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Compact attractors of an antithetic integral feedback
system have a simple structure

Michael Margaliot and Eduardo D. Sontag

Abstract

Since its introduction by Briat, Gupta and Khammash, the antithetic feedback controller design has attracted
considerable attention in both theoretical and experimental systems biology. The case in which the plant is a two-
dimensional linear system (making the closed-loop system a nonlinear four-dimensional system) has been analyzed
in much detail. This system has a unique equilibrium but, depending on parameters, it may exhibit periodic orbits.
An interesting open question is whether other dynamical behaviors, such as chaotic attractors, might be possible
for some parameter choices. This note shows that, for any parameter choices, every bounded trajectory satisfies a
Poincaré-Bendixson property. The analysis is based on the recently introduced notion of k-cooperative dynamical
systems. It is shown that the model is a strongly 2-cooperative system, implying that the dynamics in the omega-
limit set of any precompact solution is conjugate to the dynamics in a compact invariant subset of a two-dimensional
Lipschitz dynamical system, thus precluding chaotic and other strange attractors.

Index Terms

Poincaré-Bendixson property, k-cooperative dynamical systems, sign-regular matrices, synthetic biology, anti-
thetic feedback, synthetic biology, nonlinear control theory.

I. INTRODUCTION

Feedback control is used by both natural and engineered systems, and in particular biological ones, in
order to maintain the values of critical variables at precise homeostatic levels, or to force these variables
to track reference signals so as to meet specifications. Examples of such variables at the cellular level
include concentrations of proteins and other chemical species; at an organism level, variables such as
blood sugar, blood pressure, water content, or temperature are often finely regulated. Feedback attenuates
the degradation of performance due to disturbances as well as uncertainties not accounted for when
originally designing (or evolving) a controller. Integral feedback (and more generally an “internal model”
of the possible “exosignals) is necessary for regulation, as is well known in linear systems theory as well
as for certain classes of nonlinear systems, and plays a central role in biological processes, both at the
organism and cellular level [12]. Recently, there has been a considerable effort directed at the construction
of integral feedback controllers in synthetic biology. One particular approach that has gained much recent
attention, and the focus of this work, relies on two-molecule sequestration or annihilation reactions, and
was introduced under the name antithetic controllers by Briat, Gupta, and Khammash [6]. Interestingly,
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the paper [4] shows mathematically that antithetic controllers are in a certain sense minimal-complexity
controllers that achieve robust perfect adaptation.

Several groups have produced implementations of the antithetic architecture. In one of them, an in vivo
construct was reported in [4] that is based on Bacillus subtilis sigW and its anti-factor rsiW as the two
antithetic species. In another, in [2] we constructed and analyzed an in vitro synthetic biomolecular integral
controller that precisely controls the protein production rate of an output gene, based on a sequestration
reaction between E. coli σ28 and anti-σ28 factors.

Thus motivated, the purpose of this work is to analyze the following four-dimensional nonlinear
dynamical system from [6]:

ẋ1 = α1 − α2x1x4,

ẋ2 = α3x1 − α4x2,

ẋ3 = α5x2 − α6x3,

ẋ4 = α7x3 − α8x1x4, (1)

with all the αi’s being positive parameters. (In [6], α2 = α8, but we do not need that for the general
theory.) We study this system in the nonnegative orthant R4

+, which is a (positively) invariant set of the
dynamics and is the natural biological space to consider since these variables represent chemical species
concentrations. This system is (with minor variations) also studied in [2], [1], where local stability and
some partial global stability results are obtained.

The system (1) represents the closed-loop interconnection of an antithetic controller (described by the
variables x1 and x4) and a simple two-dimensional linear system (described by the variables x2 and
x3). It is easy to verify that this system has a unique equilibrium, for any (positive) parameter values.
However, as shown in [6], a Hopf bifurcation may arise so that, depending on the parameters, the system
can exhibit periodic orbits. An interesting open question is whether other dynamical behaviors, such
as chaotic attractors, might be possible for some parameter choices. Our objective is to show that, for
any parameter choices, every bounded trajectory satisfies a Poincaré-Bendixson property, thus precluding
chaotic and other strange attractors. More generally, the same result holds for any “strongly 2-cooperative
system”, of which the above system is a particular example, showing that the dynamics in the omega-
limit set of any precompact solution is conjugate to the dynamics in a compact invariant subset of a
two-dimensional Lipschitz dynamical system.

Here, we use the recently developed theory of k-cooperative dynamical systems [29] to analyze (1).
Let P k

− denote the set of vectors with no more than k− 1 sign variations (see the exact definition below).
A linear time-varying dynamical system is called k-positive if its flow maps P k

− to P k
−, and strongly k-

positive if its flow maps P k
− to the interior of P k

−. For k = 1, this reduces to the definition of a positive
and strongly positive linear system [9]. A nonlinear system is called [strongly] k-cooperative if along any
trajectory its associated variational system is [strongly] k-positive. For k = 1, this reduces to a [strongly]
cooperative system [27].

The analysis of k-cooperative dynamical systems is based on the work of Sanchez [23] on dynamical
systems with invariant cones of rank k (see also the more recent work [10]). A set C ⊂ Rn is called a
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cone of rank k if: (1) C is closed, (2) x ∈ C implies that ax ∈ C for all a ∈ R, and (3) C contains a
subspace of dimension k and no subspace of a higher dimension. For example, it is straightforward to
verify that R2

+ ∪ (−R2
+) is an invariant cone of rank 1.

