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Abstract 18 

Imaging technology and machine learning algorithms for disease classification set the 19 

stage for high-throughput phenotyping and promising new avenues for genome-wide 20 

association studies (GWAS). Despite emerging algorithms, there has been no successful 21 

application in GWAS so far. We established machine learning based disease classification 22 

in genetic association analysis as a misclassification problem. To evaluate chances and 23 

challenges, we performed a GWAS based on automated classification of age-related 24 

macular degeneration (AMD) in UK Biobank (images from 135,500 eyes; 68,400 persons). 25 

We quantified misclassification of automatically derived AMD in internal validation data 26 

(images from 4,001 eyes; 2,013 persons) and developed a maximum likelihood approach 27 

(MLA) to account for it when estimating genetic association. We demonstrate that our MLA 28 

guards against bias and artefacts in simulation studies. By combining a GWAS on 29 

automatically derived AMD classification and our MLA in UK Biobank data, we were able 30 

to dissect true association (ARMS2/HTRA1, CFH) from artefacts (near HERC2) and to 31 

identify eye color as relevant source of misclassification. On this example of AMD, we are 32 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 8, 2019. ; https://doi.org/10.1101/867697doi: bioRxiv preprint 

mailto:iris.heid@klinik.uni-regensburg.de
mailto:helmut.kuechenhoff@stat.uni-muenchen.de
mailto:helmut.kuechenhoff@stat.uni-muenchen.de
https://doi.org/10.1101/867697


1 
 

able to provide a proof-of-concept that a GWAS using machine learning derived disease 33 

classification yields relevant results and that misclassification needs to be considered in 34 

the analysis. These findings generalize to other phenotypes and also emphasize the utility 35 

of genetic data for understanding misclassification structure of machine learning 36 

algorithms. 37 

 38 

INTRODUCTION 39 

Imaging technology allows for non-invasive access to detailed disease features in large studies 40 

and genome-wide association studies (GWAS) on such disease phenotypes can be expected to 41 

accelerate knowledge gain. However, image-based disease classification can be challenging for 42 

large sample sizes due to time-intensive, tiresome manual inspection. This limitation can be 43 

overcome by automated disease classification via machine learning and particularly deep 44 

learning algorithms. Such emerging approaches1 can classify diseases effortlessly also for huge 45 

sample sizes as needed for GWAS or other -omics approaches.  46 

Deep learning algorithms require enormous input data with available gold standard 47 

classification, in order to “learn” classification reliably. Once trained and tested, the algorithms 48 

can be applied to external image data, but they cannot critically reflect unusual findings or 49 

incorporate unforeseen aspects, for which the human eye and brain has un-met capability. At the 50 

current time, the input data to train algorithms is limited and often specific to a certain setting 51 

(e.g. patients from a clinic). Some characteristics that appear useful for disease classification in 52 

one setting might be misinterpreted in another, which can hamper transferability of trained 53 

models; a topic discussed as dataset shift or domain shift2–4. Most predictions of deep learning 54 

algorithms for image-based disease classification will be error-prone and the structure of 55 

misclassification will generally be unknown. When using automated disease classification as 56 

outcome for association analyses and GWAS, the underlying response misclassification is 57 

usually unaccounted for, giving rise to biased effect estimates and potentially false-positive 58 

associations5–7. Extent and structure of the misclassification process can be assessed by internal 59 
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validation data, i.e. a subset of participants with both automated and gold standard classification, 60 

which can also be utilized to account for response misclassification in statistical models7,8.  61 

At present, it is unclear whether machine learning based disease classification is of any 62 

utility for association analyses, particularly for detecting disease signals in GWAS. We thus set 63 

out to evaluate machine learning derived disease classification in GWAS on the example of age-64 

related macular degeneration (AMD) and we developed a statistical approach accounting for the 65 

implied response misclassification. AMD is an ideal role model, as a common disease 66 

ascertained via imaging of the central retina9 and with particularly strong known genetic effects10. 67 

The manual grading of images for AMD requires a substantial effort by trained staff and is 68 

currently an obstacle for homogeneous disease classification within and across large studies. 69 

For example, in UK Biobank11, >135,000 color fundus images are available for >68,000 study 70 

participants, but there is no manually classified AMD available so far. Several machine learning 71 

algorithms have been emerging to classify AMD: some show promising performance, but still 72 

yield misclassified predictions, have acknowledged issues due to domain shift or insufficient 73 

sample size for training, or they lack validation in external studies12–15. So far, there is no GWAS 74 

on fundus image ascertained AMD available in UK Biobank, manually classified or machine 75 

learning based. 76 

 77 

MATERIALS AND METHODS  78 

Machine learning based disease classification in GWAS as misclassification problem  79 

We consider a binary disease Y, for which each individual has a true status of disease (disease 80 

yes/no). A gold standard classification often involves manual grading of medical images via 81 

trained medical staff, which is considered here to correspond to the true disease classification. 82 

When applying a trained machine learning algorithm on medical images, we yield an automated 83 

disease classification Y∗ for each individual. For an individual i with true disease status Yi = yi, 84 

the classification Yi
∗ = yi

∗ can either be correct or error-prone (yi
∗ = yi, or yi

∗ ≠ yi). If a gold 85 

standard classification is available (for at least a subset of study participants, internal validation 86 

data), the performance of the algorithm can be quantified by cross-tabulation of the observed 87 
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error-prone y∗ and the gold-standard classification y across all participants in the validation sub-88 

study (confusion matrix); the (mis-)classification process can be characterized by classification 89 

probabilities P(Y∗ = k|Y = l), for l, k ∈ {0,1}. For l = k = 1 and l = k = 0, these probabilities 90 

correspond to the sensitivity and specificity of the algorithm, respectively.  91 

In the following, we focus on bilateral diseases due to our motivating example of an eye 92 

disease (AMD): for each individual i, two entity-specific binary disease variables Z1i, Z2i ∈  {0,1} 93 

(here: AMD per eye) are used to define the binary person-specific disease status as the “worse-94 

entity disease status” Yi ≔ max(Z1i, Z2i), corresponding to “AMD in at least one eye” versus “AMD 95 

in none of the two eyes” in our example. The error-prone machine learning based classification 96 

of entity-specific disease Z1i
∗ , Z2i

∗ , will propagate to an error-prone person-specific disease status, 97 

Yi
∗ = max(Z1i

∗ , Z2i
∗ ), when compared to the manually graded; “true” Yi. 98 

We were interested in evaluating the potential and consequences of such automatically 99 

classified disease in GWAS. The standard approach in GWAS is logistic regression for modelling 100 

the association of a genetic variant (observed as genotypes ∈ {0,1,2} or imputed allelic dosages 101 

∈ [0,2]) with a binary disease status, usually adjusted for other covariates like age, sex, and 102 

genetic principal components; Wald-tests are used to test for genetic association, accounting for 103 

multiple testing by judging at a Bonferroni-corrected significance level of p<5 × 10−8. When the 104 

association of the genetic variant with the true disease status Y (here: manually classified 105 

persons-specific AMD) follows a logistic regression model, the usage of the error-prone disease 106 

status Y* (here: automatically derived person-specific AMD) in the logistic regression will lead to 107 

a mis-specified model (naïve association analysis) with known consequences of decreased 108 

power, biased genetic association estimates, and potentially false-positive associations5–7.  109 

 110 

MLA to adjust for response misclassification in bilateral disease 111 

While there are methods available to account for response misclassification for classic diseases 112 

in standard logistic regression5–7, there is currently no methodology readily available for bilateral 113 

disease. As described previously16, the conceptual challenge here is to account for two types of 114 

misclassification: (i) the entity-specific misclassification that propagates to an error-prone person-115 
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specific disease status, where the person-specific disease status is used in the association 116 

analysis, and (ii) a person-specific misclassification from a missing disease status in one of the 117 

two entities. We thus developed an MLA to account for the fact that we are using an error-prone 118 

response 𝑌𝑖
∗ ≔ max(𝑍1𝑖

∗ , 𝑍2𝑖
∗ ), 𝑍1𝑖

∗ , 𝑍2𝑖
∗ ∈  {0,1}, in the association analysis, while the true disease 119 

𝑌𝑖 ≔ max(𝑍1𝑖, 𝑍2𝑖), 𝑍1𝑖, 𝑍2𝑖 ∈  {0,1}, is assumed to follow a logistic regression model.  120 

