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Abstract 91 

Biogeographical studies have traditionally focused on readily visible organisms, but recent 92 
technological advances are enabling analyses of the large-scale distribution of microscopic organisms, 93 
whose biogeographical patterns have long been debated1,2. The most prominent global biogeography 94 
of marine plankton was derived by Longhurst3 based on parameters principally associated with 95 
photosynthetic plankton. Localized studies of selected plankton taxa or specific organismal sizes1,4–7 96 
have mapped community structure and begun to assess the roles of environment and ocean current 97 
transport in shaping these patterns2,8. Here we assess global plankton biogeography and its relation 98 
to the biological, chemical and physical context of the ocean (the ‘seascape’) by analyzing 24 terabases 99 
of metagenomic sequence data and 739 million metabarcodes from the Tara Oceans expedition in 100 
light of environmental data and simulated ocean current transport. In addition to significant local 101 
heterogeneity, viral, prokaryotic and eukaryotic plankton communities all display near steady-state, 102 
large-scale, size-dependent biogeographical patterns. Correlation analyses between plankton 103 
transport time and metagenomic or environmental dissimilarity reveal the existence of basin-scale 104 
biological and environmental continua emerging within the main current systems. Across oceans, 105 
there is a measurable, continuous change within communities and environmental factors up to an 106 
average of 1.5 years of travel time. Modulation of plankton communities during transport varies with 107 
organismal size, such that the distribution of smaller plankton best matches Longhurst biogeochemical 108 
provinces, whereas larger plankton group into larger provinces. Together these findings provide an 109 
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integrated framework to interpret plankton community organization in its physico-chemical context, 110 
paving the way to a better understanding of oceanic ecosystem functioning in a changing global 111 
environment. 112 

Main Text 113 

Plankton communities are constantly on the move, transported by ocean currents9. Transport involves 114 
both advection and mixing. While being advected by currents, plankton are influenced by multiple 115 
processes, both physico-chemical (fluxes of heat, light and nutrients10) and biological (species 116 
interactions, life cycles, behavior, acclimation/adaptation11,12), which act across various spatio-117 
temporal scales. In turn, plankton impact seawater physico-chemistry while they are being advected10. 118 
The community composition and biogeochemical properties of a water mass are also partially 119 
dependent on its history of mixing with neighboring water masses during transport. These intertwined 120 
processes form the pelagic seascape13 (Supplementary Fig. 1a). Previous studies on plankton 121 
distribution have tended to focus on individual factors, such as nutrient or light availability3,14, or have 122 
investigated the role of transport for specific nutrients15 or types of planktonic organisms8,16. Here, 123 
instead, we integrated uniformly collected metagenomic data across multiple size fractions with large-124 
scale ocean circulation simulations in the context of the seascape. 125 

We assessed global patterns of plankton biogeography in the context of the seascape using samples 126 
collected at 113 stations during the Tara Oceans expedition17, including DNA sequence data from six 127 
organismal size fractions: one virus-enriched (0-0.22 μm)5, one prokaryote-enriched (either 0.22-1.6 128 
or 0.22-3 μm)18, and four eukaryote-enriched (0.8-5 μm, 5-20 μm, 20-180 μm and 180-2000 μm19; 129 
Supplementary Fig. 1b). We analyzed 24.2 terabases of metagenomic sequence reads and 320 million 130 
new eukaryotic 18S V9 ribosomal DNA marker sequences (Supplementary Table 1), complementing 131 
previously described Tara Oceans data5,18,19. We used metagenomic data and Operational Taxonomic 132 
Units (OTUs, representing groups of genetically related organisms) as independent proxies to compute 133 
pairwise comparisons of plankton community dissimilarity (β-diversity). Metagenomic dissimilarity 134 
highlighted, at species and sub-species resolution, differences in the genomic identity of organisms 135 
between stations. Our metagenomic sampling resulted in pairwise metagenomic dissimilarities that 136 
likely represent an overestimate of true β-diversity (Supplementary Information 1). However, since 137 
we applied an identical procedure to compute dissimilarity between all pairs of samples, these values 138 
nevertheless provide an accurate picture of β-diversity variation among samples. The more deeply 139 
sampled OTU dissimilarity, in contrast, incorporated the numerous rare taxa within the plankton, but 140 
at genus or higher-level taxonomic resolution19. Metagenomic and OTU dissimilarities were correlated 141 
for all size fractions (Spearman’s ρ 0.53 to 0.97, p ≤ 10-4, Supplementary Fig. 2), indicating that both 142 
proxies, although characterized by different sampling depth and taxonomic resolution, provided 143 
coherent and complementary estimates of β-diversity (Supplementary Information 1). We performed 144 
subsequent analyses using both measures, which produced consistent results. We focus on analyses 145 
of metagenomic dissimilarity here, with accompanying results for OTU dissimilarity presented in 146 
Supplementary Figures.  147 

Globally, we observed significant dissimilarities at both the metagenomic and OTU level between 148 
sampled stations (including adjacent sites) across all size fractions (Supplementary Fig. 3a, 149 
Supplementary Information 1). The resulting portrait is of a locally heterogeneous oceanic ecosystem 150 
dominated by a small number of abundant and cosmopolitan taxa, with a much larger number of less 151 
abundant taxa found at fewer sampling sites (Supplementary Fig. 3b-e), corroborating previous 152 
studies19.  153 

Underlying this local heterogeneity, we found robust evidence for the existence of large-scale 154 
biogeographical patterns within all plankton size classes using two complementary analyses of 155 
dissimilarity among samples (Fig. 1a, Supplementary Fig. 4a-f, Supplementary Fig. 5, Supplementary 156 
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Information 2). First, we grouped metagenomic samples within each size fraction into ‘genomic 157 
provinces’ via hierarchical clustering (Supplementary Fig. 6). Second, we derived colors for each 158 
sample based on a principal coordinates analysis (PCoA-RGB; see Methods) in order to visualize 159 
transitions in community composition within and between genomic provinces. Most genomic 160 
provinces were composed of large-scale geographically contiguous stations (consistent with previous 161 
studies documenting patterns in plankton biogeography1,2,5,6) with some independent distant samples 162 
(Fig. 1a, Supplementary Fig. 4a-f). Genomic provinces of smaller plankton (viruses, bacteria and 163 
eukaryotes <20 µm) tended to be limited to a single ocean basin and to approximately correspond to 164 
Longhurst biogeochemical provinces3 (Supplementary Fig. 4a-d; Supplementary Information 3). In 165 
contrast, provinces of larger plankton (micro- and meso-plankton, >20 µm) spanned multiple basins 166 
(Supplementary Fig. 4e-f, Supplementary Information 4).  167 