Sanchez [23] studied dynamical systems for which the flow of the associated variational equation maps
an invariant cone of rank k to its interior. He showed that for some bounded trajectories the omega
limit set can be projected in a one-to-one way to the invariant set of a Lipschitz dynamical system
evolving on a k-dimensional space. For k = 2 this implies that these trajectories satisfy a Poincaré-
Bendixson property. Roughly speaking, this means that any bounded trajectory that does not converge to
an equilibrium converges to a limit cycle or a connection between equilibria.

It is not difficult to show that P k
− is an invariant cone of rank k. Thus, k-cooperative dynamical systems

can be analyzed using the theory developed by Sanchez. However, the special structure of k-cooperative
systems allows to deduce much more. Roughly speaking, the omega limit set of every bounded trajectory
can be projected in a one-to-one way to the invariant set of a Lipschitz dynamical system evolving on
a k-dimensional space.

Two important advantage of k-cooperative systems are: (a) the projection can be described in a simple
and explicit form using the eigenvectors of a suitable matrix; and (b) the condition for k-cooperativity is
an easy to check sign-pattern condition on the Jacobian of the vector field.

We show that the biological model (1) is a strongly 2-cooperative dynamical system, for any set of
feasible parameter values. This then implies that its compact attractors consist of either equilibria, possibly
connected by heteroclinic or homoclinic orbits, or closed orbits.

Some related work includes the following. Linear mappings that preserve the number of sign variations
in a vector have been studied for a long time in the context of the variation diminishing property of totally
positive (TP) matrices, that is, matrices with all minors positive [11]. Schwarz [24] extended these ideas
to dynamical linear systems. We call a matrix A ∈ Rn×n Jacobi if A is tridiagonal with positive entries on
the super- and sub-diagonals. Schwarz [24] proved that the transition matrix of ẋ = Ax, that is, exp(At)
is TP for all t > 0 if and only if A is Jacobi. Since x(t) = exp(A(t− t0))x(t0) for all t ≥ t0 this implies
that if A is Jacobi then the number of sign variations in x(t) can only decrease with t.

In a seemingly different line of research, Smillie [25] studied the nonlinear dynamical system ẋ = f(x)

using the number of sign variations in the vector of derivatives ẋ as an integer-valued Lyapunov function.
He assumed that the Jacobian J(x) := ∂f

∂x
(x) is a Jacobi matrix for all x. This was further developed by

Smith [26] who considered time-varying and periodic nonlinear systems of a similar form. The recent
paper [16] pointed out the connection between this work and the notion of a totally positive differential
system (TPDS) introduced by Schwarz.

Mallet-Paret and Smith [15] studied a nonlinear system ẋ = f(x) with a cyclic feedback structure,
i.e. ẋi = fi(xi−1, xi), for i = 1, . . . , n, with x0 interpreted as xn. They showed that under certain
assumptions on the signs of the nonzero entries of the Jacobian the number of cyclic sign variations
in ẋ is a Lyapunov function and used this to prove a Poincaré-Bendixson property. Ref. [20] describes
an algorithm for mapping measurements of state-variables to a dynamical system with a cyclic feedback
structure. The theory of linear dynamical systems that preserve the number of cyclic sign variations,
called cyclic totally positive differential systems (CTPDSs), was further developed in [5]. Elkhader [7]
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generalized the results of Mallet-Paret and Smith to a system in the form:

ẋ1 = f1(x1, xn),

ẋi = fi(xi−1, xi, xi+1), for i ∈ {2, 3, . . . , n− 1},

ẋn = fn(xn−1, xn),

i.e. the dynamics for ẋ2, . . . , ẋn admits a tridiagonal structure (but not for ẋ1), and there is a feedback
connection from xn to ẋ1 (but not from x1 to ẋn). Again, he assumed certain sign conditions on the
entries of the Jacobian. However, the biological model studied here admits a more general structure and
it seems that it cannot be analyzed using the results above.

As noted in [13], [23], if P is a symmetric matrix with k negative eigenvalues and n − k positive
eigenvalues then the set

C(P ) := {x ∈ Rn |xTPx ≤ 0} (2)

is a cone of rank k. This has been used to prove a Poincaré-Bendixson property for a certain type of
dynamical systems in [28]. A recent paper [19] studied the same biological model studied as we do,
using a a similar technique, but only for certain specific parameter values. Their analysis suggests that
the model does not have a fixed C(P ) as an invariant set. Rather, for different parameter values it admits
different invariant sets in the form (2).

The remainder of this paper is organized as follows. The next section describes the general model that
we consider, and provides our main result. The proof of this result is based on several auxiliary results
given in Section IV. The main tool is the recently introduced notion of k-cooperative systems, and for the
sake of completeness we first provide in Section III an introduction to the main definitions and results.
The final section concludes and describes several directions for further research.

II. THE MODEL

Consider the following nonlinear system:

ẋ1 = f1(x1, x2, x4),

ẋ2 = f2(x1, x2, x3),

ẋ3 = f3(x2, x3, x4),

ẋ4 = f4(x1, x3, x4). (3)

This represents a tridiagonal structure (i.e. every ẋi depends on xi−1, xi and xi+1) plus a feedback
connection from x4 to ẋ1 and from x1 to ẋ4. The state-variables describe quantities that can only take
non-negative values. We assume that for any initial condition x0 ∈ R4

+ the corresponding solution x(t, x0)

is unique and satisfies x(t, x0) ∈ R4
+ for all t ≥ 0.
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The Jacobian J(x) := ∂f
∂x
(x) of the system is:

J =


∂f1
∂x1

∂f1
∂x2

0 ∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

0

0 ∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x1

0 ∂f4
∂x3

∂f4
∂x4

 , (4)

We pose several assumptions. First, for any x ∈ R4
+ the Jacobian J(x) satisfies the following sign

pattern:

(a) ∂fi
∂xi−1

(x) ≥ 0 for i = 2, 3, 4;
(b) ∂fi

∂xi+1
(x) ≥ 0 for i = 1, 2, 3;

(c) ∂f1
∂x4

(x), ∂f4
∂x1

(x) ≤ 0.