Details are provided in Appendix A. The general idea of the MLA is to factorize the 121 

likelihood of the observed, error-prone response data into two parts, the model for the association 122 

between risk factor and true (but in general unobserved) response (true association model) and 123 

a model for the misclassification process (misclassification model). We adapted this well-124 

established methodology for analyzing misclassified binary response data7,8 to the scenario of 125 

bilateral disease with a “worse-entity” disease definition (i.e. the person-specific disease status 126 

is defined as the status of the worse entity). Under the assumption of independent 127 

misclassification for the observed disease in the two entities 𝐳𝟏𝐢
∗ , 𝐳𝟐𝐢

∗  of an individual i, we derive 128 

𝐏(𝐳𝟏𝐢
∗ , 𝐳𝟐𝐢

∗ |𝐱𝐢) =  ∑ 𝐏(𝐳𝟏𝐢
∗ | 𝐳𝟏𝐢 , 𝐱𝐢)  × 𝐏(𝐳𝟐𝐢

∗ | 𝐳𝟐𝐢 , 𝐱𝐢)⏟                    
𝐦𝐢𝐬𝐜𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 

𝐦𝐨𝐝𝐞𝐥
𝐳𝟏𝐢 ,𝐳𝟐𝐢∈{𝟎,𝟏}

 × 𝐏(𝐳𝟏𝐢 , 𝐳𝟐𝐢 , |𝐱𝐢)⏟        
𝐭𝐫𝐮𝐞 𝐚𝐬𝐬𝐨𝐜𝐢𝐚𝐭𝐢𝐨𝐧 

𝐦𝐨𝐝𝐞𝐥

. 129 

The misclassification model is characterized by the sensitivity and specificity of the entity-130 

specific classification process; the true association model is the assumed logistic regression 131 

model for the person-specific disease status. When internal validation data is available, the 132 

parameters of both models can be estimated jointly by optimizing a likelihood with different 133 

contributions of participants with only the error-prone response and participants in the validation 134 

data with true and error-prone response available.  135 

Our developed approach allows us to adjust for both the entity-specific misclassification 136 

from an automated classification and the misclassification of the person-specific status when one 137 

entity is ungradable. Altogether, we model four parameters in the MLA: (i) the conditional 138 

probability of worse-entity disease given the covariate of interest, (ii) the probability of disease in 139 

both entities conditional on the disease in at least one entity (to adjust for missing information of 140 

one of two entities), as well as (iii) the sensitivity and (iv) the specificity of the entity-specific 141 

misclassification process. For each parameter, the conditional probabilities are modeled using 142 
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the logistic function (as in standard logistic regression) allowing for a dependency on a 143 

parameter-specific set of person-specific covariates. An open source R implementation is 144 

available (Web Resources).  145 

 146 

Simulation study to investigate the performance of the MLA  147 

We repeatedly simulated association data for a standard normal covariate X and a (true and 148 

error-prone) binary outcome of a bilateral disease. To do this, we (1) sampled the true, person-149 

specific worse-entity status associated with X, (2) derived the true entity-specific disease status 150 

(e.g. manual eye-specific AMD classification) given assumptions, (3) sampled the entity-specific 151 

error-prone disease status (e.g. automated AMD classification), and (4) derived an error-prone, 152 

person-specific disease status. Afterwards, we removed the true disease status for most 153 

individuals, yielding only a subset with both true and error-prone disease status available 154 

(validation data). In different simulation scenarios, we varied sensitivity and specificity of the 155 

entity-specific classification. Classification probabilities were either constant for all individuals 156 

(non-differential misclassification) or varying with X (differential misclassification). We also varied 157 

the fraction of individuals with missing classification in one of two entities. Data was sampled with 158 

or without an effect of X on the true person-specific response Y (βYϵ{0,1}, log OR) and on the 159 

probability δ of having disease in both entities given disease in at least one entity (βδϵ{0,1}, log 160 

OR). We estimated the covariate effect using the naive analysis (logistic regression, which 161 

ignores misclassification) and the developed MLA1 and MLA2 accounting for response 162 

misclassification without (MLA1) and with allowing (MLA2) for differential misclassification, 163 

respectively. To compare the performance of the naïve analysis and the derived MLA, we 164 

investigated the distribution of effect estimates β̂Y across simulation runs, computed the mean 165 

squared error of estimates relative to true effects, frequencies of rejected tests for no association, 166 

and coverage frequencies of 95%-confidence intervals. A detailed description of the simulation 167 

study, data sampling, and estimated models is given in APPENDIX B.  168 

 169 

UK Biobank study information and data 170 
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UK Biobank recruited ~500,000 individuals aged 40-69 years from across the United Kingdom. 171 

Genetic data is available from the Affymetrix UK Biobank Axiom Array imputed to the Haplotype 172 

Reference Consortium17 and the UK10K haplotype resource18 (details described elsewhere11). 173 

The UK Biobank baseline data contains 135,500 fundus images of 68,400 individuals. The 174 

images are taken with the Topcon 3D OCT-1000 Mark II sytem with a field angle of 45° without 175 

application of mydriasis19. The images can be utilized for automated or manual AMD 176 

classification, however, there is no image-based AMD classification publicly available so far. 177 

  178 

AMD classification in UK Biobank derived from a machine learning algorithm and 179 

manually 180 

We performed an automated AMD classification for 68,400 individuals with available fundus 181 

images in UK Biobank with additional manual classification in a subset of 2,013 participants as 182 

described in the following. 183 

In epidemiological studies, AMD is usually classified per eye via manual grading of color 184 

fundus images by trained graders using established classification systems. One such system is 185 

the Age-Related Eye Disease Study (AREDS) 9-step Severity Scale20, which defines early AMD 186 

combining a 6-step drusen area scale with a 5-step pigmentary abnormality scale and is therefore 187 

particularly detailed and time-consuming when applied manually. Another more recent system is 188 

the Three Continent AMD Consortium Severity Scale (3CC)9, which defines early AMD based on 189 

drusen size, drusen area and presence of pigmentary abnormalities and is thus more practical 190 

to apply manually. While the definition of “advanced AMD” is fairly robust across systems, each 191 

system defines “early” or “intermediate” AMD differently, but provides a clear assignment strategy 192 

to “no”, “early/intermediate” or “advanced AMD” (or “no” and “any AMD”).  193 

To obtain an eye-specific AMD status for the 135,500 images of the UK Biobank (≤ 1 image 194 

per eye; 67,100 individuals with images for both eyes, 1,300 with image for only one eye), we 195 

applied a published convolutional neural network ensemble14 to the fundus images following 196 

recommendations of the authors (Web Resources). The ensemble was trained to classify each 197 

image into the AREDS 9-step severity scale or three additional categories for advanced AMD 198 
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(GA, NV, mixed GA+NV, “AREDS 9+3 steps”) or “ungradable”. From this, we derived the person-199 

specific automated AMD status as the AMD status of the worse eye (i.e. the higher score of the 200 

ARED9+3) or as the status of the only eye, if applicable. We collapsed AREDS AMD severity 201 

steps 2-9 or any of the 3 advanced AMD categories to “any AMD”. 202 

To generate internal validation data, we selected a subset of UK Biobank individuals for 203 

additional manual grading. When randomly sampling participants, one would expect to catch only 204 

a few AMD individuals; we thus enriched the validation sample with persons likely to be affected 205 

by AMD or likely to be unaffected: (i) persons with high genetic risk score for AMD based on the 206 

known 52 variants for advanced AMD10 (> 99th percentile, n=829), (ii) persons with low genetic 207 

risk score (<1st Percentile, n=828), and (iii) persons with self-reported AMD not already selected 208 

(n=356). The machine learning based AMD classification was not used to select individuals into 209 

the validation subset. The selected 2,013 individuals were manually classified for AMD according 210 

to the 3CC9 system by a trained ophthalmologist (five AMD categories, 1 for no AMD, 3 for early, 211 

1 for advanced AMD, and 1 “ungradable”). We collapsed the five AMD categories to “any AMD”, 212 

“no AMD”, or “ungradable” and derived eye-specific as well as person-specific confusion matrices 213 

based on the detailed (AREDS 9+3 and 5-category 3CC) and collapsed classifications. To 214 

conduct the GWAS with automatically derived “any AMD”, we restricted the data with available 215 

automated AMD classification to unrelated individuals of European ancestry with valid GWAS 216 

data (see below), and derived the confusion matrices also for the restricted validation data.  217 

 218 

Genetic association analyses for AMD without and with accounting for misclassification 219 

We performed a GWAS on the automatically derived “any AMD” versus “no AMD” in unrelated 220 

UK Biobank participants (relatedness status > 3rd degree) of European ancestry (self-report 221 

“White”, “British”, “Irish” or “Any other white background”) as recommended21. For each variant, 222 

we applied a standard logistic regression model (i.e. the naïve analysis ignoring misclassification 223 

in the automatically derived AMD status) under the additive genotype model and applied a Wald-224 

test as implemented in QUICKTEST22. We included age and the first two genetic principal 225 

components as covariates. We excluded variants with low minor allele count (MAC<400, 226 
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calculated as MAC = 2 × N ×MAF, sample size N, minor allele frequency MAF) or with low 227 

imputation quality (rsq<0.4) yielding 11,567,158 analyzed variants. To correct for potential 228 

population stratification, we applied a Genomic Control correction (lambda = 1.01 based on the 229 

analyzed variants excluding the 34 known AMD loci)23.  230 

We selected genome-wide significant variants (PGC<5.0x10-8), clumped them into 231 

independent regions (≥500kB between independent regions) and selected the variant with lowest 232 