These large-scale biogeographical patterns derived from metagenomes were linked to environmental 168 
parameters including nutrients, temperature and trophic level. Seawater temperature was 169 
significantly different among genomic provinces for all plankton size classes (Kruskal-Wallis test, p < 170 
10-5), corroborating previous results for prokaryotes18, whereas other environmental conditions were 171 
significantly different only with respect to specific size classes (Supplementary Fig. 7). The geography 172 
of combined nutrient and temperature variations resembled the biogeography of smaller plankton 173 
size classes (Fig. 1a-b, Supplementary Fig. 4a-d,g), whereas temperature alone more closely matched 174 
the distribution of larger plankton (Supplementary Fig. 4e,f,h), reflecting different potential ecological 175 
constraints. Many genomic provinces were spatially consistent with ocean basin-scale circulation 176 
patterns, such as western boundary currents or major subtropical gyres20 (Fig. 1a, Supplementary Fig. 177 
4a-f), suggesting a particular role for large-scale surface transport (a core component of the seascape) 178 
in the emergence of spatial patterns of plankton community composition, as previously proposed21. 179 
We therefore investigated community composition differences between sampled stations in light of 180 
the corresponding transit time. We inferred the time of mean transport between stations from 181 
trajectories computed with the physically well-constrained MITgcm ocean model (see Methods), 182 
which takes into account directionalities9 and meso- to large-scale circulation, potential dispersal 183 
barriers and mixing effects22,23. We quantified transport using the minimum travel time24 (Tmin) 184 
between pairs of Tara stations. These trajectories corresponded to the dominant paths that transport 185 
the majority of water volume and its contents (e.g., heat, nutrients and plankton; Fig. 1c). For all 186 
plankton size classes, community composition differences between stations were correlated to travel 187 
time (Supplementary Fig. 8). Cumulative correlation values (correlations between metagenomic 188 
dissimilarity and Tmin computed for an increasing range of Tmin) were maximal for pairs of stations 189 
separated by Tmin <~1.5 years for all size classes (p ≤ 10-4; Spearman’s ρ 0.45 to 0.71 depending on size 190 
class, Fig. 2a, Supplementary Fig. 9a-e), hence revealing measurable plankton community dynamics 191 
on time scales far longer than typical plankton growth rates or life cycles. In contrast, no such unimodal 192 
pattern was found for correlations between metagenomic dissimilarity and geographic distance 193 
(without traversing land; Supplementary Fig. 9f). Over the timescale <~1.5 years, which corresponds 194 
well with the average time to travel across a basin or gyre, large-scale transport is therefore an 195 
appropriate framework for studying differences in plankton community composition (Fig. 2b). The fact 196 
that simulated transport times and metagenomic dissimilarity were correlated despite a 3 year pan-197 
season sampling campaign highlights the overall stability of plankton dynamics along the main ocean 198 
currents. 199 

Transit time also covaried (although less strongly) with differences in environmental conditions for 200 
pairs of stations for which Tmin <~1.5 years (Fig. 3). This indicates that along large-scale oceanic current 201 
systems, changes in environmental conditions and plankton community composition are concurrent. 202 
In our data, beyond ~1.5 years of transport, correlations of Tmin with metagenomic dissimilarity 203 
decreased (Fig. 2a, Fig. 3, Supplementary Fig. 9a-e), meaning the signature of transport in generating 204 
large-scale diversity changes weakened and travel time therefore becomes a less appropriate 205 
framework to study β-diversity. A similar trend was observed for the correlation between Tmin and 206 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/867739doi: bioRxiv preprint 

https://doi.org/10.1101/867739
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

nutrient concentrations whereas temperature was better correlated when considering larger transit 207 
times (Fig. 3). 208 

Together, these analyses suggest the existence in the seascape of stable biogeochemical continua 209 
induced by basin-scale currents with predictable, interlinked changes in environmental conditions and 210 
plankton community composition (Supplementary Information 5). It has previously been posited that 211 
transport could generate continuous transitions between niches25, but it was not anticipated that this 212 
would occur on the scale of ocean basins. Beyond ~1.5 years, the correlation of metagenomic 213 
dissimilarity with differences in temperature increased while that with differences in nutrients 214 
decreased (Fig. 3, Supplementary Fig. 9a-e). However, both of these correlations with metagenomic 215 
dissimilarity remained strong on these time scales. This might be related to distant Tara Oceans 216 
stations experiencing similar oceanographic phenomena (notably temperature), for example 217 
upwelling zones, producing generally similar environmental conditions.  218 

The existence of a size-class dependent (smaller or larger than 20 µm) plankton biogeography 219 
indicates that organisms contribute differently to the basin-scale biogeochemical continua present in 220 
the seascape. In the case of the North Atlantic current system (including the Mediterranean Sea), a 221 
simple exponential fit of metagenomic dissimilarity along Tmin for Tmin <~1.5 years (Fig. 2c) revealed 222 
that the smaller size classes (<20 µm) had a shorter metagenomic turnover time (ca. 1y) than larger 223 
plankton (ca. 2y) (Supplementary Fig. 10, Supplementary Information 6). At global geographical scales, 224 
the genomic provinces of small size classes, which are enriched in phytoplankton18,19, corresponded 225 
with differences in environmental parameters such as nutrient levels (Fig. 1b, Supplementary Fig. 7) 226 
that are often constrained by regional oceanographic processes26, as shown in our data. On the other 227 
hand, genomic provinces of larger plankton, dominated by heterotrophic and symbiotic organisms19, 228 
often crossed biogeochemical boundaries and were more related to global scale gradients and 229 
circulation patterns, notably major latitudinal temperature zones or the separation between Atlantic 230 
and Indo-Pacific large-scale surface circulations (Supplementary Fig. 4e,f,h). These divergent effects 231 
were also evident in comparisons of metagenomic dissimilarity with variations in environmental 232 
conditions (Supplementary Fig. 9b). For smaller plankton, correlations with differences in nutrient 233 
concentrations were stronger for Tmin  up to ~1.5 years, but  for larger plankton, correlations were 234 
stronger with temperature variations for Tmin beyond ~1.5 years. These results indicate a significant 235 
size-based decoupling within planktonic food webs (see Supplementary Information 4).  236 

In this study, we provide genomic evidence for an organism-size-dependent global plankton 237 
biogeography shaped by currents at the scale of ocean basins. We measured, using metagenomes, 238 
the underlying plankton dynamics driven by seascape processes such as intrinsic biological dynamics, 239 
variation in environmental conditions, and/or long-range transport. Our analyses reveal that global 240 
plankton communities include components that are in a near steady-state that emerges from the 241 
integration of the seascape. This behavior resembles self-organizing systems within reaction-242 
advection-diffusion contexts27. This work shows that studies of the dynamics of plankton communities 243 
must consider the critical influence of ocean currents in stretching and altering, on the scale of basins, 244 
the distribution of both planktonic organisms and the physico-chemical nature of the water mass in 245 
which they reside. In this context, our study confirms that the combination of ocean circulation 246 
modelling with the use of metagenomic DNA as a tracer of plankton communities is a key tool for 247 
unravelling the regulation of plankton dynamics. The planktonic ecosystem is fundamentally different 248 
in many ways from other major planetary ecosystems and this study provides a framework to 249 
understand and predict the structuring of the ocean ecosystem in a scenario of rapid environmental 250 
and current system changes28,29. 251 
 252 
 253 
Methods 254 
 255 
Sampling, sequencing and environmental parameters 256 
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Sampling, size fractionation, measurement of environmental parameters and associated metadata, 257 
DNA extraction and metagenomic sequencing were conducted as described previously30,31. Samples 258 
were collected at 113 Tara Oceans stations for six size fractions (0-0.2, 0.22-1.6/3, 0.8-5, 5-20, 20-180, 259 
180-2000 µm; Supplementary Fig. 1b; Supplementary Table 1) and two depths (subsurface and deep 260 
chlorophyll maximum (DCM)). The prokaryote-enriched size fraction was collected either a 0.22-1.6 261 
µm or 0.22-3 µm filter18,30.  262 
We used physico-chemical data measured in situ during the Tara Oceans expedition (depth of 263 
sampling, temperature, chlorophyll, phosphate, nitrate and nitrite concentrations), supplemented 264 
with simulated values for iron and ammonium (using the MITgcm Darwin model described below in 265 
“Ocean circulation simulations”), day length, and 8-day averages calculated for photosynthetically 266 
active radiation (PAR) in surface waters (AMODIS, https://modis.gsfc.nasa.gov). In order to obtain PAR 267 
values at the deep chlorophyll maximum, we used the following formula32: 268 