This implies that in the special case where f1 does not depend on x4 and f4 does not depend on x1 the
system is cooperative, but in general the feedback from x1 to ẋ4 and from x4 to ẋ1 can be negative.
Thus, J(x) is “almost” tridiagonal, with nonnegative entries on the super- and sub-diagonals, but it also
has nonpositive values at entries (1, 4) and (4, 1). Note that J(x) is in general not a Metzler matrix. As
we will see below, the assumption on the sign pattern of J implies that the system (3) is 2-cooperative.

Our second assumption is that for any x0 ∈ R4
+ such that x(t, x0) remains in a bounded set

J(x(t, x0)) is irreducible for all t > 0. (5)

This assumption implies that the system (3) is strongly 2-cooperative.
Our main result shows that under these assumptions every trajectory of (3) that remains in a compact

set has a well-ordered behavior. More precisely, it satisfies a Poincaré-Bendixson property.

Theorem 1. Pick an initial condition x0 ∈ R4
+ and consider the omega limit set ω(x0) of the solu-

tion x(t, x0) of (3). If ω(x0) is compact then the dynamics on ω(x0) is topologically conjugate to the
dynamics of a compact invariant set of a Lipschitz-continuous vector field in R2.

Example 1. Consider the system (1) described in the introduction, analyzed on the nonnegative orthant
R4

+, which is a positively invariant set for its dynamics. Its Jacobian is

J(x) =


−α2x4 0 0 −α2x1

α3 −α4 0 0

0 α5 −α6 0

−α8x4 0 α7 −α8x1

 . (6)

Thus, it satisfies the assumed sign pattern.
We now show that (5) holds. Fix x0 ∈ R4

+, and let x(t) := x(t, x0) denote the corresponding solution
of (1). We assume that x(t, x0) remains in a bounded set, that is, there exists r > 0 such that

xi(t, x0) ∈ [0, r] for all t ≥ 0, i ∈ {1, . . . , 4}.

From the structure of the matrix J in (6), it follows that J(x) is irreducible provided that x1 > 0. We
show that x(t) cannt be zero for any positive time, for any trajectory. More generally, suppose that
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Fig. 1. The state-variables of the system in Example 1.

x1(t) ≤ s := α1

2rα2
for some t. Since x4(t) ≤ r for all t, it follows that ẋ1(t) ≥ α1/2 > 0. This implies

that there exist ε, T > 0 such that x1(t) ≥ εt for all t ∈ [0, T ] and therefore x1(t) ≥ s for all t ∈ [T,∞).
Thus J(x(t, x0)) is indeed irreducible for all t > 0.

Clearly, (1) admits a unique equilibrium point at[
α1α4α6α8/(α2α3α5α7) α1α6α8/(α2α5α7) α1α8/(α2α7) α3α5α7/(α4α6α8)

]T
.

Fig. 1 depicts the trajectory of (1) for the parameter values

α1 = α3 = α6 = α7 = 1, α2 = α8 = 50, α4 = 3, α5 = 14,

and the initial condition x0 = 0. In this case the equilibrium is
[
3/14 1/14 1 7/75

]T
. It may be seen

that the trajectory does not converge to the equilibrium and converges to a limit cycle.

The next section reviews some known definitions and results that are used in the proof of our main
result.

III. PRELIMINARIES

We begin by reviewing several known results on the number of sign variations in a vector, and linear
mappings that preserve this number.

A. Sign variations

For y ∈ Rn, let s−(y) denote the number of sign variations in y after deleting all its zero entries

(with s−(0) defined as zero). For example, for n = 4 and z :=
[
1 0 0 −1

]T
, s−(z) = 1. Let s+(y)

denote the maximal possible number of sign variations in y after replacing each zero entry with either 1

or −1. For example, for n = 4 and z :=
[
1 0 0 −1

]T
, s+(z) = 3. Note that these definitions imply

that
0 ≤ s−(y) ≤ s+(y) ≤ n− 1 for all y ∈ Rn.
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The following result provides information on the number of sign variations in the limit of a sequence
of vectors.

Lemma 1. [21, Ch. 3] Let vk, k = 1, 2, . . . , be a sequence of vectors in Rn. If v = limk→∞ vk then

s−(v) ≤ lim inf
k→∞

s−(vk) ≤ lim sup
k→∞

s+(vk) ≤ s+(v). (7)

The proof follows from the fact that zero entries that appear in the limit vector v can only decrease
[increase] s− [s+].

We recall a useful duality relation between s− and s+. Let

D := diag(1,−1, 1,−1, . . . , (−1)n+1).

Then
s−(x) + s+(Dx) = n− 1 for all x ∈ Rn (8)

(see e.g. [21, Ch. 3]).
We can now define the sets of vectors with no more than k−1 sign variations. For any k ∈ {1, . . . , n−1},

let
P k
− := {y ∈ Rn | s−(y) ≤ k − 1}.

Then
P k
+ := {y ∈ Rn | s+(y) ≤ k − 1}

is the interior of P k
− [29]. For example,

P 1
− := {y ∈ Rn | s−(y) ≤ 0}

= Rn
+ ∪ (−Rn

+),

and

P 1
+ := {y ∈ Rn | s+(y) ≤ 0}

= int(Rn
+ ∪ (−Rn

+)).

