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ABSTRACT

Recombination rates vary significantly across the genome, and estimates of recombination rates are
needed for downstream analyses such as haplotype phasing and genotype imputation. Existing methods
for recombination rate estimation are limited by insufficient amounts of informative genetic data or by
high computational cost. We present a method for using segments of identity by descent to infer
recombination rates. Our method can be applied to sequenced population cohorts to obtain high-
resolution, population-specific recombination maps. We use our method to generate new
recombination maps for European Americans and for African Americans from TOPMed sequence data
from the Framingham Heart Study (1626 unrelated individuals) and the Jackson Heart Study (2046
unrelated individuals). We compare our maps to existing maps using the Pearson correlation between
estimated recombination rates. In Europeans we use the deCODE map, which is based on a very large
set of Icelandic family data (126,407 meioses), as a gold standard against which to compare other maps.
Our European American map has higher accuracy at fine-scale resolution (1-10kb) than linkage
disequilibrium maps from the HapMap and 1000 Genomes projects. Our African American map has
much higher accuracy than an admixture-based map that is derived from a similar number individuals,
and similar accuracy at fine scales (1-10kb) to an admixture-based map that is derived from 15 times as

many individuals.
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INTRODUCTION

Recombination, or crossing-over, of chromosomes is essential for proper chromosome disjunction
during meiosis. Recombination rates vary across the genome, tending to increase with decreasing
chromosome length?, increase near the telomeres, particularly in males?, increase in regions with high
GC content?, and increase in hotspots®, many of which are associated with the PRDM9 motif*.
Recombination rates differ significantly between female and male meioses!, although sex-averaged
maps are suitable for many analyses that involve historical recombination, including estimation of

9-11

demographic history>®, estimation of mutation rates’?, estimation of haplotype phase®!!, genotype

12,13

imputation'?!3, and inference of local ancestry in admixed genomes!*!6. Recombination rates also differ

by age?'’ and by individual*’8,

There are four primary existing approaches to recombination rate estimation. The first is analysis of
family data®'”192% |n order to estimate recombination rates at high resolution, extremely large numbers
of meioses are required. One of the largest sources of such meioses is the deCODE Icelandic data.
Advantages of the family-based approach are that it can estimate sex-specific rates, and that it allows
investigation of individual-specific factors influencing recombination rates®'’. A disadvantage is that the
large family databases required by this approach are rare, so population-specific rates are not available

for most populations.

A second approach is sperm-typing, with recombination events identified by comparing haplotypes
between sperm cells obtained from the same individual. This approach can be used to locate

2122 3nd construct individual genome-wide recombination maps in males®,

recombination hotspots
However, this approach has not been used to construct population-level recombination maps because it

is not applicable to females, and because large databases of whole-genome sperm sequence are not

available.
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A third approach uses admixed genomes such as those from African Americans?*?°. The local ancestry
(i.e., continental origin of the genetic material at each point in the genome) is inferred, and positions of
change in local ancestry are positions at which post-admixture recombination has occurred. This
approach can use data from unrelated individuals, and each individual provides information from many
meioses. One limitation of this approach is that it is only applicable to admixed populations. Another

disadvantage is that it relies on local ancestry calls which can be inaccurate in some cases?®?’,

A final approach uses linkage disequilibrium (LD) between loci?®32. Correlations between nearby alleles
are broken down over many generations due to recombination, and thus there is a close relationship
between LD and recombination rate. An advantage of LD-based estimation is that it is based on very
large numbers of meioses, reaching far back into the past. However, if recombination rates have
changed over time, the estimates will be averages across time rather than reflecting current rates, which
may be a disadvantage for applications such as local ancestry inference that are based on recombination
in recent generations. LD-based estimation is computationally challenging, and is also biased if an

incorrect demographic history is assumed®"**.

We present a new approach based on estimated segments of identity by descent (IBD) in population
samples. IBD segment ends represent points at which past recombination has occurred. Since the IBD
segments result from shared ancestry in the past several hundred generations, the estimates of
recombination rates reflect recent rates while incorporating information from a large number of
meioses. Our approach is computationally efficient so that it can be applied to samples of thousands of
individuals, resulting in highly precise estimates. When applied to samples from distinct populations, our

approach provides population-specific rates of recombination.


https://doi.org/10.1101/868091
http://creativecommons.org/licenses/by-nc-nd/4.0/

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

bioRxiv preprint doi: https://doi.org/10.1101/868091; this version posted December 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

RESULTS

Method overview

IBD segment endpoints are positions of past recombination events. The density of endpoints of IBD
segments originating from common ancestors more recent than a reference time point is thus
proportional to the recombination rate. We use this relationship to estimate relative recombination

rates based on the endpoints of IBD segments.

There are two main challenges that must be addressed: inaccurate estimation of IBD endpoints and the
unknown time to the most recent common ancestor. Because of genotype error and phasing error, IBD
segment endpoints can be incorrectly determined. In our method, we apply a gap-filling strategy to
address inaccurate IBD endpoints. When two or more IBD segments from the same pair of individuals
are separated by only a small gap, and the gap contains very few (at most one for the analyses
presented here) discordant homozygous genotypes, we merge the segments into a single segment33.
This strategy is very efficient at removing incorrect IBD endpoints, even in the presence of significant

genotype error (see simulation results below).