PAR(Z) = PAR(0)*exp(-k*Z) 269 
x=log(Chl) 270 

log(Z)=1.524-0.426x-0.0145x^2+0.0186x^3 271 
k=-ln (0.01)/Z 272 

in which k is the attenuation coefficient, and Z is the depth of the DCM (in meters). Other data, such 273 
as silicate and the nitrate/phosphate ratio, were extracted from the World Ocean Atlas 2013 (WOA13 274 
version 2, https://www.nodc.noaa.gov/OC5/woa13/), by retrieving the annual mean values at the 275 
closest available geographical coordinates and depths to Tara sampling stations. For temperature and 276 
nitrate, we calculated seasonality indexes (SI) from monthly WOA13 data. For each sample, the index 277 
is the annual variation of the parameter (max - min) at this location divided by the highest variation 278 
value among all samples. 279 
A list of samples, metagenomic and metabarcode sequencing information and associated 280 
environmental data is available in Supplementary Tables 1-2. 281 
 282 
Calculation of metagenomic community dissimilarity 283 
Metagenomic community distance between pairs of samples was estimated using whole shotgun 284 
metagenomes for all six size fractions. We used a metagenomic comparison method (Simka33) that 285 
computes standard ecological distances by replacing species counts by counts of DNA sequence k-286 
mers (segments of length k). K-mers of 31 base pairs (bp) derived from the first 100 million reads 287 
sequenced in each sample (or the first 30 million reads for the 0-0.2 µm size fraction) were used to 288 
compute a similarity measure between all pairs of samples within each organismal size fraction. Based 289 
on a benchmark of Simka, we selected 100 million reads per sample (or 30 million for the 0-0.2 µm 290 
fraction) because increasing this number did not produce a qualitatively different set of results, and 291 
to ensure that the same number of reads were used in each pairwise comparison within a size fraction. 292 
Nearly all samples in our data set had at least 100 million reads (or at least 30 million for the 0-0.2 µm 293 
fraction; Supplementary Table 1).  294 
We estimated b-diversity for metagenomic reads with the following equation within Simka: 295 

Metagenomic b-diversity = (b + c) / (2a + b + c) 296 
Where a is the number of distinct k-mers shared between two samples, and b and c are the number 297 
of distinct k-mers specific to each sample. We represented the distance between each pair of samples 298 
on a heatmap using the heatmap.2 function of the R-package34 gplots_2.17.035. The dissimilarity 299 
matrices we produced for each plankton size fraction (on a scale of 0 = identical to 100 = completely 300 
dissimilar) are available as Supplementary Tables 3-8. 301 
 302 
Calculation of OTU-based community dissimilarity 303 
Within the 0-0.2 µm size fraction, we used previously published viral populations (equivalent to 304 
OTUs)36 and viral clusters (analogous to higher taxonomic levels)5 based on clustering of protein 305 
content. For the 0.22-1.6/3 µm size fraction, we used previously derived miTAGs based on 306 
metagenomic matches to 16S ribosomal DNA loci and processed them as described18. For the four 307 
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eukaryotic size fractions, we added additional samples to a previously published Tara Oceans 308 
metabarcoding data set and processed them using the same methods19 (also described at DOI: 309 
10.5281/zenodo.15600). 310 
We calculated OTU-based community dissimilarity for all size fractions as the Jaccard index based on 311 
presence/absence data using the vegdist function implemented in vegan 2.4-037 in the software 312 
package R. The dissimilarity matrices we produced for each plankton size fraction (on a scale of 0 = 313 
identical to 100 = completely dissimilar) are available as Supplementary Tables 9-14. 314 
 315 
Calculating distances of environmental parameters 316 
We calculated Euclidean distances38 for physico-chemical parameters. Each were scaled individually 317 
to have a mean of 0 and a variance of 1 and thus to contribute equally to the distances. Then the 318 
Euclidean distance between two stations i and j for parameters P was computed as follows: 319 

𝐸𝐷(𝑖, 𝑗, 𝑃) = *+,𝑥./ − 𝑥1/2
3

/∈5

 320 

 321 
RGB encoding of environmental positions  322 
We color-coded the position of stations in environmental space for Fig. 1b and Supplementary Fig. 4g 323 
as follows. First, environmental variables were power-transformed using the Box-Cox transformation 324 
to have Gaussian-like distributions to mitigate the effect of outliers and scaled to have zero mean and 325 
unit variance. We then performed a principal component analysis (PCA) with the R command prcomp 326 
from the package stats 3.2.134 on the matrix of transformed environmental variables and kept only 327 
the first 3 principal components. Finally, we rescaled the scores in each component to have unit 328 
variance and decorrelated them using the Mahalanobis transformation. Each component was mapped 329 
to a color channel (red, green or blue) and the channels were combined to attribute a single composite 330 
color to each station. The components (x, y, z) were mapped to color channel values (r, g, b) between 331 
0 and 255 as r = 128 * (1 + x / max(abs(x)), and similarly for g and b. This map ensures that the global 332 
dispersion is equally distributed across the three components and composite colors span the whole 333 
color space. 334 
 335 
Definition of genomic provinces 336 
We used a hierarchical clustering method on the metagenomic pairwise dissimilarities produced by 337 
Simka for all surface and DCM samples, and multiscale bootstrap resampling for assessing the 338 
uncertainty in hierarchical cluster analysis. We focused on metagenomic dissimilarity due to its higher 339 
resolution, and confirmed that the patterns found in metagenomic data were consistent when using 340 
OTU data (Supplementary Fig. 5). We used UPGMA (Unweighted Pair-Group Method using Arithmetic 341 
averages) clustering, as it has been shown to have the best performance to describe clustering of 342 
regions for organismal biogeography39. The R-package pvclust_1.3-240, with average linkage clustering 343 
and 1,000 bootstrap replications, was used to construct dendrograms with the approximately 344 
unbiased p-value for each cluster (Supplementary Fig. 6). Because the number of genomic provinces 345 
by size fraction was not known a priori, we applied a combination of visualization and statistical 346 
methods to compare and determine the consistency within clusters of samples. First, the silhouette 347 
method41 was used to measure how similar a sample was within its own cluster compared to other 348 
clusters using the R package cluster_2.0.142. The Silhouette Coefficient s for a single sample is given 349 
as: 350 

s = (b - a) / max(a,b) 351 
Where a is the mean distance between a sample and all other points in the same class and b is the 352 
mean distance between a sample and all other points in the next nearest cluster. We used the value 353 
of s, in addition to bootstrap values, to partition each tree into genomic provinces (see Supplementary 354 
Information 2 for further details on statistical validation of genomic provinces). Additionally, we used 355 
the Radial Reingold-Tilford Tree representation from the JavaScript library D3.js (https://d3js.org/)43 356 
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to visualize sample partitions from the dendrogram. Single samples were not considered as genomic 357 
provinces. 358 