Note that this example shows in particular that the sets P k
− and P k

+ are in general not convex sets. For a
geometric analysis of these sets, see [29].

Recall that a set C ⊆ Rn is called a cone of rank k (see e.g. [13], [23]) if:

(1) C is closed,
(2) x ∈ C implies that αx ∈ C for all α ∈ R, and
(3) C contains a linear subspace of dimension k and no linear subspace of higher dimension.

For example, it is straightforward to see that R2
+ ∪ (−R2

+) (and, more generally, Rn
+ ∪ (−Rn

+)) is a cone
of rank 1. Thus, cooperative systems admit an invariant cone of rank 1.

A cone C of rank k is called solid if its interior is nonempty, and k-solid if there is a linear subspace W
of dimension k such that W \ {0} ⊆ int(C). In the context of dynamical systems, such cones are
important because trajectories of dynamical systems that are confined to C can be projected to the linear
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subspace W [23]. Roughly speaking, if this projection is one-to-one then the trajectories must satisfy the
same properties as trajectories in a k-dimensional space.

It was shown in [29] that for any k ∈ {1, 2, . . . , n−1} the set P k
− is a k-solid cone, and its complement

(P k
−)

c := clos(Rn \ P k
−) (9)

is an (n− k)-solid cone.

B. Linear mappings that preserve the number of sign variations

A matrix is called sign regular of order k (SRk) if all its k-minors are either nonnegative or all are
nonpositive. It is called strictly sign regular of order k (SSRk) if it is SRk and all its k minors are
nonzero (thus, they are either all positive or all negative). A matrix A ∈ Rn×m is called sign regular (SR)
if it is SRk for all k ∈ {1, . . . ,min{n,m}}, and strictly sign regular (SSR) if it is SSRk for all k ∈
{1, . . . ,min{n,m}}. These matrices have interesting sign variation diminishing properties (VDPs).

Theorem 2. [11] Let A ∈ Rn×m be a matrix of full rank. Then A is SSR if and only if

s+(Ax) ≤ s−(x) for all x ∈ Rm \ {0}. (10)

Example 2. Consider the case n = m = 2, that is, A =

[
a11 a12

a21 a22

]
. Suppose that (10) holds. Taking x =[

1 0
]T

, yields

s+(
[
a11 a21

]T
) ≤ 0,

so a11, a21 are either both positive or both negative. Similarly, Taking x =
[
0 1

]T
implies that a12, a22

are either both positive or both negative. Now taking x =
[
1 c

]T
, with c > 0, implies that all the entries

of A are either all positive or all negative, so A is SSR1. By the full rank assumption, det(A) ̸= 0, so A

is also SSR2, and thus it is SSR.
Conversely, suppose that A is SSR. Then all its entries are either all positive or all negative. Seeking

a contradiction, assume that (10) does not hold. Then there exists x ̸= 0 such that s+(Ax) > s−(x), that
is, s+(Ax) = 1 and s−(x) = 0. We may assume that x1, x2 ≥ 0. Let y := Ax. Then s+(y) = 1 implies
that y1y2 ≤ 0. Since x1, x2 ≥ 0 and all the entries of A have the same strict sign, this implies that y = 0.
Since A is SSR2, it is nonsingular, so x = 0. This contradiction implies that (10) holds.

Note that if we drop the full rank assumption then Thm. 2 does not hold. For example, condition (10)

holds for A =

[
1 2

2 4

]
, yet A is not SSR.

The most important examples of SR [SSR] matrices are the totally nonnegative [totally positive]
matrices, i.e. matrices with all minors nonnegative [positive].

For our purposes, we require a more specific VDP.

Theorem 3. [5] Let A ∈ Rn×n be a nonsingular matrix. Pick k ∈ {0, . . . , n − 1}. Then the following
two conditions are equivalent:
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(1) For any x ∈ Rn \ {0} with s−(x) ≤ k, we have

s+(Ax) ≤ k. (11)

(2) A is SSRk+1.

Note that condition (11) does not necessarily imply that s+(Ax) ≤ s−(x). Rather, it implies that A

maps P k+1
− to P k+1

+ .
The next subsection provides a tool for building bases of subspaces contained in P k

+, that is, in int(P k
−).

C. Oscillatory matrices

A matrix is called totally nonnegative (TN) if all its minors are nonnegative and totally positive (TP) if
they are all positive. These matrices have many special and important properties [21], [8]. A matrix A ∈
Rn×n is called oscillatory if it is TN and there exists an integer k ≥ 1 such that Ak is TP [11]. For
example, if A is TP then it is oscillatory. Oscillatory matrices have a special spectral structure.

Theorem 4. [11], [22] If A ∈ Rn×n is an oscillatory matrix then its eigenvalues are all real, positive,
and distinct. Order the eigenvalues as λ1 > λ2 > · · · > λn > 0, and let uk ∈ Rn denote the eigenvector
corresponding to λk. For any 1 ≤ i ≤ j ≤ n, let Vj

i := span(ui, ui+1, . . . , uj). Then

i− 1 ≤ s−(v) ≤ s+(v) ≤ j − 1 for any v ∈ Vj
i \ {0}. (12)

Thus, for any set in the form

P (k1, k2) := {x ∈ Rn | k1 ≤ s−(x) ≤ s+(x) ≤ k2}

the eigenvectors of an oscillatory matrix can be used to provide an explicit representation of a sub-
space W(k1, k2) such that W(k1, k2) \ {0} ⊆ P (k1, k2).