P-value in each region (“lead variant”). We also selected the 21 of the 34 reported lead variants 233 

from the established advanced AMD loci, for which we had ≥80% power to detect them in a UK 234 

Biobank sample size of 3,544 cases and 44,521 controls with nominally significance - under the 235 

assumption that the reported effect sizes for advanced AMD were the true effect sizes and 236 

ignoring any misclassification in the AMD classification (APPENDIX C). Information on linkage 237 

disequilibrium in Europeans was obtained from LDLink24. Enrichment of directionally consistent 238 

or enrichment of nominally significant association for the 21 reported lead variants (when 239 

compared to the reported direction literature) was tested based on the Exact Binomial test for 240 

H0: Prob = 0.5 or H0: Prob = 0.05, respectively. 241 

To evaluate the robustness of the genetic association upon accounting for the 242 

misclassification, we applied the derived MLAs for the selected variants. For this, we modelled 243 

the conditional probability of AMD depending on age, genetic variant and two genetic principal 244 

components (as in the naïve analysis). The MLAs accounted for the misclassification of the eye-245 

specific automated classification and for the person-specific misclassification from missing AMD 246 

status in one of two eyes. For the misclassification process of the eye-specific automated 247 

classification (quantified by sensitivity and specificity), we allowed for a linear association with 248 

age and modelled two scenarios for the association with the genetic variant: (i) no dependency 249 

(non-differential, MLA1) or (ii) linear dependency (differential misclassification, MLA2). We 250 

compared association estimates of the naive analysis with MLA1- and MLA2- analysis and 251 

judged significance at Bonferroni-corrected significance levels for a family-wise error rate of 0.05. 252 

To allow for comparisons across different models, we did not apply Genomic control correction 253 

for these comparative analyses. Additionally, we evaluated robustness of findings from the naïve 254 
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analysis for the selected lead variants upon adjusting for 20 instead of 2 genetic principal 255 

components.  256 

To follow-up on the HERC2 lead variant finding (see Results), we quantified lightness of 257 

fundus images by calculating gray levels for the “RGB” fundus images (weighted sum of R, G 258 

and B values, 0.30*R+0.59*G+0.11*B, as implemented in IrfanView). 259 

 260 

RESULTS 261 

Linking misclassification theory to machine learning disease classification 262 

We here establish the usage of machine learning derived disease classification in genetic 263 

association analyses as a response misclassification problem in logistic regression (Methods). 264 

We present a newly developed maximum likelihood approach (MLA) for bilateral diseases like 265 

AMD (Methods). This includes two versions: (1) assuming non-differential misclassification 266 

(MLA1, i.e. no dependency of misclassification probabilities on the covariate of interest, here the 267 

genetic variant) and (2) allowing for differential misclassification (MLA2, i.e. dependency on the 268 

covariate of interest). There are existing MLAs for considering response misclassification in 269 

logistic regression using internal validation data7,8: these MLAs refer to classic diseases where 270 

the misclassification is on the person-specific disease status. Our developed approach provides 271 

a general framework for bilateral diseases with entity-specific misclassification that propagates 272 

to person-specific disease misclassification. Our approach also allows for missing classification 273 

in one of two entities, which is a second source of bias in association analyses for bilateral 274 

diseases as reported previously16. We exemplify our approach on machine learning derived AMD 275 

compared to manually graded AMD. Since machine learning algorithms for AMD are trained on 276 

images with human manual AMD grading as benchmark, we assume the manual classification 277 

to be gold standard.  278 

We evaluated the performance of our developed MLA1 and MLA2 in a simulation study. 279 

By this, we documented substantial bias and lack of type-I error control when the naïve analysis 280 

was applied, which was comparable to theory for classic (non-bilateral) diseases 5,7. We also 281 

showed our MLA1 and MLA2 to effectively remove bias and keep type-I error when specified 282 

correctly (Table 1, APPENDIX D, Supplementary Table 1).  283 

 284 

AMD in UK Biobank based on automated classification and validation data 285 

We applied a published convolutional neural network ensemble14 to automatically derive eye- 286 

and person-specific AMD classifications for 68,400 UK Biobank participants with fundus images 287 

at baseline (135,000 eyes) (Supplemental Table 2a). From this, we derived eye-specific “any 288 
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AMD” status (i.e. any early AMD stage or advanced AMD versus AMD-free) and person-specific 289 

“any AMD” status based on the worse eye (Methods). Among the 68,400 participants, 10,128 290 

were ungradable for AMD in both eyes (i.e. missing person-specific AMD status, 14.8%), 4,870 291 

were classified as “any AMD” and 53,402 as AMD-free (Supplemental Table 2b). Among the 292 

58,272 gradable participants (of these: 20.2% gradable only in one eye), 8.4% had AMD and 293 

91.6% were AMD-free. This included 48,065 unrelated individuals of European ancestry with 294 

GWAS data (3,544 “any AMD” cases, 44,521 AMD-free controls; 19.8% with only one eye 295 

gradable; Supplemental Table 2b).  296 

To quantify the performance of automated AMD classification, we manually classified 297 

AMD in a subset as internal validation data (4,001 images, ≤ 1 image per eye, 2,013 individuals). 298 

When comparing automated to manual (true) “any AMD” status, we found an eye-specific 299 

sensitivity of 73% and specificity of 90% in the full validation data and a person-specific sensitivity 300 

of 77% and specificity of 91% among the participants in the GWAS (Table 2a/b). We found no 301 

structural differences between the full validation data and when restricting to the GWAS data 302 

(1,327 individuals, Supplemental Table 3a/b). Both, the manual and automated classification 303 

included the category “ungradable”. Among the 4,001 eyes, 1,101 were manually ungradable, of 304 

which the automatic classification yielded 74% as ungradable as well, but classified 9% as AMD 305 

and 17% as AMD-free, which raises concerns about these classifications. In summary, we found 306 

the automated classification to yield reasonable, but error-prone results.  307 

 308 

GWAS on automated AMD classification in naïve analysis identifies two loci 309 

While we have some idea about the extent of the misclassification from validation data and about 310 

its impact on genetic association estimates from simulations, it is unclear whether the automated 311 

any AMD classification is “good enough” for GWAS. We conducted a GWAS for person-specific 312 

automatically derived “any AMD” in UK Biobank (3,544 “any AMD” cases; 44,521 controls) 313 

applying logistic regression as usual, which is without accounting for misclassification (naïve 314 

analysis). We found 53 variants with genome-wide significance (PGC<5.0x10-8) spread across two 315 

distinct loci (defined as lead variant and proxies +/- 500kB, Figure 1a/b; Supplemental Table 316 
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4a): the known ARMS2/HTRA1 locus (lead variant here rs370974631, PGC=3.1x10-20, effect allele 317 

frequency EAF=0.23) and an unknown locus for AMD near HERC2 (lead variant rs12913832, 318 

PGC=4.7x10-16, EAF=0.23). This ARMS2/HTRA1 lead variant was highly correlated to the 319 

reported lead variant for advanced AMD, rs3750846, and effect estimates were directionally 320 

consistent (r² =0.93; Supplemental Table 4b). The next best known locus is the CFH locus, 321 

which showed close to genome-wide significance here (smallest P-value PGC=7.0x10-7, 322 

rs6695321, EAF=0.62): rs6695321 is in linkage disequilibrium with two reported CFH variants 323 

(rs61818925, rs570618: r²=0.63 or 0.40, D’=0.81 or 1.00, EAF=0.58 or 0.36, respectively; 324 

Supplemental Table 4b) suggesting that rs6695321 captures the signals of these two reported 325 

variants.  326 

Among the reported lead variants of the 34 advanced AMD loci10, we had ≥80% power to 327 

detect 21 of these with nominal significance (Supplemental Table 5). When comparing effect 328 

sizes of these 21 variants from this analysis on “any AMD” in UK Biobank with reported effect 329 

sizes for advanced AMD, we found 15 with directional consistency (PBin=0.078) and 7 with 330 

directionally consistent nominal significance (PBin=4.9x10-5; Figure 3a, Supplemental Table 4c). 331 

The overall smaller effect sizes for automated “any AMD” compared to reported effect sizes for 332 

advanced AMD can be explained by a bias from misclassified automated AMD and by smaller 333 

effect sizes for early AMD merged into the definition of “any AMD”. For the other 13 of the 34 334 

variants, we refrained from interpreting results due to lack of power in this analysis 335 