In a complementary approach, we performed a principal coordinates analysis (PCoA) with the R 359 
command cmdscale (eig = TRUE, add = TRUE) from the package stats 3.2.134 on the matrices of 360 
pairwise metagenomic dissimilarities calculated by Simka (or OTU dissimilarity measured with the 361 
Jaccard index) within each size fraction and kept only the first 3 principal coordinates. We then 362 
converted those coordinates to a color using the RGB encoding described above, with one 363 
modification: scaling factors λr, λg and λb were calculated as the ratios of the second and third 364 
eigenvalues to the first (dominant) eigenvalue to ensure that the dispersion of stations along each 365 
color channel reproduced the dispersion of the stations along the corresponding principal component 366 
(the ratio for the color corresponding to the dominant eigenvalue is 1). The components (x, y, z) were 367 
then mapped to color channel values (r, g, b) between 0 and 255 as r = 128 * (1 + λcx / max(abs(x)), 368 
where λc is the ratio of the eigenvalue of color c to the dominant eigenvalue. 369 
We represented number and PCoA-RGB color of genomic provinces for each sample on a world map 370 
(Fig. 1, Supplementary Fig. 4a-f) generated with the R packages maps_3.0.0.244, mapproj 1.2-445, 371 
gplots_2.17.035 and mapplots_1.546. We also plotted phosphate and temperature (Supplementary Fig. 372 
4a-f) obtained from the Csiro Atlas of Regional Seas (CARS2009, http://www.cmar.csiro.au/cars) using 373 
the phosphate_cars2009.nc and temprerature_cars2009a.nc files and the R package RNetCDF47. 374 
 375 
Comparison of genomic provinces to previous ocean divisions 376 
To evaluate the spatial similarity between the clusters obtained in our study for each size fraction and 377 
previous biogeographic divisions, we performed an analysis of similarity (ANOSIM, Fathom toolbox, 378 
matlab®). First, we collected coordinates for three spatial divisions at a resolution of 0.5° x 0.5°: 379 
biomes, biogeochemical provinces (BGCPs)3,48 and objective global ocean biogeographic provinces 380 
(OGOBPs)49. Second, we assigned Tara Oceans stations to biomes, BGCPs, and OGOBPs based on their 381 
GPS coordinates. Third, for each size fraction we performed an ANOSIM with the metagenomic 382 
dissimilarity matrix calculated by Simka, using biogeographic clusters (biome, BGCP, OGOBP) as group 383 
membership for each station. Each ANOSIM was bootstrapped 1,000 times to evaluate the interval of 384 
confidence around the strength of the relationships we detected (Supplementary Fig. 4a-f). 385 
 386 
Environmental differences among genomic provinces 387 
For each size fraction, we tested which environmental parameters significantly discriminated among 388 
genomic provinces (Supplementary Fig. 7). A total of 12 parameters characterizing each sample, 389 
grouped by genomic provinces, were evaluated with a Kruskal-Wallis test within each size fraction 390 
with a significance threshold of p < 10-5. Selected parameters for each size fraction were then used to 391 
perform a principal components analysis of the samples using the R package vegan_1.17-1137. Samples 392 
were plotted with the same PCoA-RGB colors used in the genomic province maps above and each 393 
genomic province surrounded by a grey polygon. In analyses where Southern Ocean (including 394 
Antarctic) stations were considered independently from other stations, the following were considered 395 
Southern Ocean stations: 82, 83, 84, 85, 86, 87, 88, 89. 396 
 397 
Ocean circulation simulations 398 
We derived travel times from the MITgcm Darwin simulation50 based on an optimized global ocean 399 
circulation model from the ECCO2 group51. The horizontal resolution of the model was approximately 400 
18 km, with 1,103,735 total ocean cells. We ran the model for six continuous years in order to smooth 401 
anomalies that might occur during any single year. We used surface velocity simulation data to 402 
compute trajectories of floats originating in ocean cells containing all Tara Oceans stations, and 403 
applied the following stitching procedure to generate a large number of trajectories for each initial 404 
position. (The use of surface velocity data implies that Ekman transport also influences trajectories 405 
within the simulation.) 406 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/867739doi: bioRxiv preprint 