Note that (12) implies in particular that

s−(ui) = s+(ui) = i− 1 for all i ∈ {1, . . . , n}. (13)

Example 3. Consider the n× n tridiagonal matrix

A =



2 1 0 0 0 . . . 0 0 0

1 2 1 0 0 . . . 0 0 0

0 1 2 1 0 . . . 0 0 0
...

0 0 0 0 0 . . . 1 2 1

0 0 0 0 0 . . . 0 1 2


.

It is well-known [8, Chapter 0] that A is oscillatory. Its eigenvalues λk and corresponding eigenvectors uk,
k = 1, . . . , n, are given by

λk = 2 + 2 cos(
kπ

n+ 1
)
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and
uk =

[
sin( kπ

n+1
) sin( 2kπ

n+1
) . . . sin( nkπ

n+1
)
]T

(see, e.g. [30]). We conclude that the eigenvactors satisfy (12). Note that since A is also symmetric, the uis
are orthogonal, so ui

||ui|| , i = 1, . . . , n, is an orthonormal set of vectors.
As a concrete example, take n = 4. Then the eigenvalues and eigenvectors are

λ1 = (5 +
√
5)/2, λ2 = (3 +

√
5)/2, λ3 = (5−

√
5)/2, λ4 = (3−

√
5)/2,

and

u1 =
[
s1 s2 s2 s1

]T
,

u2 =
[
s2 s1 −s1 −s2

]T
,

u3 =
[
s2 −s1 −s1 s2

]T
,

u4 =
[
s1 −s2 s2 −s1

]T
,

with s1 :=
√

5
8
−

√
5
8

, s2 :=
√

5
8
+

√
5
8

, and it is easy to verify that these vectors satisfy (13).

The next result provides information on the number of sign changes of every non-zero vector in a
subspace.

Proposition 1. [11, Ch. V] Let V be an m-dimensional subspace of Rn, with m < n. Then, the following
statements are equivalent:

(1) s+(v) ≤ m− 1 for all v ∈ V \ {0};
(2) for every basis u1, . . . , um of V , the matrix U :=

[
u1 . . . um

]
∈ Rn×m has all minors of order m

nonzero and of the same sign.

Example 4. Consider the oscillatory matrix in Example 3 with n = 3. Its first two eigenvectors are

u1 =
[
sin(π

4
) sin(2π

4
) sin(3π

4
)
]T

and u2 =
[
sin(2π

4
) sin(4π

4
) sin(6π

4
)
]T

. Thus,

U =
[
u1 u2

]
=

1/
√
2 1

1 0

1/
√
2 −1


and the minors of order 2 are det(

[
1/
√
2 1

1 0

]
), det(

[
1/
√
2 1

1/
√
2 −1

]
), and det(

[
1 0

1/
√
2 −1

]
). These are

all negative, so we conclude that for any c1, c2 ∈ R, that are not both zero,

s+(
2∑

k=1

ciu
i) ≤ 1.
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Remark 1. Combining Prop. 1 and (8) implies the following. Let V be an m-dimensional subspace of Rn,
with m < n. Then, the following statements are equivalent:

(1) s+(v) ≥ n−m for all v ∈ V \ {0};
(2) for every basis u1, . . . , um of V , the matrix D

[
u1 . . . um

]
∈ Rn×m has all minors of order m

nonzero and of the same sign.

D. Projections in cones that contain a subspace

The analysis of dynamical systems with invariant cones of rank k is based on projecting the flow of
the n-dimensional original system to the flow of a k-dimensional system. The next result will be used to
prove that the projection admits an inverse on a certain set.

By a cone in Rn we mean a set Q ⊆ Rn with the property that for all r > 0 and all q ∈ Q, rq ∈ Q.
Let Qc := Rn \Q.

Lemma 2. Suppose that Q is an open cone and that there is a linear subspace V ⊆ Rn such that V\{0} ⊆
Q. Pick any complement U of V , meaning a linear subspace such that

Rn = U ⊕ V ,

and let T : Rn → U be the projection on U along V . In other words, given any x ∈ Rn and its unique
decomposition x = u+ v with u ∈ U and v ∈ V , Tx := u. Then, there is some k > 0 such that

∥Tx∥ ≥ k ∥x∥ for all x ∈ Qc. (14)

Remark 2. Note that this implies that if Ω is a set such that for any x, y ∈ Ω we have x − y ∈ Qc

then ∥T (x− y)∥ ≥ k ∥x− y∥, i.e. the restriction of T to Ω admits an inverse T−1 : T (Ω) → Ω that is
Lipschitz.

Proof. Assume on the contrary that there are a sequence of elements xk ∈ Qc and positive numbers εk →
0 such that ∥∥Txk

∥∥ ≤ εk
∥∥xk

∥∥ . (15)

Let xk = uk + vk, uk ∈ U , vk ∈ V . Then (15) gives
∥∥uk

∥∥ ≤ εk
∥∥xk

∥∥ for all k. Introduce

x̃k :=
xk

∥xk∥
, ũk :=

uk

∥xk∥
, ṽk :=

vk

∥xk∥

and note that
∥∥ũk

∥∥ ≤ εk, so ũk → 0 as k → ∞.
On the other hand, since every x̃k has unit norm, we may assume, taking a subsequence if necessary,

that x̃k → x∗ as k → ∞, for some x∗ ∈ Rn of unit norm. Since ṽk = x̃k − ũk, x̃k → x∗, and ũk → 0,
it follows that ṽk → x∗ as k → ∞. Since vk ∈ V and V is a subspace also ṽk ∈ V for all k. Moreover,
as V is closed (being a subspace) and x∗ ̸= 0 (it has unit norm) it follows that x∗ ∈ V \ {0} ⊆ Q.
Since Q is open and x̃k → x∗, it follows that there is some k such that x̃k ∈ Q. Since Q is a cone, also
xk =

∥∥xk
∥∥ x̃k ∈ Q. This contradicts the assumption that xk ∈ Qc, and thus completes the proof. �

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2019. ; https://doi.org/10.1101/868000doi: bioRxiv preprint 

https://doi.org/10.1101/868000
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

Example 5. Let n = 2, Q = {x ∈ R2 | |x2| > |x1|}, V = span(
[
0 1

]T
), U = span(

[
1 0

]T
), and let ∥·∥

denote the Euclidean norm. Here T (
[
x1 x2

]T
) = x1, and Qc = {x ∈ R2 | |x2| ≤ |x1|}. Then Lemma 2

implies that (14) holds for some k > 0. Indeed, it is easy to verify directly that (14) holds for k = 1/
√
2.