(Supplemental Table 4c). Results were similar when adjusting for 20 instead of 2 genetic 336 

principal components (data not shown). While the yield of only few known AMD signals in this 337 

UK Biobank GWAS may be disappointing, this is not fully unexpected given an effective sample 338 

size25 of 13,130 and a power estimate of ~80% (assuming no misclassification and reported effect 339 

sizes) to detect associations with genome-wide significance for only 4 of the 34 established 340 

variants (CFH, ARMS2/HTRA1, C3, C2/CFB/SKIV2L, Supplemental Table 5). 341 

In summary, our GWAS on automated AMD in UK Biobank detected the established 342 

ARMS2/HTRA1 locus, an unknown locus around HERC2 with genome-wide significance, and 343 

the established CFH locus to some extent.  344 
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 345 

Applying the developed MLA to account for misclassification for selected variants 346 

Due to our simulation results and theory5,7, we expected our GWAS on automated (error-prone) 347 

AMD to yield biased estimates and, when the misclassification was differential towards the 348 

genetic variant, even potentially false signals. We applied our developed MLAs for 26 selected 349 

variants: (i) the 3 lead variants detected here with (near) genome-wide significance (CFH: 350 

rs6695321, ARMS2/HTRA1: rs370974631, HERC2: rs12913832), (ii) the 3 reported independent 351 

variants in the CFH locus with MAF≥5% (rs61818925, rs570618, rs10922109; 2 of these 352 

correlated to the here identified CFH lead variant), and (iii) the other 20 of the 34 reported lead 353 

variants10, for which we had reasonable power in this analysis (including 1 reported 354 

ARMS2/HTRA1 variant correlated to here identified variant). This yielded a total of ~23 355 

independent variants.  356 

Our MLAs estimated simultaneously (1) sensitivity and specificity of the eye-specific 357 

misclassification process and (2) genetic association accounting for the misclassification. With 358 

regard to sensitivity and specificity, we found (i) an overall sensitivity of 64.5% (95%-CI: 60.1%, 359 

68.7%) and a specificity of 98.6% (98.4%, 98.8%), i.e. a false-negative “any AMD” proportion of 360 

35.5% and a false-positive of 1.4%, (ii) no dependency of the sensitivity on any selected variant 361 

(P>0.05/(23*2)=1.09x10-3) and no dependency of the specificity, except for two variants: HERC2 362 

lead variant, rs12913832, and the reported CFH lead variant rs10922109 (ORspec=0.64, 363 

Pspec=7.38x10-9 and ORspec=1.36, Pspec=2.29x10-4, respectively; Supplemental Table 6, 364 

Appendix E). Therefore, we found a misclassification that was associated with some genetic 365 

variants (differential), which could induce bias into all directions and severe lack of type-I error 366 

control. 367 

When comparing genetic association estimates from our MLA1 and MLA2 with the naïve 368 

analysis for our three detected lead variants, we found interesting patterns (Figure 2, 369 

Supplemental Table 7a). (i) For CFH and ARMS2/HTRA1, we found consistent effect estimates 370 

across the three analyses, with larger confidence intervals when using the more complex models 371 

MLA1 or MLA2. (ii) For HERC2, MLA1 yielded comparable results to the naïve analysis, but when 372 
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accounting for differential misclassification (MLA2), the effect vanished (MLA2: OR=1.03, 373 

P=0.76; MLA1: OR=1.34, P=1.11x10-12; naïve: OR=1.26, P=4.16x10-16). When applying MLA1 374 

and MLA2 to the three reported CFH locus variants and the further 20 of the 34 reported lead 375 

variants, we found the following (Supplemental Table 7b/c): (i) effect estimates for all three CFH 376 

variants increased when applying MLA2 compared to the naïve analysis. This was particularly 377 

interesting for the reported CFH lead variant rs10922109, where we now observed a nominally 378 

significant association into the reported direction (MLA2: OR=1.15, P=0.047; naïve: OR=1.00, 379 

P=0.98; Supplemental Table 7c). This is in line with the observed dependency of the specificity 380 

on this CFH variant. (ii) For the other 20 reported lead variants, many variants showed increased 381 

effect estimates by MLA2 compared to the naïve analysis (effect estimates mostly more 382 

comparable to reported effect sizes10; Figure 3c). Altogether, MLA results confirmed the CFH 383 

and ARMS2/HTRA1 loci and unmasked the HERC2 finding as false positive.  384 

 385 

Misclassification depended to eye and fundus image color 386 

Interestingly, our HERC2 lead variant, rs129138329, is precisely the variant for which the G allele 387 

was considered causal for blue eyes26. We were able to support this in our AugUR27,28 study 388 

(n=1026; reported “light eye color” for 14%, 36%, or 97% of participants with A/A, G/A, or G/G, 389 

respectively). Eye color is discussed as AMD risk factor, but the debate is on blue eyes to 390 

increase risk due to increased susceptibility to UV-radiation29, which is in contrast to our 391 

observation of brown eyes to increase AMD risk and a challenge for interpreting this finding. It 392 

was interesting to see the HERC2 rs129138329 association vanish when accounting for 393 

rs129138329-associated misclassification. This was in line with the observed strong association 394 

of the specificity with this variant (ORspec=0.64 per A allele, Supplemental Table 6a) resulting in 395 

3.0%, 1.9%, or 1.2% of false-positive AMD classifications among persons with A/A, A/G, or G/G, 396 

respectively. This notion of a larger misclassification among A/A versus G/G individuals was 397 

further supported by the larger fraction of manually ungradable images that were deemed 398 

gradable by the automatic classification among A/A versus G/G (54.5% versus 38.8%, 399 

respectively; Figure 4). When visually inspecting fundus images per genotype group, the images 400 
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for A/A had a darker appearance than those for A/G or G/G (Figure 4), which we were able to 401 

quantify by means of average gray level per image of 46.4, 49.0, or 53.6, respectively. Therefore, 402 

the HERC2 signal appeared to be an artefact due to a larger misclassification for brown eyes 403 

linked to darker fundus images. One may hypothesize that the darker eye color had reduced light 404 

exposure during fundus photography, which gave rise to darker images and more misclassified 405 

AMD-free eyes. The notion of a differential misclassification due to eye color was further 406 

supported by the fact that the full HERC2 signal disappeared by modelling a misclassification 407 

dependency on the causal variant for eye color (rs129138329, Supplemental Figure 1a/b), while 408 

some signal remained when modelling a misclassification dependency on the respective HERC2 409 

variant in the model (Supplemental Figure 1c). In summary, we found the MLA2 not only to 410 

effectively remove the artefact signal of the naïve GWAS, but also to help understand the 411 

dependencies of the misclassification.  412 

 413 

DISCUSSION 414 

GWAS on machine learning derived classification of imaging-based diseases, like AMD, can be 415 

expected to accelerate knowledge gain and drug target development30, since it will enable 416 

substantially increased sample sizes and refined, homogeneous phenotyping. To this date, there 417 

was no GWAS reported using a machine learning derived classification for AMD or any other 418 

imaging-based disease – to our knowledge. We here present a GWAS on machine learning 419 

derived AMD in UK Biobank highlighting chances and challenges. By this GWAS on AMD 420 

combined with an evaluation of emerging genetic signals via our newly developed MLA, we were 421 

able to detect known AMD loci and to distinguish true loci from artefacts.  422 

Such artefacts, i.e. false positives, can derive from a misclassification that is associated 423 

with a genetic variant. Our data and analyses provide a compelling example for such an artefact: 424 

our MLA revealed the HERC2 signal as false positive signal and suggested darker eye color and 425 

darker fundus images as a relevant source of misclassification for this machine learning 426 

algorithm. It is perceivable that the misclassification process of other algorithms for AMD and for 427 

other image-based diseases will depend on one or the other characteristic as well, and that such 428 
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a characteristic is picked up by some genetic variants due to the abundant range of genetically 429 

pinpointed characteristics (see e.g. NHGRI-EBI GWAS Catalog31), which can yield artefact 430 

signals when left unaccounted.  431 

Our MLA, developed for bilateral diseases, does not only quantify the misclassification 432 

and the dependencies, but also guards against bias and artefacts in association analyses. Similar 433 

approaches are available for classic diseases7,8. Thus, this concept can be generalized to other 434 

algorithms and other image-based diseases. Our work here links the theory of misclassification 435 

to machine learning derived disease classification, which can be generalized also to 436 

measurement error and quantitative phenotypes.  437 

We recommend a GWAS combined with a post-GWAS evaluation of emerging genetic 438 

effects for non-differential and differential misclassification not only to search for GWAS signals 439 

on image-based, machine-learning derived disease phenotypes. We also recommend such a 440 