https://doi.org/10.1101/867739
http://creativecommons.org/licenses/by-nc/4.0/


9 
 

First, we precomputed a set of monthly trajectories: for each of the 72 months in the dataset, we 407 
released floats in every ocean cell of the model grid and simulated transport for one month. We used 408 
a fourth-order Runge-Kutta method with trilinearly interpolated velocities and a diffusion of 100 m²/s.  409 
Second, following previous studies4, we stitched together monthly trajectories to create 10,000 year 410 
trajectories: for each float released within a 200 km radius of a Tara station, we constructed 1,000 411 
trajectories, each 10,000 years long. To avoid seasonal effects, we began by selecting a random 412 
starting month. We followed the trajectory of a float released within that month to the grid cell 413 
containing its end point at the end of the month. Next, we randomly selected a trajectory starting on 414 
the following month (e.g., February would follow January) from that grid cell, and repeated until 415 
reaching a 10,000 year trajectory. 416 
We searched the resulting 50.8 million trajectories for those that connected pairs of Tara Oceans 417 
stations. To ensure robustness of our results, we only included pairs of stations that were connected 418 
by more than 1,000 trajectories. For each pair of stations, Tmin was defined as the minimum travel time 419 
of all trajectories (if any) connecting the two stations. The travel time matrix we produced (measured 420 
in years) is available as Supplementary Table 15. Standard minimum geographic distance without 421 
traversing land52 is available as Supplementary Table 16. 422 
 423 
Correlations of β-diversity, Tmin and environmental parameters 424 
We excluded stations that were not from open ocean locations from correlation analyses to avoid 425 
sites impacted by coastal processes (those numbered 54, 61, 62, 79, 113, 114, 115, 116, 117, 118, 119, 426 
120, and 121). In analyses where Southern Ocean (including Antarctic) stations were considered 427 
independently from other stations, the following were considered Southern Ocean (including 428 
Antarctic) stations: 82, 83, 84, 85, 86, 87, 88, 89. We calculated rank-based Spearman correlations 429 
between β-diversity, Tmin and environmental parameters (either differences in temperature or the 430 
Euclidean distance composed of differences in NO2NO3, PO4 and Fe, see above) for surface samples 431 
with a Mantel test with 1,000 permutations and a nominal significance threshold of p < 0.01. For the 432 
correlations presented in Fig. 2a, Fig. 3 and Supplementary Fig. 9 correlation values were derived from 433 
pairs of stations connected by Tmin up to the value on the x-axis. We calculated partial correlations of 434 
metagenomic and OTU dissimilarity and Tmin by controlling for differences in temperature and for 435 
differences in nutrient concentrations, and partial correlations of dissimilarity with temperature or 436 
nutrient variation by controlling for Tmin.  437 
 438 
Community turnover in the North Atlantic 439 
Tara Oceans stations numbered 72, 76, 142, 143, 144, and all stations from 146 to 151 were located 440 
along the main current system connecting South Atlantic and North Atlantic oceans and continuing to 441 
the strait of Gibraltar. In addition, we included stations 4, 7, 18, and 30 located on the main current 442 
system in the Mediterranean Sea (Supplementary Fig. 10). As the Tara Oceans samples within the 443 
subtropical gyre of the North Atlantic and in the Mediterranean Sea were all collected in winter, 444 
seasonal variations should not play a role in the variability in community composition that we 445 
observed (see Supplementary Table 2). We calculated genomic e-folding times (the time after which 446 
the detected genomic similarity between plankton communities changes by 63%) over scales from 447 
months to years based on an exponential fit of metagenomic dissimilarity to Tmin with the form y = C0 448 
e-x/τ  (where C0 is a constant and τ  the folding time). Exponential fits for size fractions 0-0.2 µm and 5-449 
20 µm were not calculated due to an insufficient number of sampled stations in the North Atlantic 450 
(Supplementary Information 6).  451 
The synthetic map (Supplementary Fig. 10a) was generated with the R packages maps_3.0.0.2, 452 
mapproj 1.2.4, gplots_2.17.0 and mapplots_1.5. We derived dynamic sea surface height from the Csiro 453 
Atlas of Regional Seas (CARS2009, http://www.cmar.csiro.au/cars) using the hgt2000_cars2009a.nc 454 
file and plotted with the R package RNetCDF.  455 
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 652 
Figure 1 | Plankton biogeography, environmental variation and ocean transport among Tara Oceans 653 
stations. Major currents are represented by solid arrows. a, Genomic provinces of Tara Oceans surface 654 
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samples for the 0.8-5 µm size fraction, each labeled with a letter prefix (‘C’ represents the 0.8-5 µm size 655 
fraction) and a number; samples not assigned to a genomic province are labeled with ‘-’. Maps of all six size 656 
fractions and including DCM samples are available in Supplementary Fig. 4. Station colors are derived from an 657 
ordination of metagenomic dissimilarities; more dissimilar colors indicate more dissimilar communities (see 658 
Methods). b, Stations colored based on an ordination of temperature and the ratio of NO2NO3 to PO4 (replaced 659 
by 10-6 for 3 stations where the measurement of PO4 was 0) and of NO2NO3 to Fe. Colors do not correspond 660 
directly between maps; however, the geographical partitioning among stations is similar between the two 661 
maps. c, Simulated trajectories corresponding to the minimum travel time (Tmin) for pairs of stations (black 662 
dots) connected by Tmin < 1.5 years. Directionality of trajectories is not represented.  663 
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 664 
Figure 2 | Metagenomic dissimilarity and travel time of plankton are maximally correlated up to ~1.5 years. 665 
a, Spearman rank-based correlation by size fraction between metagenomic dissimilarity and minimum travel 666 
time along ocean currents (Tmin) for pairs of Tara Oceans samples separated by a minimum travel time less 667 
than the value of Tmin on the x axis. Brown line: 0-0.2 µm size fraction, red: 0.22-1.6/3 µm, blue: 0.8-5 µm, 668 
green: 5-20 µm, purple: 20-180 µm, orange: 180-2000 µm. Shaded colored areas represent 95% confidence 669 
intervals. Tmin >1.5 years is shaded in grey. See plots for OTU dissimilarity in Supplementary Fig. 9. b, Pairs of 670 
Tara stations connected by Tmin <1.5 years in blue/black and >1.5 years in grey. Shading reflects metagenomic 671 
similarity from the 0.8-5 μm size fraction. c, The relationship of metagenomic similarity to Tmin with an 672 
exponential fit (black line, grey 95% CI), for pairs of surface samples in the 0.8-5 μm size fraction within the 673 
North Atlantic and Mediterranean current system (see map and plots for other size fractions and OTUs in 674 
Supplementary Fig. 10, and Supplementary Information 1 for a discussion of metagenomic similarity).  675 
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 676 
Figure 3 | Plankton travel time, metagenomic dissimilarity and environmental differences show different 677 
temporal patterns of pairwise correlation. Spearman rank-based correlations between metagenomic 678 
dissimilarity and minimum travel time (Tmin, blue), metagenomic dissimilarity and differences in NO2NO3, PO4 679 
and Fe (pink), metagenomic dissimilarity and differences in temperature (red), Tmin and differences in NO2NO3, 680 
PO4 and Fe (pink, dashed), and Tmin and differences in temperature (red, dashed) for pairs of Tara Oceans 681 
samples separated by a minimum travel time less than the value of Tmin on the x axis. Shaded regions represent 682 
standard error of the mean. Correlations represent averages across four of six size fractions represented in Fig. 683 
2a; the 0-0.2 µm and 5-20 µm size fractions are excluded due to a lack of samples at the global level. Individual 684 
size fractions, partial correlations, and correlations with OTU data are in Supplementary Fig. 9.  685 
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 686 
Supplementary Figure 1 | The seascape, plankton transport and community metagenomic samples of Tara 687 
Oceans stations. a, A community sampled at a given location (A) changes over time as it travels along ocean 688 
currents (dashed bold line) to a second location (B). It is affected by numerous external processes, including 689 
mixing with water containing other communities and changes in local nutrient concentration, and by internal 690 
processes, such as biotic interactions. In this study, the Tara schooner followed a sampling route (orange 691 
dashed line) leading to an elapsed time between the 2 sampling sites A and B that was independent of 692 
plankton travel time. b, Location, station number, and sequenced surface metagenomic samples.  693 
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 694 
Supplementary Figure 2 | β-diversity estimates from metagenomic and OTU-based dissimilarity are 695 
correlated. Scatter plots of metagenomic dissimilarity versus OTU community dissimilarity for six organismal 696 
size fractions. Each point represents a pairwise comparison between two samples. a, 0-0.2 µm size fraction. b, 697 
0.22-1.6/3 µm size fraction. c, 0.8-5 µm size fraction. d, 5-20 µm size fraction. e, 20-180 µm size fraction. f, 698 
180-2000 µm size fraction. Global rank-based correlations (Spearman, p ≤ 10-4) are indicated in the bottom 699 
right of each plot.  700 
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 701 
Supplementary Figure 3 | Global dissimilarity and OTU occupancy. a, Distributions of dissimilarity for six 702 
organismal size fractions (measured either as metagenomic or OTU dissimilarity; see Supplementary 703 
Information 1). One colored point represents one pair of stations. Violin plots (horizontal line: median) 704 
summarize each distribution. The number of stations in common between the metagenomic/OTU data sets 705 
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within each size fraction is indicated above. b-e, OTU occupancy for different proportions of total abundance. 706 
Fraction of stations present (occupancy) for the minimum number of OTUs (indicated above) necessary to 707 
represent different proportions of the total abundance within each organismal size fraction. A relatively small 708 
number of abundant and cosmopolitan taxa represents the majority of the abundance within each size 709 
fraction; this effect is more pronounced with increasing organismal size. b, OTUs representing 50% of the total 710 
abundance within each size fraction. c, 80%. d, 95%. e, 100% (all OTUs).  711 
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 712 
Supplementary Figure 4 | Genomic provinces in comparison to previous ocean divisions, and ordination 713 
maps of environmental parameters. a-f, Geographical maps of genomic provinces by organismal size fraction 714 
(see Supplementary Information 2). Circles denote stations with data available for the size fraction and contain 715 
the corresponding genomic province identifiers (one letter prefix per size fraction (A-F); stations not assigned 716 
to genomic provinces are shown as ‘-’). The top portion of each circle represents samples collected at the 717 
surface and the bottom portion represents the deep chlorophyll maximum (stations missing metagenomic 718 
data for one of the two depths are drawn as half circles). Colors are based on PCoA-RGB (Methods) and do not 719 
correspond among size fractions. Major currents are shown with solid black arrows, wind transport with 720 
dashed grey arrows. Blue zones indicate temperature < 14 °C. Hashed zones indicate phosphate concentration 721 
> 0.4 mmol. Hierarchical dendrograms that were used to build genomic provinces are shown in Supplementary 722 
Fig. 6. Maps with colors based on OTU dissimilarity are shown in Supplementary Fig. 5. a, ‘A’ prefix, 0-0.2 µm 723 
size fraction. b, ‘B’ prefix, 0.22-1.6/3 µm. c, ‘C’ prefix, 0.8-5 µm. d, ‘D’ prefix, 5-20 µm. e, ‘E’ prefix, 20-180 µm. 724 
f, ‘F’ prefix, 180-2000. Insets, Results of ANOSIM to determine, independently for each size fraction, the ability 725 
of three nested levels of ocean partitioning to explain metagenomic dissimilarities among stations (blue, 726 
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Longhurst biomes; red, Longhurst biogeochemical provinces; green, Oliver and Irwin objective provinces; see 727 
Methods and Supplementary Information 3). g, The distribution of temperature and nutrient variations 728 
matches the biogeography of small plankton (< 20 µm). Stations are colored based on an ordination of 729 
Euclidean distances in temperature, NO2NO3, PO4 and Fe. h, The distribution of temperature matches the 730 
biogeography of large plankton (> 20 µm). Stations are colored following a Box-Cox transformation (Methods).  731 
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 732 
Supplementary Figure 5 | Biogeography based on an ordination of OTU dissimilarity. a-f, Principal 733 
coordinates analysis (PCoA)-RGB color maps for OTUs (see Methods). The top of each half circle represents 734 
samples collected at the surface and the bottom portion represents the deep chlorophyll maximum (stations 735 
missing OTU data for one of the two depths are drawn as half circles). Station colors do not correspond among 736 
size fractions. a, 0-0.2 µm size fraction. b, 0.22-1.6/3 µm. c, 0.8-5 µm. d, 5-20 µm. e, 20-180 µm. f, 180-2000 737 
µm.  738 
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 739 
Supplementary Figure 6 | Hierarchical trees illustrating how samples were partitioned into genomic 740 
provinces. Dendrograms resulted from UPGMA clustering. Each sample (SUR: surface, DCM: deep chlorophyll 741 
maximum) is shown as a leaf. Genomic provinces are shown with their identifiers in blue polygons; identifiers 742 
are composed of one letter prefix per size fraction (A-F) and a number. Bootstrap values in red show the 743 
support at the key nodes that separate genomic provinces from one another. See also Supplementaryt 744 
Information 2 on the robustness of genomic provinces. a, ‘A’ prefix, 0-0.2 µm size fraction. b, ‘B’ prefix, 0.22-745 
1.6/3 µm. c, ‘C’ prefix, 0.8-5 µm. d, ‘D’ prefix, 5-20 µm. e, ‘E’ prefix, 20-180 µm. f, ‘F’ prefix, 180-2000 µm.  746 
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 747 
Supplementary Figure 7 | Environmental parameters that distinguish genomic provinces. a-b, Environmental 748 
parameters that significantly differentiate among genomic provinces (Kruskal-Wallis test, grey box indicates p 749 
values > 10-5). SI = Seasonality Index. a, all stations. b, Antarctic stations removed (see Methods). Eliminating 750 
Antarctic stations does not result in a large change in the parameters that significantly differentiate among 751 
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provinces. c-h, Two types of visualizations of the relationships between genomic provinces and environmental 752 
parameters. Sample colors are those from Supplementary Fig. 4. Top plots within panels c-h: principal 753 
components analysis-based visualization. Samples, and environmental parameters differing significantly (p ≤ 754 
10-5) among genomic provinces, are projected onto the first two axes of variation. Grey polygons enclose 755 
different genomic provinces. Bottom plots within panels c-h: network-based visualization. Each genomic 756 
province is represented as a node, with the individual samples composing the province within the node. Edges 757 
between nodes represent differences in temperature, nitrate, phosphate and iron that significantly 758 
differentiate (p ≤ 10-5) among genomic provinces, that are statistically significantly different between 759 
individual pairs of genomic provinces (post hoc Tukey test, p < 0.01) and whose difference in median 760 
parameter values is ≥ 1 standard deviation (calculated from the parameter values of all samples in the size 761 
fraction). Thicker edges represent larger differences. c, 0-0.2 µm size fraction. d, 0.22-1.6/3 µm. e, 0.8-5 µm. f, 762 
5-20 µm. g, 20-180 µm. h, 180-2000 µm.  763 
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 764 
Supplementary Figure 8 | Global correlations of dissimilarity with minimum travel time (Tmin). Scatter plots 765 
of dissimilarity versus Tmin. One point represents a pair of samples. a, metagenomic dissimilarity. b, OTU 766 
dissimilarity. Global Spearman correlation values are indicated within each panel.  767 
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 768 
Supplementary Figure 9 | Plankton travel time, dissimilarity, environmental distance and geographic 769 
distance show different temporal patterns of pairwise correlation. Spearman correlation values are shown 770 
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separately by organismal size fraction. Non-significant correlations (p > 0.01) are shown with dashed lines. a-e, 771 
Correlations for pairs of Tara Oceans samples separated by a minimum travel time less than the value of Tmin 772 
on the x axis. Tmin >1.5 years is shaded in grey. Left panels: correlation of dissimilarity with Tmin; middle panels, 773 
dissimilarity with temperature; right panels: dissimilarity with differences in NO2NO3, PO4 and Fe. a-c, 774 
metagenomic dissimilarity. d-e, OTU dissimilarity. There is a maximum correlation of dissimilarity with Tmin 775 
(and, for most size fractions, of dissimilarity with nutrients) for Tmin <~1.5 years, but the correlation between 776 
dissimilarity and temperature does not display a similar maximum. b displays only the 0.8-5 µm (blue) and 180-777 
2000 µm (orange) size fractions from a, to highlight that for smaller plankton, correlations with differences in 778 
nutrient concentrations were stronger for Tmin  up to ~1.5 years, but  for larger plankton, correlations were 779 
stronger with temperature variations for Tmin beyond ~1.5 years. c and e, Partial correlations to estimate the 780 
independent effects of Tmin and environmental distances on β-diversity. Left panels: controlling for differences 781 
in temperature and for differences in NO2NO3, PO4 and Fe; middle and right panels: controlling for Tmin. Partial 782 
correlations do not affect the maximum correlation of dissimilarity with Tmin for Tmin <~1.5 years. f, Correlation 783 
of geographic distance (without traversing land) with metagenomic dissimilarity for pairs of Tara Oceans 784 
samples separated by a geographic distance less than the value on the x axis.  785 
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 786 
Supplementary Figure 10 | Plankton community composition turnover through the North Atlantic. a, Map of 787 
Tara Oceans stations, currents (solid lines), temperature by station (colored circles) and sea surface 788 
climatological dynamic height from CARS2009 (http://www.cmar.csiro.au/cars). Each station label has a color 789 
corresponding to a sub-region: South Atlantic in orange, Gulf Stream in red, Recirculation/Gyre in green and 790 
Mediterranean Sea in blue. b-e, Scatter plots of metagenomic similarity versus minimum travel time (Tmin) for 791 
these stations in the b, 0.22-3 µm; c, 0.8-5 µm; d, 20-180 µm; and e, 180-2000 µm size fractions. f-i, Scatter 792 
plots of OTU community similarity for the f, 0.22-3 µm; g, 0.8-5 µm; h, 20-180 µm; and i, 180-2000 µm size 793 
fractions. The black line represents an exponential fit, with a light grey shaded 95% confidence interval. The 794 
resulting turnover times using metagenomic similarity are τ = 0.91 y for 0.22-3 µm, τ = 0.91 y for 0.8-5 µm, τ = 795 
2.22 y for 20-180 µm and τ = 1.99 y for 180-2000 µm. Turnover times using the OTU community similarity are τ 796 
= 4.23 y for 0.22-3 µm, τ = 4.08 y for 0.8-5 µm, τ = 2.6 y for 20-180 µm and τ = 2.1 y for 180-2000 µm. The viral-797 
enriched 0-0.2 µm and the nanoplanktonic 5-20 µm size fractions are not shown due to insufficient sampling of 798 
these stations.  799 
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Supplementary Information 800 
 801 
Supplementary Information 1. Comparison of metagenomes and OTUs 802 
 803 

