamo-Cortical-BG Loops in primates. 577

Classic BG connectivity : STN and STR as inputs, GPi/SNr as outputs. GPi: Globus 578

Pallidus pars Interna; SNr: Substantia Nigra pars Reticulata; STN: Subthalamic 579

nucleus; STR: Striatum. The direct pathway from the prefrontal cortex (PFC, here 580

used generally, including OFC) via STR to GPi, and the hyperdirect pathway from 581

CTX via STN to GPi. It has to be noted that this is only one of several possible 582

interpretations of action selection mechanism within BG, as it sufficiently explains 583

using one excitatory and inhibitory pathway. Several other interpretations exist, for 584

instance, an indirect pathway, which are not considered in this work. Indirect pathway, 585

involving STN, GPe (Globus Pallidus pars externa) and STR, is also a part of 586

”classical” view of CBG network [112–114]. Image re-illustrated, inspired from [93] 587

S1 Appendix. 588

S1 Equation. Sigmoidal transfer function 589

S2 Equation. Oja weight update rule 590

S3 Equation. Weight normalization 591

S1 Table. Parameters of CBG loop structures 592
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