GWAS as a quality control for diseases like AMD, where strong genetic signals are known: a 441 

GWAS on AMD ascertained by any classification approach, manual or automatic, should be able 442 

to detect at least the two strong known signals around ARMS2/HTRA1 and CFH. When a GWAS 443 

does not detect these signals, this indicates issues that can be anything from mis-matched bio-444 

samples, analytical errors, or imperfect disease ascertainment – like from machine learning 445 

algorithms as highlighted here. A GWAS can be a quick guide towards phenotype classification 446 

quality when genomic data is available.  447 

Overall, we illustrate chances and challenges of machine learning derived disease 448 

classification in GWAS, and the applicability of our MLA to guard against bias and artefacts.  449 
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Appendices 450 

Appendix A. MLA to adjust for response misclassification in bilateral diseases. 451 

We developed an MLA to adjust for response misclassification from an error-prone, entity-specific 452 

disease classification in bilateral diseases. Here we illustrate it based on the example of age-453 

related macular degeneration, where AMD can occur in each eye (eye-specific AMD) and the 454 

person-specific binary outcome is defined as worse-eye outcome, i.e. “AMD in at least one eye”, 455 

and modeled using logistic regression.  We assume that we have an error-prone, eye-specific 456 

AMD classification (e.g. from a machine-learning based automated classification) available for 457 

nearly all eyes and true, gold-standard classifications (e.g. manual classification) for a subset of 458 

individuals from validation data.  459 

Let (Z1i, Z2i) ∈   {0,1} be the true, binary disease stages in the two eyes of study participant i, i.e. 460 

(Z1i = 1, Z2i = 0) means that participant i suffers from AMD in the left eye and is unaffected from 461 

AMD in the right. When estimating the association of person-specific risk factors with AMD, one 462 

often defines a binary person-specific disease status as worse-entity AMD,Yi ≔ max(Z1i, Z2i), 463 

Z1i, Z2i ∈   {0,1}, and uses logistic regression to estimate the association of some covariates X 464 

with AMD: the person-specific disease status Yi equals 1, if at least one eye of individual i is 465 

classified as AMD, and Yi equals 0, if both eyes are unaffected. As described previously16, such 466 

a worse-eye disease status can be misclassified because of two reasons: either, because of 467 

missing disease information in one of two eyes (in this case disease can be overlooked), or 468 

because of error-prone disease status for any of the two eyes. Here we assume that we observed 469 

an error-prone, eye-specific disease status (Z1i
∗ , Z2i

∗ ) for each of the two eyes of a “main study” 470 

participant i and additionally the true disease status in each of the two eyes (Z1j , Z2j) for a subset 471 

of study participants j from the “validation study”. For all participants from the main study (error-472 

prone classifications only) or the validation subset (error-prone and true classification), there is 473 

the additional issue that the disease information can be missing in one of two eyes, because of 474 

missing or ungradable fundus images. Since the automated (error-prone) and manual (gold 475 

standard, “true”) classification may judge differently on whether an image is gradable or 476 

ungradable, any possible subset of (Z1i, Z2i, Z1i
∗ , Z2i

∗ ) might be the available information for a 477 
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specific study participant. To obtain valid estimates for the association of covariates with the true 478 

AMD status, we set up a likelihood based on the conditional probabilities of the observed error-479 

prone and/or true eye-specific disease classifications given covariates. The product of these 480 

conditional probabilities over all individuals forms the likelihood, which has to be numerically 481 

optimized with respect to the regression parameters to obtain estimates. The different likelihood 482 

contributions for the individuals depend on the available AMD classifications (true and/or error-483 

prone for one or both eyes).  484 

The general problem of response misclassification when AMD information is missing in one of 485 

two eyes and/or the eye-specific classification suffers from misclassification with known 486 

classification probabilities has already been evaluated in a previous publication16. There, we also 487 

derived the corresponding likelihood contributions for the different scenarios of available outcome 488 

data. Here, we add the aspect that validation data is available for some study participants or, 489 

more specifically, a collection of error-free (gold-standard) classified single eyes, and that we 490 

model the eye-specific misclassification process based on information from this validation data.  491 

In the following, we describe the general idea and provide formulas for the respective likelihood 492 

contributions:  493 

The assumed logistic regression model for the true worse-eye disease corresponds to the 494 

assumption that max(Z1i, Z2i) = Yi~Bernoulli(πi), where we model the success probability based 495 

on a linear predictor via πi = 1 (1 + exp(−xi
′β))⁄ = Logist(xi

′β); xi is a vector of observed person-496 

specific covariates and β the vector of corresponding regression coefficients. It follows that 497 

P(Yi = 1|xi) = πi. If we focus on single-eye disease classifications, there exist four different 498 

pattern of true disease classifications (Z1i, Z2i): (1,1), (1,0), (0,1), (0,0). From the assumed logistic 499 

regression model for Yi, it follows that P(Z1i = 0, Z2i = 0|xi) = 1 − πi. Based on the law of total 500 

probability, we can derive P(Z1i = 1, Z2i = 1|xi) =  P(Z1i = 1, Z2i = 1|xi, Yi = 1) × P(Yi = 1|xi) and 501 

we define the person-specific conditional probability of being affected by AMD in both eyes given 502 

AMD in at least one eye as δi ≔ P(Z1i = 1, Z2i = 1|xi, Yi = 1). When assuming symmetric 503 

probabilities for disease in one but not the other eye for left and right eyes (i.e. same probabilities 504 
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to be affected in the left but not the right eye and vice versa), the conditional probability mass 505 

function of the two-entity disease status distribution can be written concisely as 506 

P(∙,∙ |xi) Z2i = 1 Z2i = 0 

Z1i = 1 δiπi 
1 − δi
2

πi 

Z1i = 0 
1 − δi
2

πi 1 − πi 

which specifies the true data model. If we look at a single eye selected randomly from both eyes, 507 

we can derive (without loss of generality for Z1i): 508 

P(Z1i = 1|xi) =  P(Z1i = 1, Z2i = 1 |xi) + P(Z1i = 1, Z2i = 0 |xi) = (
1

2
+ 
1

2
δi)πi 509 

We now assume that we observed potentially misclassified single eye disease stages (Z1i
∗ , Z2i

∗ ) 510 

for each participant and describe the misclassification process based on the sensitivity and 511 

specificity of the classification, 512 

P(Zli
∗ = 1|Zli = 1, xi) = π1i          513 

P(Zli
∗ = 0|Zli = 0, xi) = π0i,  514 

with l = 1,2; π1i and π0i are the person-specific sensitivity and specificity from the eye-specific 515 

classification process. We assume that the eye-specific classification process within an individual 516 

is independent in the two eyes, i.e.: 517 

P(Z1i
∗ = z1i

∗ , Z2i
∗ = z2i

∗  |Z1i = z1i , Z2i = z2i , xi) = P(Z1i
∗ = z1i

∗ |Z1i = z1i , xi)  × P(Z2i
∗ = z2i

∗ |Z2i = z2i , xi). 518 

Based on the true data model and the description of the misclassification process via sensitivity 519 

and specificity, we can now express the conditional probabilities of all combinations of observed 520 

outcomes, by using Bayes’ rule and the law of total probability. If all four AMD classifications 521 

were observed for an individual (individual with full validation data, true and error-prone disease 522 

status for each of the two eyes), we can derive the following (omitting a random variable notation 523 

and only using the small z’s for the observed data): 524 

P(z1i
∗ , z2i

∗ , z1i , z2i  | xi) =  P(z1i
∗ , z2i

∗ |z1i , z2i , xi) × P(z1i , z2i , |xi)525 

= P(z1i
∗ |z1i , xi) × P(z2i

∗ |z2i , xi) × P(z1i , z2i , |xi).   526 

(2) 

(3) 

(1)

) 
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Here, we fraction the conditional probability of the observed data into terms of the eye-specific 527 

classification process (depending on sensitivity or specificity when the observed true outcome 528 

zli  is 1 or 0, respectively, (3)) and the true data model (1). If only the two eye-specific error-prone 529 

classifications are observed (individual in the main study, not part of the validation subset), the 530 

law of total probability can be used and the conditional probability can be expressed as 531 

P(z1i
∗ , z2i

∗ |xi) =  ∑ P(z1i
∗ , z2i

∗ |z1i , z2i , xi)

z1i,z2i∈{0,1}

 × P(z1i , z2i , |xi)532 

= ∑ P(z1i
∗ | z1i , xi)  × P(z2i

∗ | z2i , xi)

z1i,z2i∈{0,1}

 × P(z1i , z2i , |xi), 533 

This again yields an expression that depends on the eye-specific classification probabilities (3) 534 

and the true data model (1). 535 

If only a classification for one error-prone outcome was observed (e.g. Z1i
∗ = z1i