Metagenomic comparisons reflect fine-scale differences in genome content at the community level 804 
as a function of diversity, genome size and organismal abundance, and also depend on the rate of 805 
evolution of each specific lineage. With exhaustive sampling, metagenomic dissimilarity could 806 
theoretically distinguish among genomes in a sample separated by a single mutation. However, our 807 
metagenomic sequencing depth was likely not able to reach saturation due to the number of genomes 808 
per sample and their putative large size (metatranscriptomes, which contain fewer sequences per 809 
species than do metagenomes, did not reach saturation within Tara Oceans samples53). For example, 810 
if for a pair of samples we sequence 50% of the total amount of the unique genomic DNA present, we 811 
expect the maximum similarity of the two samples to be roughly 25% (0.5 x 0.5). Therefore, the 812 
pairwise metagenomic dissimilarities we calculated between samples probably reflected a 813 
combination of genomic differences weighted towards more abundant organisms. In contrast, OTUs, 814 
obtained by sequencing single marker genes, approach biodiversity saturation5,18,19. However, OTU 815 
resolution depends on the choice of the marker to be used, the threshold of similarity for the marker, 816 
and its lineage-specific substitution rate, and may therefore confound evolutionarily and/or 817 
ecologically distant organisms54–58. We observed a significant agreement between the two proxies 818 
(Supplementary Fig. 2), although dissimilarities based on OTUs were generally lower than those 819 
computed from metagenomic data (Supplementary Fig. 3a). 820 

Analyses of plankton biogeography produced consistent results based on metagenomic and OTU 821 
data (Supplementary Fig. 4, Supplementary Fig. 5, Supplementary Fig. 8, Supplementary Fig. 9). For 822 
simplicity, in the main text, we chose to highlight results based on metagenomes rather than on OTUs 823 
for three reasons. First, the metagenomic sequencing protocol and subsequent measurement of 824 
dissimilarity was uniform across size fractions, whereas OTUs were defined differently for the viral-825 
enriched, bacterial-enriched and eukaryote-enriched size fractions (Methods). Second, the 826 
biogeographical patterns we obtained (see below) may be more evident in comparisons among 827 
metagenomic sequences (our data source in identifying genomic provinces), as genomes,  accumulate 828 
single-base changes and other variants more quickly than a single ribosomal gene marker. Third, β-829 
diversity estimated by metagenomic dissimilarity generally displayed higher correlation values with 830 
minimum travel time (Tmin; Supplementary Fig. 8). 831 
 832 
Supplementary Information 2. Robustness of genomic provinces 833 
 834 