Lemma 2 does not require T to be an orthogonal projection. The next example demonstrates this.

Example 6. Let
Q := {x ∈ R4 | s−(x) > 1}.

This is clearly an open cone (note that it is the complement of the closed set P 2
− := {x ∈ R4 | s−(x) ≤ 1}).

Let V := span{v1, v2}, where

v1 :=
[
2 −1 −1 2

]T
, v2 :=

[
−1 1 −1 1

]T
.

Using Remark 1 it is straightforward to verify that V \ {0} ⊆ Q. A possible complement of V is U :=

{x ∈ R4 |x3 = x4 = 0}. The set
P 2
+ := {x ∈ R4 | s+(x) ≤ 1}

satisfies P 2
+ ⊆ Qc, so (14) implies that there exists k > 0 such that for any x ∈ R4, with s+(x) ≤ 1, we

have
∥Tx∥ ≥ k ∥x∥ . (16)

As a specific example, take x =
[
x1 0 x3 x4

]T
, with x1 < 0, and x3, x4 > 0. Then x ∈ P 2

+. Its unique
decomposition as x = u+ v, with u ∈ U and v ∈ V , is

u =
[
x1 − 4x3 − 3x4 3x3 + 2x4 0 0

]T
,

v = (x3 + x4)v
1 + (−2x3 − x4)v

2.

Thus, in this case (16) implies in particular that there exists k > 0 such that∥∥∥∥[x1 − 4x3 − 3x4 3x3 + 2x4

]T∥∥∥∥ ≥ k

∥∥∥∥[x1 0 x3 x4

]T∥∥∥∥ ,
for all x1 < 0, and x3, x4 > 0.

The next section provides the proof of Thm. 1. This is based on several auxiliary results that may be
of independent interest.

IV. PROOF OF MAIN RESULT

Our first auxiliary result shows that the vector of derivatives ẋ(t) of (3) satisfies a special sign pattern
property.

Lemma 3. Pick an initial condition x0 ∈ R4
+ and consider the solution x(t) := x(t, x0) of (3). Suppose

that ẋ(s) ∈ P 2
− for some s ≥ 0. Then ẋ(t) ∈ P 2

+ for all t > s.
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Fig. 2. The function r(t) := s−(ẋ(t, a)) as a function of t in Example 7.

Example 7. Consider (1) with αi = 1 for all i. Let x0 :=
[
2 1 2.2 1

]T
. For this initial value x(t, x0)

converges to the equilibrium
[
1 1 1 1

]T
. Fig. 2 depicts r(t) := s−(ẋ(t, a)) as a function of t ∈ [0, 12].

It may be seen that r(0) = 3, then drops to r(t) = 1 at t ≈ 0.8936. From here on, the value of r(t) changes
values between 0 and 1. This agrees with the fact that if ẋ(τ, x0) ∈ P 2

− for some τ then ẋ(t, x0) ∈ P 2
+ ⊂ P 2

−

for all t > τ .

Proof of Lemma 3: Let x(t) = x(t, x0) be a solution of (3). The associated variational system along
this solution is:

ż(t) = J(x(t))z(t). (17)

Thus,
z(t) = Φ(t)z(0), (18)

where
Φ̇(t) = J(x(t))Φ(t), Φ(0) = I.

Let (Φ(t))(2) denote the matrix that includes all the 2×2 minors of Φ(t) ordered in a lexicographic order.
This has dimensions

(
4
2

)
×

(
4
2

)
= 6× 6. Then (Φ(t))(2) satisfies the differential equation:

d

dt
(Φ(t))(2) = (J(x(t)))[2](Φ(t))(2), (Φ(0))(2) = I, (19)

where B[2] denotes the 2nd additive compound of the matrix B (see, e.g. [24], [16]). Recall (see e.g. [24])
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that for A ∈ R4×4 the 2nd additive compound is

A[2] =



a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44


.

Combining this with (4) gives

J [2] =



∂f1
∂x1

+ ∂f2
∂x2

∂f2
∂x3

0 0 − ∂f1
∂x4

0
∂f3
∂x2

∂f1
∂x1

+ ∂f3
∂x3

∂f3
∂x4

∂f1
∂x2

0 − ∂f1
∂x4

0 ∂f4
∂x3

∂f1
∂x1

+ ∂f4
∂x4

0 ∂f1
∂x2

0

0 ∂f2
∂x1

0 ∂f2
∂x2

+ ∂f3
∂x3

∂f3
∂x4

0

− ∂f4
∂x1

0 ∂f2
∂x1

∂f4
∂x3

∂f2
∂x2

+ ∂f4
∂x4

∂f2
∂x3

0 − ∂f4
∂x1

0 0 ∂f3
∂x2

∂f3
∂x3

+ ∂f4
∂x4


, (20)

and our assumptions on the sign pattern of the Jacobian imply that (J(x(t)))[2] is Metzler for all t ≥ 0.
Thus (19) implies that

(Φ(t))(2) ≥ 0 for all t ≥ 0. (21)

In other words, all 2 × 2 minors of Φ(t) are non-negative for all t ≥ 0. Furthermore, (5) implies that
all 2× 2 minors of Φ(t) are positive for all t > 0.