∗ ), the conditional 536 

probability is given by 537 

P(z1i
∗ |xi) = P(z1i

∗ |Z1i = 0, xi) × P(Z1i = 0|xi) + P(z1i
∗ |Z1i = 1, xi) × P(Z1i = 1|xi), 538 

where the first terms in each summand depends on the specificity and the sensitivity of the eye-539 

specific observation process; an expression for the second was already given above (equation 540 

(2)). 541 

When three classifications were observed, e.g. (Z1i, Z1i
∗ , Z2i

∗ ) or (Z1i, Z2i , Z1i
∗ ), we can derive 542 

P(z1i, z1i
∗ , z2i

∗ |xi) = P(z1i
∗ , z2i

∗ |z1i, Z2i = 0, xi) × P(z1i, Z2i = 0| xi) + P(z1i
∗ , z2i

∗ |z1i, Z2i = 1, xi) × P(z1i, Z2i = 1| xi)544 

= P(z1i
∗ |z1i , xi) × P(z2i

∗ |Z2i = 0, xi) × P(z1i, Z2i = 0| xi)      545 

+ P(z1i
∗ |z1i , xi) × P(z2i

∗ |Z2i = 1, xi) × P(z1i, Z2i = 1| xi), 546 

and  543 

  547 

P(z1i, z2i , z1i
∗ , |xi) = P(z1i

∗ |z1i, z2i, xi) × P(z1i, z2i |  xi) =  P(z1i
∗ |z1i, xi) × P(z1i, z2i|  xi). 548 

All conditional probabilities characterizing the true data model and the misclassification process, 549 

i.e. (i) the probability of true worse-eye AMD P(Yi = 1|xi) = πi, (ii) the probability of AMD in both 550 

eyes given AMD in at least one eye P(Z1i = 1, Z2i = 1| Yi = 1, xi) =  δi, (iii) the eye-specific 551 

sensitivity P(Zli
∗ = 1|Zli = 1, xi) = π1i and (iv) the eye-specific specificity of the error-prone 552 
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classification P(Zli
∗ = 0|Zli = 0, xi) = π0i, can potentially vary with person-specific characteristics. 553 

We therefore decided to model them based on the logistic function of a linear predictor, where 554 

relevant covariates (characteristics) can be specified for each probability. Combining all these 555 

expressions, we can set up the whole likelihood based on the derived conditional probabilities 556 

and numerically optimize with respect to the regression coefficients of the linear predictors for πi, 557 

δi, π1i, and π0i. Standard errors of the maximum likelihood estimates are derived based on 558 

standard likelihood theory from the square root of the diagonal elements of the inverse of the 559 

observed Fisher information (Hessian) and used for inference. An implementation of the MLA in 560 

the statistical programming language R32 is available (Web Resources) 561 

 562 

Appendix B. Simulation study to evaluate consequences of ignoring misclassification and 563 

the performance of the MLA in correcting it. 564 

We performed a simulation study to evaluate the consequences of ignoring response 565 

misclassification and to evaluate the performance of the derived MLA in data scenarios similar 566 

to the situations in AMD studies. For each simulation scenario (data generating process), we 567 

simulated 1000 datasets, applied different models to the sampled data and evaluated the 568 

distribution of effect estimates, frequencies of significant statistical tests and coverage 569 

frequencies of confidence intervals for a central covariate of interest. 570 

To sample data mimicking studies on AMD with internal validation data, we performed the 571 

following steps: 572 

1) We sampled the true binary “worse-eye” AMD data Y for 5000 individuals by sampling from 573 

a Bernoulli distribution, where we modelled the success probability based on the logistic 574 

function of a linear predictor (corresponding to the assumed data generating process in 575 

logistic regression). For the linear predictor, we used an intercept of -0.25 (corresponding to 576 

an average probability of person-specific AMD of ~0.44) and a continuous standard normal 577 

covariate X. We varied the log OR of X on Y between zero (simulation under H0 of no effect) 578 

and one.  579 
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2) To create the true eye-specific disease data (two binary observations per individual, (Z1, Z2)) 580 

we specified the conditional probability of being affected in both eyes given disease in at least 581 

one eye (i.e. Y = 1 based on “worse-eye definition), δ, to be (on average) δ = 1/(1 +582 

exp (−1) ) = 0.73. We assumed this probability to be either constant or varying with the 583 

continuous covariate X based on formula δ = 1/(1 + exp (−(1 + 1 × X)) ) = Logist(1 + 1 × X). 584 

For all individuals with sampled Y=1, we sampled a Bernoulli variable based on probability δ, 585 

to decide whether they were affected in both eyes or not. If they were affected on only one 586 

eye, we sampled randomly from the left or right.  587 

3) To mimic the situation of missing information in one of two eyes, we sampled a Bernoulli 588 

random variable for each individual based on a fixed success probability (e.g. 0.75), to 589 

indicate whether information on both eyes was available. If not, we removed the disease 590 

information from a randomly selected eye. 591 

4) To obtain eye-specific error-prone outcome data (Z1
∗, Z2

∗), we conditioned on the true, sampled 592 

observations (Z1, Z2), and sampled the error-prone outcomes based on specified 593 

classification probabilities, the sensitivity P(Z∗ = 1|Z = 1) and specificity P(Z∗ = 0|Z = 0). 594 

Sensitivity and specificity were either fixed (non-differential misclassification, e.g. 595 

sens=spec=0.9) or varying between individuals based on the formula sens = Logist(2.20 +596 

βsens × X) for different values of βsens (analogously for the specificity, corresponding to an 597 

average sens=spec=0.9). 598 

5) Afterwards, we split the data into two parts, the “main study” and the “validation” subset based 599 

on defined fractions (e.g.  nval = 1000, nmain = 4000). For the validation subset we kept both, 600 

the true and the error-prone eye-specific AMD observations (Z1, Z2, Z1
∗, Z2

∗) ; for the main study, 601 

we kept only the error-prone outcomes (Z1
∗, Z2

∗) (or only the respective information for one of 602 

the two eyes, when information in one eye was missing for an individual). 603 

6) For the naïve analysis ignoring response misclassification, we defined an observed, binary 604 

naïve person-specific outcome Yobs
∗  the following way: for individuals from the validation data, 605 

we used the true eye-specific disease information; for individuals from the main study data, 606 

we used the error-prone eye-specific information. When disease information was available 607 
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for both eyes, we defined Yobs
∗ = max(Z1, Z2) or Yobs

∗ = max(Z1
∗, Z2

∗), respectively; for 608 

observations with information only on one eye Z1, we used Yobs
∗ = Z1 or Yobs

∗ = Z1
∗. For 609 

individuals from the validation data with information on both eyes, Yobs
∗ = max(Z1, Z2) 610 

corresponds to the true Y; for all others, Yobs
∗  might be misclassified.  611 

For each sampled dataset we estimated three models: 1) standard logistic regression based on 612 

the error-prone naïve worse-entity outcome Yobs
∗ , 2) the derived MLA (see above) modelling the 613 

probability of person-specific AMD and the probability of AMD in both eyes given AMD in at least 614 

one eye, δ, based on covariate X, while assuming a constant eye-specific sensitivity and 615 

specificity and accounting for missing information in one of two eyes (MLA1), and 3) the derived 616 

MLA allowing for a dependency of sensitivity and specificity on X (MLA2). 617 

 618 

Appendix C. Power analysis for reported lead variants based on UK Biobank sample size. 619 

We wanted to evaluate the impact of using the MLA on selected variants including the 34 reported 620 

lead variants known for their association with advanced AMD. Given reported effect sizes and 621 

effect allele frequencies (EAF), we expected the power to detect some of these 34 associations 622 

to be limited in a sample size of approximately 3,500 cases (and more controls). Therefore, we 623 

aimed to assess the power to detect reported genetic associations for AMD in the available data 624 

of UK Biobank, to focus our analyses with the MLA only on adequately powered reported 625 

associations and to avoid overinterpreting results from underpowered analyses. It is, however, 626 

not fully straight forward how to compute power for the scenario of “any AMD” from machine 627 

learning based disease classification, due to the power-diminishing effect of misclassification and 628 

some uncertainty of what effect size to use. We chose to use the reported10 EAFs in advanced 629 

AMD cases and AMD-free controls for the established 34 lead variants and computed the power 630 

for a t-Test on EAFs for differently sized groups, given the 3,544 cases and 44,521 controls 631 

derived from the automated “any AMD” classification in the UK Biobank GWAS data 632 