We assessed the robustness of genomic provinces in five separate ways. First, we tested 5 different 835 
hierarchical clustering algorithms from R-package pvclust_1.3-240 (UPGMA - Unweighted Pair Group 836 
Method with Arithmetic mean; McQuitty’s method; Complete linkage; Ward’s method; Single linkage) 837 
on the metagenomic pairwise dissimilarities produced by Simka separately for the six organismal size 838 
fractions, followed by multiscale bootstrap resampling. We used the cophenetic correlation 839 
coefficient from the R-package dendextend_1.5.259 to measure how accurately the dendrograms 840 
produced by each method preserved the pairwise distances within the input dissimilarity matrices60,61. 841 
The ranking of the cophenetic correlation coefficient for different clustering methods within each size 842 
fraction was consistent with a published large-scale methodological comparison of clustering methods 843 
for biogeography (Supplementary Table 17), which considered UPGMA agglomerative hierarchical 844 
clustering to have consistently the best performance39. Second, we compared clustering results among 845 
all size fractions using Baker’s Gamma Index62 from the R-package corrplot_0.7763, which is a measure 846 
of association (similarity) between two trees based on hierarchical clustering (dendrograms). The 847 
Baker’s Gamma Index is defined as the rank correlation between the stages at which pairs of objects 848 
combine in each of the two trees. For each type of correlation, the UPGMA was consistently the most 849 
correlated with other clustering methods (Supplementary Table 18). This allowed us to conclude, in 850 
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agreement with previous results39, that the UPGMA method is likely more robust than the other 851 
methods we tested. 852 

Third, we compared the genomic provinces found by our UPGMA hierarchical clustering approach 853 
to those found by two different non-hierarchical methods: K-means on the positions found by 854 
multidimensional scaling and spectral clustering on the nearest-neighbor graph. Both methods rely on 855 
(i) a dissimilarity matrix and (ii) a tuning parameter (dimension of the projection space for K-means, 856 
and number of neighbors for spectral clustering). K-means uses the numeric values of the 857 
dissimilarities, whereas spectral relies only on their ordering (e.g., community A is closer to B than to 858 
C). We compared the genomic provinces to clusters found by K-means and spectral clustering for all 859 
values of the tuning parameter using the Rand Index (RI; from the GARI function of the loe R package 860 
version 1.164), a score of agreement between partitions. Results are reported as mean +/- s.d. of the 861 
RI: 1 means perfect agreement and 0 complete disagreement. Fourth, in order to assess the 862 
significance of the genomic provinces, we performed a multivariate ANOVA to partition metagenomic 863 
dissimilarity across regions, using the adonis function of the vegan R package version 2.5-437. Note, 864 
however, that since the same data were used both to construct the genomic provinces and to assess 865 
their significance, the p-values estimated by ADONIS might be anti-conservative. The results of the 866 
third and fourth analyses are presented in Supplementary Table 19. 867 

Fifth, we found that clustering of samples in genomic provinces was consistent with a 868 
complementary visualization based on the same data: RGB colors derived from the first three axes of 869 
a principal coordinates analysis (PCoA-RGB) of β-diversity, in which similar colors represent similar 870 
communities (Supplementary Fig. 4; see Methods). Samples within the same genomic province 871 
generally shared the same range of PCoA-RGB colors. Because the clustering approach was 872 
hierarchical, samples sharing some similarity could have been assigned to different genomic provinces 873 
due to binary decisions during the clustering process. This was also reflected in the PCoA-RGB colors, 874 
where the boundaries of genomic provinces did not indicate a complete change of communities 875 
among genomic provinces (and, conversely, belonging to the same genomic province did not imply 876 
identical community). Nonetheless, samples with similar PCoA-RGB colors were generally situated in 877 
closely-related branches in the UPGMA tree (Supplementary Fig. 6). An illustrative example is genomic 878 
province F5 (of the 180-2000 µm size fraction; Supplementary Fig. 4f), which encompassed stations in 879 
the Atlantic, Mediterranean Sea and some subtropical stations in the Indo-Pacific. In this wide region, 880 
the PCoA-RGB colors indicate the variation in community composition within the genomic province, 881 
and also reflect the relatedness of F5 to its adjacent samples, in particular those in the subtropical 882 
Atlantic/Pacific region F4, its neighbor in the UPGMA tree (Supplementary Fig. 6f). 883 

 884 
Supplementary Information 3. Comparison of genomic provinces to previous biogeographical 885 
divisions 886 
 887 

Current approaches in biogeographic theory divide the ocean into regions based either on expert 888 
knowledge applied to satellite data, as in the hierarchical nesting by Longhurst3 into biomes (macro-889 
scale, essentially representing a division of the world’s oceans into cold and warm waters, and coastal 890 
upwelling zones) and biogeochemical provinces (BGCPs, areas within biomes defined by observable 891 
boundaries and predicted ecological characteristics), or, alternatively, into the objective provinces of 892 
Oliver and Irwin49, which are based solely on statistical analyses. Longhurst BGCPs are based upon, 893 
primarily, monthly variations of chlorophyll a, the geography of the seasonal cycle of physical factors 894 
(such as the depth of the upper ocean mixed layer) and surface temperatures. In turn, these ocean 895 
properties are strongly modulated by oceanic currents (for example, moderate to large mixed layer 896 
depths are observed generally on the poleward side of the subtropical gyres). In contrast, the objective 897 
global ocean biogeographic provinces proposed by Oliver and Irwin49 were based upon clustering 898 
temporal variability of chlorophyll concentration and surface temperatures, both measured from 899 
satellite data. They combined a proxy for the intensity of primary productivity with water 900 
temperature, therefore emphasizing regions similar in their temporal variability for both properties 901 
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(which essentially corresponds to the seasonal cycle). None of these ocean partitionings directly 902 
considered organismal community composition. 903 

We tested whether genomic provinces were comparable with these partitionings by performing an 904 
analysis of similarity (ANOSIM; Supplementary Fig. 4, insets; Methods). The four small size classes, 0-905 
0.2 µm, 0.22-1.6/3 µm, 0.8-5 µm, and 5-20 µm (Supplementary Fig. 4a-d) were more consistent with 906 
Longhurst BGCPs. In contrast, for the two larger size fractions 20-180 µm and 180-2000 µm, the three 907 
biogeographical divisions were not strongly different within the ANOSIM (Supplementary Fig. 4e-f). 908 

From an oceanographic point of view, plankton should be quasi-neutrally redistributed (i.e., 909 
homogenized) by currents and their biogeography should follow the structure of the main 910 
recirculations, within a range of physiologically compatible temperatures. In this point of view, our 911 
results are consistent with the large-scale geographic distributions found by Hellweger et al.4 using a 912 
neutral model.  913 
 914 
Supplementary Information 4. Differences in genomic province sizes among organismal size 915 
fractions 916 
 917 

Globally, we obtained more numerous, smaller genomic provinces in the smaller size fractions and 918 
fewer, larger genomic provinces in the larger size fractions (Supplementary Fig. 4, Supplementary Fig. 919 
7). We observed a similar pattern using OTU data (Supplementary Fig. 5). Whereas smaller size 920 
fractions generally lacked geographically widespread genomic provinces containing numerous Tara 921 
Oceans samples, the two largest size fractions were both characterized by two very widespread 922 
genomic provinces: F5 and F8 for the 180-2000 µm size fraction, and E5 and E6 for the 20-180 µm size 923 
fraction. These large genomic provinces were latitudinally limited by the boundary between the 924 
subtropics and subpolar regions, and spanned different oceanic basins. Notably, in the Southern 925 
Hemisphere the subtropical gyres actually form a single supergyre65 and there are almost no metabolic 926 
(mainly temperature) barriers between the northern and southern subtropical gyres (see 927 
Supplementary Fig. 4), potentially explaining genomic provinces in the 20-180 µm and 180-2000 µm 928 
size fraction that contain samples from the North and South Atlantic. For example, in the 180-2000 929 
µm size fraction, F5 mostly covered the North and South Atlantic Oceans and adjacent systems, and 930 
F8 covered the Indo-Pacific low- and mid-latitudes. No clear correspondence existed with 931 
biogeochemical patterns (e.g., nutrient ratios), except for the clusters coinciding with upwelling 932 
systems (F3 for the California upwelling, F7 for the Chile-Peru upwelling and F2 for the Benguela 933 
upwelling system) and for the samples collected at the deep chlorophyll maximum (DCM) in the Pacific 934 
subtropical gyres (F5); this is consistent with the comparison of genomic provinces to previous 935 
biographical divisions, in which the genomic provinces of smaller size fractions were more consistent 936 
with Longhurst BGCPs, but those of larger size fractions were not (Supplementary Information 3). A 937 
bimodal zooplankton species distribution (split into subtropical and subpolar communities, with 938 
ubiquitous warm water species) was also detected by a recent study on copepod population dynamics 939 
that used alternative approaches to analyze the same metagenomic dataset66 (see their Fig. 2). More 940 
locally, within the North Atlantic (see also Supplementary Information 6), along the northern boundary 941 
of the subtropical gyre, cold and warm copepod species overlapped because of cross-current 942 
dispersal. Nonetheless, although both cold and warm species appeared to be able to travel long 943 
distances, mixing among them was not sufficient to create a local genomic province in our data. 944 