By Thm. 3, if all the 2× 2 minors of a matrix B are positive then for any x ̸= 0 with s−(x) ≤ 1, we
have s+(Bx) ≤ 1. Applying this to (18) and using the fact that z = ẋ satisfies the variational equation
completes the proof.

Remark 3. Our goal in computing J [2] was to prove that (19) is a cooperative dynamical system. We
note in passing that under certain conditions J [2] can also be used to rule out the existence of limit
cycles [18]. This is based on a contraction argument (see e.g. [3]). For another application of the 2nd
additive compound, see [14].

Let D := diag(1,−1, 1,−1). Fix x0 ∈ R4
+ so that x(t, x0) is not a constant solution. Note that z(t) :=

ẋ(t, x0) satisfies the variational equation. Lemma 3 implies that we can classify the trajectory x(t, x0)

into one of two types:
Type 1: If ẋ(τ, x0) ∈ P 2

− for some τ ≥ 0 then ẋ(t, x0) ∈ P 2
+ for all t > τ ;

Type 2: If ẋ(τ, x0) ̸∈ P 2
− for all τ ≥ 0 then 2 ≤ s−(ẋ(t, x0)) ≤ 3 for all t ≥ 0, and using the duality

s−(y) + s+(Dy) = 3 for all y ∈ R4,

implies that Dẋ(t, x0) ∈ P 2
+ for all t ≥ 0.

Our next goal is to transform these properties of ẋ(t, x0) to corresponding properties of x(t2, x0) −
x(t1, x0) with t2 > t1 ≥ 0. Following [23], we first do this for solutions that are closed orbits.
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Lemma 4. Let γ be a closed orbit corresponding to a periodic solution x(t + T, x0) = x(t, x0) for
all t ≥ 0, where T > 0 is the minimal period. If x(t, x0) is Type 1 then

x(t2, x0)− x(t1, x0) ∈ P 2
+ for all 0 < t2 − t1 < T.

If x(t, x0) is Type 2 then

Dx(t2, x0)−Dx(t1, x0) ∈ P 2
+ for all 0 < t2 − t1 < T.

Proof of Lemma 4: Suppose that x(t, x0) is Type 1. Seeking a contradiction, assume that there exist
two distinct points p, q ∈ γ such that p− q ̸∈ P 2

+. Let τ1, τ2 be such that 0 < τ2 − τ1 < T , x(τ1, x0) = p

and x(τ2, x0) = q. Note that by adding kT to τ1, τ2 we may assume that τ1, τ2 are arbitrarily large.
Since x(t, x0) is Type 1, ẋ(τ1, x0) ∈ P 2

+, and Lemma 1 implies that

x(τ1 + ε, x0)− x(τ1, x0) ∈ P 2
+ (22)

for all ε > 0 sufficiently small. Hence, we may actually assume that

p− q ∈ ∂P 2
+ ⊂ P 2

− (23)

and since P 2
+ is an open set

p− q ̸∈ P 2
+. (24)

Let z(t) := x(t, p)− x(t, q). Then
ż(t) = M(t)z(t),

with M(t) :=
∫ 1

0
J(rx(t, p)+ (1− r)x(t, q)) dr. Note that M(t) satisfies the same sign pattern as J does.

Thus, if z(τ) ∈ P 2
− for some τ ≥ 0 then z(t) ∈ P 2

+ for all t > τ . Eq. (23) implies that z(0) ∈ P 2
−,

so z(t) ∈ P 2
+ for all t > 0 and in particular z(T ) ∈ P 2

+. Thus, p− q ∈ P 2
+. This contradiction completes

the proof in the case where x(t, x0) is Type 1. The proof in the case where x(t, x0) is Type 2 is similar.

An interesting implication of Lemma 4 is that there exists a one-to-one projection of closed orbits of
the four-dimensional system to a two-dimensional subspace.

Lemma 5. There exists a two-dimensional subspace W ⊂ R4 such that W\{0} ⊂ P 2
+. Let γ be a closed

orbit corresponding to a periodic solution x(t + T, x0) = x(t, x0) for all t ≥ 0, where T > 0 is the
minimal period. If x(t, x0) is Type 1 then the orthogonal projection of x(t, x0), t ∈ [0, T ), to W is one-to
one. If x(t, x0) is Type 2 then the orthogonal projection of Dx(t, x0), t ∈ [0, T ), to W is one-to one.

Example 8. Let s1 :=
√

5
8
−

√
5
8

≈ 0.588, s2 :=
√

5
8
+

√
5
8

≈ 0.951. One possible choice for the
subspace W , that is based on the special spectral properties of oscillatory matrices (see Section III),
is:

W := span(u1, u2),
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where

u1 =
[
s1 s2 s2 s1

]T
,

u2 =
[
s2 s1 −s1 −s2

]T
.

Furthermore, W⊥ ,the orthogonal complement of W , satisfies

W⊥ = span(u3, u4),

with

u3 =
[
s2 −s1 −s1 s2

]T
,

u4 =
[
s1 −s2 s2 −s1

]T
.

Note that (ui)Tuj = 0 for all i ̸= j.

Proof of Lemma 5: Suppose that x(t, x0) corresponds to a closed trajectory γ. Consider the case
where x(t, x0) is Type 1. Seeking a contradiction, assume that there exist p, q ∈ γ, with p ̸= q, such that

p− q = c3u
3 + c4u

4.