(Supplemental Table 2). The standard error of the difference in EAFs between cases and 633 

controls was derived based on the formula 634 
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sediff = √
ncase×eafcase×(1−eafcase)+ncontr×eafcontr×(1−eafcontr)

ncase+ ncontr
. 635 

Based on these power calculations, we selected all lead variants with at least 80% power to yield 636 

nominally significant associations in UK Biobank. By this, we made the assumptions that EAFs 637 

in advanced AMD cases are transferable to EAFs of “any AMD” cases and that no 638 

misclassification was present in the machine learning derived any AMD classification. Therefore, 639 

this is probably an overestimate of available power. We performed the power analysis, however, 640 

mainly to dismiss variants with an obvious lack of power, while trying to include as many variants 641 

as reasonable in our analyses using the MLA. 642 

 643 

Appendix D. MLA avoids bias and excess of type-I error in simulation studies. 644 

In our simulation study, we investigated bias and type-I error of logistic-regression based 645 

association estimates for a binary worse-entity outcome Y ≔ max(𝑍1, 𝑍2) ∈  {0,1} and a 646 

continuous covariate X, when error-prone single-entity observations  (Z1
∗, Z2

∗) ∈  {0,1} are 647 

observed instead of the true entity-specific disease classifications (Z1, Z2) ∈  {0,1}. When utilizing 648 

the error-prone observations for deriving the worse-entity outcomes Y∗ ≔ max(Z1
∗, Z2

∗), the entity-649 

specific misclassification is passed on to the worse-entity disease stage. We compare the 650 

performance of the naïve analysis (logistic regression ignoring misclassification) and the two 651 

versions of our MLA for different simulation scenarios.  652 

In the naïve analysis, we found a similar pattern for bilateral disease misclassification as reported 653 

for classic diseases5,7: (i) under the null hypothesis (Table 1, Supplemental Table 1, βY = 0), 654 

we found biased estimates and a lack of type-I error control (potential for false-positive 655 

association findings) for differential misclassification. With non-differential misclassification, 656 

estimates were unbiased and type-I error frequencies were at the desired levels. (ii) When X was 657 

associated with true AMD (Table 1, Supplemental Table 1, βY = 1), effect estimates were 658 

biased towards the null for non-differential misclassification and into any direction for differential 659 

misclassification. Specific for the bilateral disease situation was (iii) increasing bias with 660 
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increasingly missing AMD in one of the two eyes, and (iv) a larger bias by decreased specificity 661 

than by decreased sensitivity. (Table 1, Supplemental Table 1). 662 

In logistic regression, the larger the misclassification probabilities, the larger the bias of 663 

estimates5, with similar influence of increased probabilities for false-positive and false-negative 664 

classifications for balanced data. In the following, we provide an explanation of the findings (iii) 665 

and (iv) for bilateral diseases from above. Finding (iii) is explained by the fact that an increased 666 

fraction of missing eyes implies a reduced sensitivity for person-specific AMD: AMD in the 667 

missing eye can be overlooked, which can lead to a false-negative person-specific AMD 668 

classification if only the missing eye of an individual is affected. Finding (iv) was that decreased 669 

specificity had larger impact on bias than decreased sensitivity, e.g. for (sens, spec)=(0.9, 0.9) 670 

and a fraction of 25% of individuals with “missing eyes” and a true log OR of X on Y of 1 the 671 

observed bias was -0.27. When the sensitivity was reduced to 0.8 (specificity=0.9), the bias 672 

increased (in absolute value) to -0.32; when the specificity was reduced to 0.8 (sensitivity=0.9), 673 

the bias increased to -0.39. This can be explained by rewriting the probability of misclassification 674 

in the worse-entity outcome, P(Y∗ ≠ Y) as 675 

P(Y∗ ≠ Y) = P(Y∗ = 1|Y = 0)P(Y = 0) + P(Y∗ = 0|Y = 1)P(Y = 1) 676 

= P(max(Z1
∗, Z2

∗) = 1|Z1 = 0, Z2 = 0)P(Y = 0) +  P(Z1
∗ = 0, Z2

∗ = 0|max(Z1, Z2) = 1)P(Y = 1) 677 

= (1 − spec2)P(Y = 0) + ((1 − sens)2δ + spec(1 − sens)(1 − δ))P(Y = 1), 678 

This illustrates the dependency of P(Y∗ ≠ Y) on entity-specific sensitivity, specificity, probability 679 

of disease in both entities given disease in one eye δ, and the fraction of truly affected individuals 680 

P(Y = 1). This probability can be evaluated for different combinations of parameters: for example, 681 

in the simulation study, we assumed P(Y = 1) = 0.44, δ = 0.75 (Appendix B), which leads to a 682 

misclassification probability of 12%, 14%, or 22% for (sens, spec)=(0.9, 0.9), (sens, spec)=(0.8, 683 

0.9), or (sens, spec)=(0.9, 0.8), respectively, illustrating the larger impact of reducing specificity. 684 

This is even more true in scenarios with a lower fraction of affected individuals: if we assume a 685 

probability of person-specific disease of 0.10 instead of 0.44, we obtain misclassification 686 

probabilities of 17%, 18%, or 33%, for the same combinations of sensitivity and specificity. A 687 

reduced entity-specific specificity increases the probability of falsely classifying healthy entities 688 
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towards disease, and falsely classifying only one of two healthy entities towards disease is 689 

sufficient to misclassify the person-specific disease status. 690 

When applying the MLA1, we found it to effectively correct for bias and to yield the expected 691 

confidence interval coverage rates (~95%) when the misclassification was non-differential, but 692 

we found it to still result in biased estimates and excess type-I error when the misclassification 693 

was differential (Table 1, Supplemental Table 1). When applying the MLA2, we found it effective 694 

in bias correction and type-I error control under all misclassification scenarios, but with larger 695 

standard errors due to the larger number of parameters in the model (Table 1, Supplemental 696 

Table 1). Overall, our simulation results documented substantial bias and lack of type-I error 697 

control when the naïve analysis was applied to misclassified data and our MLA to effectively 698 

remove bias and keep type-I error when specified correctly. 699 

 700 

Appendix E. Detailed results of MLA for the selected 26 variants. 701 

For estimating sensitivity and specificity, we found the following: (i) for the 3 lead variants from 702 

this GWAS (CFH, ARMS2/HTRA1, or HERC2, respectively), the MLA1-derived sensitivity and 703 

specificity (at mean age and two copies of the non-effect allele) showed only small differences 704 

between the 3 variants (sensitivity = 65%, 67%, 63%; specificity=98%, 98%, 99%, respectively, 705 

Supplemental Table 6a). From a model without including a genetic covariate, we obtained an 706 

overall sensitivity of 64.5% (95%-CI: 60.1%, 68.7%) and a specificity of 98.6% (98.4%, 98.8%). 707 

(ii) We did not find strong evidence for associations with age using MLA1 or MLA2 based on any 708 

of the 26 selected variants, except for an association of the specificity with age based on MLA1 709 

for the HERC2 variant that disappeared when applying MLA2 (age-P=6.71x10-9 or 0.70, 710 

respectively, Supplemental Table 6a). (iii) Applying MLA2, we found no association of the 711 

sensitivity with any selected variant (P>0.05/(23*2)), but a strong association of the specificity 712 

with the HERC2 lead variant rs12913832 and with the reported CFH lead variant rs10922109 713 

(ORspec=0.64, Pspec=7.38x10-9 and ORspec=1.36, Pspec=2.29x10-4, respectively; Supplemental 714 

Table 6).  715 
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Second, we obtained genetic association estimates from MLA1 and MLA2 accounting for 716 

misclassification and compared these with naïve analysis estimates. We found interesting 717 

patterns: (i) when applying MLA1, we found comparable, slightly increased effect estimates for 718 

the CFH, ARMS2/HTRA1, and HERC2 lead variant when compared to the naïve analysis (MLA1: 719 

OR=1.23, 1.48, 1.34; P=1.69x10-6, 8.9x10-18, 1.11x10-12; naïve: OR=1.14, 1.30, 1.26, P=6.18x10-720 

7, 2.44x10-20, 4.16x10-16; Figure 2, Supplemental Table 7a). (ii) When applying MLA2, we found 721 

similar effect estimates for CFH and ARMS2/HTRA1 compared to MLA1 and naïve analysis 722 

(OR=1.19 or 1.28, respectively), which is in line with limited bias due to differential 723 

misclassification. We also found larger P-values (P=0.02 or 2.47x10-4, respectively, which is in 724 

line with larger uncertainty when estimating more model parameters. In contrast, we found a 725 

completely vanished effect estimate for the HERC2 variant (MLA2: OR=1.03, P=0.76; Figure 2, 726 

Supplemental Table 7a), indicating a bias in the naïve analysis and MLA1 when ignoring a 727 

differential misclassification. (iii) Effect estimates for the 3 reported CFH variants increased when 728 

applying MLA2 compared to the naïve analysis. This was particularly interesting for the reported 729 