We interpret the difference in genomic province sizes between smaller and larger size fractions as 945 
the result of various factors. Plankton smaller than 20 µm (femto-, pico- and nanoplankton), which 946 
represent most of the prokaryotic and eukaryotic phototrophs18,19, are sensitive to a suite of 947 
environmental factors (i.e., temperature67, nutrients and trace elements10; see also Supplementary 948 
Fig. 7) and generally have a shorter life cycle, together leading to faster fluctuations in their relative 949 
abundance in the communities we sampled. In contrast, larger plankton have longer life cycles and, if 950 
they are predators that are not strongly selective in their feeding, or are photosymbiotic hosts capable 951 
of partnering with multiple different symbionts, may cope with local fluctuations in environmental 952 
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conditions. Therefore, they should be affected primarily by large scale, mostly latitudinal, variations 953 
in the environment, leading to larger genomic provinces, whereas smaller plankton are grouped into 954 
smaller provinces more influenced by local environmental conditions. Overall, this difference in 955 
biogeography suggests a size-based decoupling between smaller and larger plankton (which may also 956 
extend to nekton such as tuna and billfish68), with implications for the structure and function of 957 
oceanic food webs and other types of biotic interactions. 958 
 959 
Supplementary Information 5. Genomic provinces as stable ecological continua 960 

 961 
As plankton communities are transported by ocean currents, they change over time due to the 962 

various processes that occur in the context of the seascape: variations in temperature, light and 963 
nutrients (where changes in the latter may also be induced by plankton communities), intra- and inter-964 
individual and species biological interactions, and mixing with neighboring water masses. Thus, a 965 
continuum of composition among nearby samples is expected as a natural consequence of community 966 
turnover within the seascape over time. We observed the effects of continuous turnover in our 967 
biogeographical analyses (Fig. 1a, Supplementary Fig. 4, Supplementary Fig. 5, Supplementary 968 
Information 2) in which nearby samples often reflected gradual, but not complete changes in 969 
community composition. 970 

We measured the time window of transport by currents separating two samples during which the 971 
changes in their community composition were maximally correlated with travel time, resulting in a 972 
global average of Tmin < roughly 1.5 years. This represents the travel time during which predictable 973 
continuous turnover occurs in our dataset. Notably, Tmin does not necessarily define the turnover rate 974 
itself which depends on how strongly different seascape processes affect communities with differing 975 
biological characteristics (see Supplementary Information 6).  976 

The global ocean current system is composed of a series of large-scale main currents and associated 977 
recirculations (which are also referred to as gyres). Therefore, we present the following hypothesis as 978 
a potential explanation of our results: the average global timescale of 1.5 years is comparable to the 979 
crossing time of an ocean gyre (i.e., the amount of time it takes a water parcel to travel from one side 980 
of a gyre to the other), e.g., to cross the North Atlantic basin while riding the Gulf Stream system. This 981 
time scale of 1.5 years is probably an underestimate, since our sparse sampling did not cover all 982 
current systems. Within different systems, the transport by main currents leads to stable, continuous 983 
patterns of changes in community structure and nutrient concentrations, and also explains how 984 
temporally stable genomic provinces can exist in the face of ocean circulation. Within each system we 985 
have thus to expect that a community turnover is long enough to allow for this long range 986 
predictability due to smooth, continuous changes. Significant heterogeneity in environmental 987 
conditions among different circulation patterns means that moving from system to another (and 988 
therefore, in our case here, beyond the 1.5 year timescale; Supplementary Fig. 9c-f) disrupts the 989 
interlinked relationship among local seascape processes, leading to a global delimitation into separate 990 
ecological continua among different gyre-scale current systems. 991 
 992 
Supplementary Information 6. Community turnover in the North Atlantic 993 
 994 

In order to characterize the impact of physical and biological processes on changes in metagenomic 995 
composition during travel along currents, we focused on the well-known current systems crossing the 996 
North Atlantic into the Mediterranean Sea (the Gulf Stream and other currents around the subtropical 997 
gyre20,69–71; Supplementary Fig. 10a). Across this region, the piconanoplankton (0.8-5 µm) were split 998 
into three genomic provinces, C5, C8 and C3, each less than 5,000 km wide (~11 months of travel time; 999 
Supplementary Fig. 4c). In contrast, mesoplankton (180-2000 µm) biogeography corresponded to a 1000 
single province, F5, spanning from the Caribbean to Cyprus (> 9,700 km or ~18 months of travel time; 1001 
Supplementary Fig. 4f; see also Supplementary Information 4). Metagenomic dissimilarity and Tmin 1002 
were strongly correlated within the region (Spearman’s ρ between 0.44 and 0.86 depending on size 1003 
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fraction, Supplementary Fig. 10b-e), which allowed us to explore the relationship of genomic province 1004 
size, ocean transport and plankton community turnover over scales from months to years. We 1005 
calculated metagenomic turnover times as e-folding times based on an exponential fit of 1006 
metagenomic dissimilarity to Tmin (ranging from a few months to a few years, Methods). The 1007 
metagenomic turnover time of smaller plankton (< 20 µm) was approximately one year. In contrast, 1008 
for the larger size fractions, the metagenomic turnover time was approximately two years, suggesting 1009 
that a lower turnover rate for larger plankton may explain their geographically larger genomic 1010 
provinces. 1011 

We note that our results on metagenomic turnover time appear different from a recently published 1012 
study that also calculated turnover rates for plankton, which found faster rates for larger organisms8. 1013 
This may be explained by two significant differences between our approach and theirs: first, their 1014 
measurements of β-diversity were based on presence/absence (Jaccard) comparisons among either 1015 
morphological species or OTUs, whereas our calculations of turnover time above were based on 1016 
metagenomic sequences. As described above (Supplementary Information 1), there are significant 1017 
differences in resolution between OTU-based and metagenomic data, and we would expect similar 1018 
differences in resolution between organismal observation data and metagenomic sequences. In fact, 1019 
due to these differences in resolution, our estimates of metagenomic time based on OTU rather than 1020 
metagenomic data show a similar trend to those of Villarino et al.8 (Supplementary Fig. 10f-i). Second, 1021 
their turnover rates were calculated separately for individual plankton groups (the 9 main groups were 1022 
prokaryotes, coccolithophores, dinoflagellates, diatoms, all microbial eukaryotes, gelatinous 1023 
zooplankton, mesozooplankton, macrozooplankton and myctophids), whereas our metagenomic data 1024 
represent samples of the full plankton community within each size fraction. Among these, several 1025 
groups (e.g., dinoflagellates or mesozooplankton) would be expected to be found across multiple Tara 1026 
Oceans size fractions, blurring potential comparisons. Thus, our study and Villarino et al. calculated 1027 
rates of change using broadly similar approaches, but based on very different underlying biological 1028 
substrates. 1029 
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