Then p−q ∈ W⊥, so s+(p−q) > 1 and this is a contradiction of Lemma 4. We conclude that the orotognal
projection of γ onto the 2-dimensional subspace W is one-to-one. The proof in the case where x(t, x0)

is Type 2 is similar.

Remark 4. Let ei, i = 1, . . . , 4, denote the ith canonical vector in R4. Consider the subspace spanned by
two canonical vectors, say, W12 := span{e1, e2}. Then clearly W12 ⊆ P 2

−, but W12 ̸⊂ P 2
+. The orthogonal

projection to W12 is T12(x) :=
[
x1 x2

]T
, i.e. T (x(t)) amounts to taking the first two-state-variables.

The proof of Lemma 5 remains valid if we replace T , the orthogonal projection to W , by T12. Indeed,
consider for example the case where x(t, x0) is Type 1. Assume that there exist p, q ∈ γ, with p ̸= q, such
that

p− q = c3e
3 + c4e

4

=
[
0 0 c3 c4

]T
.

Then p− q ̸∈ P 2
+, and this contradiction shows that T12(γ) is one-to-one. As an example, consider again

the periodic solution described in Example 1. Fig. 3 depicts the trajectory x1(t), x2(t) (i.e. the orthogonal
projection of x(t, a) onto T12), for x0 = 0. It may be seen that the curve does not intersect itself, and this
agrees with the fact that the projection is one-to-one.

However, in what follows we will be interested in projecting the omega limit set of a solution x(t, x0)

that is not necessarily periodic to a two-dimensional subspace, and in this case we can prove that the
projection T is one-to-one, but we cannot prove the same for T12.

The next step is to analyze trajectories that are not necessarily closed orbits.
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Fig. 3. The curve (x1(t), x2(t)) described in Remark 4.

Lemma 6. Pick x0 ∈ R4
+ such that x(t, x0) remains in a bounded set. Let ω(x0) denote the omega limit

set of x0. Then at least one of the following two alternatives holds.

(a) any p, q ∈ ω(x0) satisfy p− q ∈ P 2
−;

(b) any p, q ∈ ω(x0) satisfy Dp−Dq ∈ P 2
−.

Proof: If x(t, x0) is Type 1 then [23, Theorem 2] implies (a). If x(t, x0) is Type 2 then Dẋ(t, x0) ∈ P 2
+

for all t ≥ 0. Since D−1 = D, this implies that

ẋ(t, x0) ∈ DP 2
+ for all t ≥ 0. (25)

It is straightforward to verify that DP 2
− is a cone of rank 2, and clearly (25) trivially implies that

ẋ(τ, x0) ∈ DP 2
− =⇒ ẋ(t, x0) ∈ DP 2

+ for all t > τ.

Thus, we can apply the results of Sanchez to the dynamical system and the cone DP 2
− of rank 2 to

conclude that p− q ∈ DP 2
−.

We can now prove our main result.
Proof of Thm. 1: Pick x0 ∈ R4

+ such that x(t, x0) remains in a bounded set. Then the omega limit
set ω = ω(x0) is non-empty and compact.

Consider the case where x(t, x0) is Type 1. Let T denote the orthogonal projection operator onto W .
Assume that there exist p, q ∈ ω, with p ̸= q, such that

p− q = c3u
3 + c4u

4.

Then p − q ∈ W⊥, so s−(p − q) > 1 and this contradicts Lemma 6. We conclude that the projection
of ω onto the 2-dimensional subspace W is one-to-one. Thus, Tω, the restriction of T to ω, is a Lipschitz
homeomorphism of ω onto a compact subset of W .

Applying Lemma 2 with Q := {x ∈ R4 | s−(x) > 1}, (so Qc = P−
2 ), V = W⊥, U = W implies that
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there exists k > 0 such that

||Tωp− Tωq|| ≥ k||p− q||, for all p, q ∈ ω. (26)

Therefore, T−1
ω exists and is Lipschitz on T (ω).

Pick p ∈ ω. Consider the vector field

g(y) := Tω(f(T
−1
ω (y)))

defined on T (ω), where f is the vector field of (3). The vector field g can be extended to a Lipschitz
vector field on R2 [17]. The solution of ẏ(t) = g(y), with y(0) = Tω(p), is y(t) = Tω(x(t, p)). Note
that T (ω) is a compact invariant set for the y system.

We conclude that the flow on a compact omega limit set of (3) is topologically equivalent to the flow
on a compact invariant set of a Lipschitz system of differential equations in R2. This completes the proof
when x(t, x0) is Type 1.

The proof when x(t, x0) is Type 2 is similar.

V. CONCLUSION

We applied the recently developed theory of k-cooperative dynamical systems to analyze an important
model from systems biology. We showed that the model is a 2-cooperative dynamical system and used
this to infer a Poincaré-Bendixson property for every solution that remains in a compact set. Note that in
general the results for cooperative systems are of the form “for almost any initial condition some property
holds”. In our case, the special structure of four-dimensional 2-cooperative systems yields a stronger result.

The analysis using the theory of k-cooperative dynamical systems has several advantages. First, just like
in cooperative systems, the condition for k-cooperativity is a sign pattern condition on the Jacobian [29].
This is useful in fields like systems biology where one often knows if a reaction is either inhibitory
or excitatory. Second, the omega limit set of an n-dimensional k-cooperative dynamical system can be
projected to that of a k-dimensional system, and the projection is explicit. An intersting topic for further
research is to study the implications of this explicit proejction.
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