CFH lead variant rs10922109, where we now observed a nominally significant association into 730 

the reported direction (MLA2: OR=1.15, P=0.047; naïve: OR=1.00, P=0.98; Supplemental Table 731 

7c). This is in line with the observed association of the specificity with this CFH variant. (iv) For 732 

the other 20 reported lead variants, we found many variants with increased effect estimates by 733 

MLA1 or MLA2 compared to the naïve analysis; effect estimates were mostly more comparable 734 

to reported effect sizes for advanced AMD10 (Figure 3c). For one variant, this MLA2 analysis 735 

yielded an effect into the opposite direction compared to the reported effect direction, which is 736 

the C9 lead variant (OR=0.83, P=0.59). With an effect allele frequency of 1%, it is the rarest 737 

analyzed variant of the 26 selected variants and estimates from the reported association as well 738 

as for the MLA2 analysis have low precision (i.e. large standard errors). 739 

 740 

Supplemental Data 741 

Supplemental Data include one figure and seven tables. 742 

 743 
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An open source R implementation of the MLA to account for misclassification in bilateral disease 756 

in genetic association analyses is available at: 757 

https://www.genepi-regensburg.de/MLA-bilateral/ (upon publication) 758 

Convolutional Neural Net Ensemble used for automated AMD classification and 759 

recommendations by the authors: 760 

 https://github.com/RegensburgMedicalImageComputing/ARIANNA; 761 

 IrfanView: https://www.irfanview.com/; 762 

GWAS catalogue: https://www.ebi.ac.uk/gwas/ 763 
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FIGURES 

Figure 1. GWAS results in UK Biobank based on automatically derived “any AMD” from 

naïve analysis. Association analyses were conducted using the error-prone, machine learning 

derived AMD classification in UK Biobank participants with 3,544 “any AMD” cases and 44,521 

controls via logistic regression adjusted for age and two genetic principal components, the naïve 

analysis ignoring misclassification. Shown are a) Manhattan Plot of 11,567,158 analyzed 

variants; dark blue: genome-wide significant and previously established10 locus, light blue: 

unknown genome-wide significant locus, orange: other 33 previously established loci for 

advanced AMD), and b) expected versus observed –log10 P-values; black: all variants, grey: all 

variants outside the 34 previously reported loci. 
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Figure 2. Genetic effect estimates for the 3 lead variants in UK Biobank without and with 

accounting for misclassification. Shown are genetic effect estimates and 95% confidence 

intervals for 3 lead variants from the GWAS on automated AMD classification with 3,544 “any 

AMD” cases and 44,521 controls from 3 models: without accounting for the misclassification; 

naïve analysis, light blue. With accounting for non-differential misclassification, i.e. no 

dependency on the genetic variant; MLA1, dark blue. And accounting for a differential 

misclassification, i.e. dependency on the genetic variant; MLA2, light green. Both MLAs 

accounted for missing AMD information in one of two eyes and a misclassification that depended 

on age.  
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Figure 3. Comparison of 21 reported genetic effect estimates for advanced AMD with 

estimates for automatically derived “any AMD” from UK Biobank without and with 

accounting for misclassification. We selected the 21 reported AMD lead variants, for which 

we had ≥80% power to detect them in this UK Biobank sample size with nominal significance. 

Shown are log OR effect estimates and 95% confidence intervals reported for advanced AMD on 

x-axis versus UK Biobank estimates for automatically derived “any AMD” on y-axis from a) the 

naïve analysis (logistic regression ignoring misclassification, b) MLA1, and c) MLA2. 
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Figure 4. Evidence for differential misclassification in automatically derived AMD with 

respect to the HERC2 variant rs12913832. Shown are (i) estimated odds ratios from the naïve 

analysis ignoring misclassification and various characteristics per genotype group: (ii) the fraction 

of persons with self-reported “light eye color” in the AugUR study, (iii) randomly selected fundus 

images in UKBB, (iv) image-lightness quantified by mean average grayscale, (v) proportion of 

false-positive AMD in the automated classification (1-specificity) and 95% confidence interval 

estimated via MLA2, and (vi) observed proportion of manually ungradable images that were 

deemed gradable by the algorithm and classified as “any AMD” or “AMD-free”.  
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TABLES 

Table 1. Simulation results on effect estimates and empirical type-I error in naïve and MLA-analysis. We evaluated the performance of naïve 
and MLA analysis of a quantitative covariate X and a binary bilateral disease Y, e.g. person-specific AMD, simulating various scenarios. For each 
scenario, we sampled 1000 data sets à 5000 individuals, 4000 with only error-prone eye-specific AMD classification, and 1000 with additional true 
AMD classification. Shown are performance measures from three models, naïve analysis, MLA1, or MLA2 assuming non-differential/differential 
misclassification regarding X, respectively, in various simulation scenarios. For the eight scenarios shown here, we assumed no association of X 
with δ, the probability of AMD in both eyes given ≥1 affected eye; results were similar when modelling an association of X with δ, see Supplemental 

Table 1. For each model and scenario, we report mean effect estimates βŶ, log OR per unit increase in standard-normal X, over all simulation runs, 
and the associated root mean squared error (RMSE), fraction of nominally significant effect estimates (% with P<0.05), and coverage frequencies of 
95%-confidence intervals. 

 Simulation Scenario   𝛃�̂�   % with P<0.05   Cov. Freq.  

Sens

. 

Spec

. 

%miss. 𝛃𝐘 𝛃𝐬𝐞𝐧𝐬 𝛃𝐬𝐩𝐞𝐜 Naïve MLA1 MLA2 Naive MLA1 MLA2 Naive MLA1 MLA2 

      Mean RMSE Mean RMSE Mean RMSE       

Non-differential misclassification 

0.9 0.9 0.25 0 0 0 0.00 0.03 0.00 0.04 0.00 0.04 5.3% 4.6% 4.6% 94.7% 95.4% 95.4% 

0.9 0.9 0.25 1 0 0 0.73 0.27 1.00 0.05 1.00 0.05 100% 100% 100% 0.0% 96.5% 96.3% 

0.9 0.9 0.75 1 0 0 0.69 0.31 1.00 0.06 1.00 0.07 100% 100% 100% 0.0% 94.4% 93.5% 

0.8 0.8 0.25 1 0 0 0.56 0.44 1.00 0.06 1.00 0.07 100% 100% 100% 0.0% 95.0% 95.0% 

0.8 0.9 0.25 1 0 0 0.68 0.32 1.00 0.05 1.00 0.06 100% 100% 100% 0.0% 97.0% 95.9% 

0.9 0.8 0.25 1 0 0 0.61 0.39 1.00 0.06 1.00 0.06 100% 100% 100% 0.0% 95.3% 94.8% 

Differential misclassification 

0.9 0.9 0.25 0 -1 1 -0.38 0.38 -0.46 0.46 0.00 0.05 100% 100% 4.7% 0.0% 0.0% 95.3% 

0.9 0.9 0.25 1 1 -1 1.14 0.14 1.39 0.40 1.00 0.06 100% 100% 100% 4.8% 0.0% 95.1% 
Sens/Spec = average sensitivity and specificity of error-prone, eye-specific AMD classification; %miss. = fraction of randomly selected individuals with missing 
AMD classification in one of two eyes; βY= log OR of X on true AMD, βsens= log OR of X on the sensitivity or βspec=log OR of X on the specificity of the eye-specific 
misclassification process, respectively.
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Table 2. Confusion matrices comparing manual and automated AMD classification per 
eye and per person. Shown are absolute numbers and conditional classification probabilities, 
i.e. in row i and column j, P(automated = j | manual=i) as %, with i, j=”Ungradable”, “No AMD”, 
“Any AMD”: a) for all eyes in the validation data; 4001 eyes of 2,013 individuals. b) For all 
persons in the overlap between validation data and GWAS; 1,327 persons.  

a) per eye (4,001 eyes, 2,013 individuals)  

 Automated classification  

Manual 

(trjkclassification 

Ungradable No AMD Any AMD Sum 

Ungradable 813 (74%) 185 (17%) 103 (9%) 1101 (100%) 

No AMD 107 (4%) 2207 (90%) 138 (6%) 2452 (100%) 

Any AMD 20 (4%) 103 (23%) 325 (73%) 448 (100%) 

     

b) per person (1,327 individuals)  

 Automated classification  

Manual 

classification 

 No AMD Any AMD Sum 

Ungradable/NA 

(NA) 

 202 (79%) 53 (21%) 255 (100%) 

No AMD  750 (91%) 72 (9%) 822 (100%) 

Any AMD  58 (23%) 192 (77%) 250 (100%) 

     

NA = true AMD status based on worse eye not available, since one eye was manually ungradable and 
the second AMD-free 
 
 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 8, 2019. ; https://doi.org/10.1101/867697doi: bioRxiv preprint 

https://doi.org/10.1101/867697