In addition, when we detect an IBD segment, we don’t generally know the number of generations to the
most recent common ancestor, and in some regions we may detect IBD segments due to more distant
ancestry, leading to higher rates of detected IBD segments in those regions. If the genetic lengths of the
segments were known, we could filter the IBD segments by genetic length, as a proxy for age, and thus
obtain uniform rates of detected segments across the genome. When the true genetic map is unknown,
the genetic lengths of the segments cannot be used as a filtering criteria, and we use physical lengths
instead. However, the distribution of IBD segments of a given physical length varies greatly. Regions

with lower recombination rate will have more segments exceeding a physical length threshold than
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87 regions with higher recombination rate. If this difference is not considered, recombination rate will be

88 overestimated in low-recombination regions and underestimated in high-recombination regions.

89 In order to address the issue of uneven IBD coverage, we use an iterative approach. Given the current
90 estimate of recombination rates across the chromosome (the initial estimate has a constant rate of
91 recombination), we obtain estimated genetic lengths of all IBD segments. We then selectively remove
92  shorter segments in regions with higher rates of IBD segments until IBD coverage across the
93 chromosome is approximately equal. To achieve this coverage equalization, we first divide the
94  chromosome into intervals of equal physical length, and place within each interval the IBD segments
95  that cover all or part of the interval. We determine the smallest number of IBD segments in any interval,
96 and we remove the shortest (in estimated genetic length) IBD segments from each interval to reduce
97  the number of segments in the interval to that smallest number. After this procedure, each interval
98 contains the same number of IBD segments (Figure 1). After the coverage equalization, we count the
99 remaining IBD endpoints within each interval to estimate the relative recombination rate for the
100 interval. We repeat the procedure using the updated estimates of recombination rate. We find that 20

101 iterations suffices for accurate estimation.

102 Validation by simulations

103  To evaluate whether our method produces unbiased estimates of recombination rate, we simulated
104  data using a podium-like recombination map (Figure S1) and added genotype error (Methods). When
105 the genotype error rate is low (0.01-0.1%), the average across 100 replicates of the estimated
106 recombination rate matches the true recombination rate; when the genotype error rate is 0.5%, some
107 bias is observed. With high quality sequence data, the genotype error rate for SNPs passing quality
108  control filters is around 0.02%3*. Our estimates are slightly inflated at the chromosome ends. This is

109  because genotype error near the chromosome ends result in partial IBD segments that are too short to
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110 be detected and merged with other partial IBD segments by our gap-filling process. In our tests, the
111 region with inflated recombination rates is generally shorter than 1Mb when the genotype error is
112 <0.1%. We recommend that normalization of relative recombination rates using an external map be

113  calculated using the central portion of the chromosome, excluding 1 Mb on each end.

114  We also used simulation to evaluate the precision of our method, first assessing the impact of sample
115 size and resolution. The resolution, which we refer to as “scale” is the size of the intervals in which
116 recombination rate is estimated. For example, with a 10 kb scale, the recombination rate is estimated in
117 intervals of size 10 kb, and the resulting map has genetic positions at grid points that are 10 kb apart.
118  We simulated 250 individuals, 500 individuals, and 1000 individuals under a Wright-Fisher model with
119 constant effective population size (Ne = 10000). The recombination map used for this simulation is the
120 Hapmap Il combined LD map on chromosome 1:10 Mb-110 Mb.® Pearson correlation coefficients
121 between the estimated rates and the true rates across intervals increase for larger interval sizes and
122 larger sample sizes (Figure 2). For the largest sample size, we obtain correlation coefficients over 0.9 for
123 resolutions of 10 kb or greater and genotype error rates <0.1%. With smaller sample sizes, we obtain

124  correlation coefficients over 0.9 for resolutions of 50 kb or greater and genotype error rates <0.1%.

125 Comparison with admixture-based recombination rate estimation

126  We simulated genotype data from an admixed African American demographic model®** in order to
127 compare our IBD-based approach with RASPberry?, an admixture-based approach. We simulated 2500
128 admixed individuals and 100 individuals from each reference population (representing European
129 ancestry and African ancestry). RASPberry uses the reference individuals to call local ancestry in the
130 admixed individuals. Because RASPberry is computationally intensive, we simulated a 20 Mb region
131 rather than 100 Mb. The recombination map in the simulation is the HapMap |l combined LD map,

132 chr1:10 Mb-30 Mb.?®* We added genotype errors to the admixed and reference individuals and phased
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133 the data with Beagle 5.0 (Methods) before running the analyses. Our IBD-based method was applied to

134  the admixed data only.

135 RASPberry uses the HapMix algorithm for ancestry inference, which analyzes each admixed individual

1525 To reduce

136 independently and allows for parallelized computation over admixed individuals
137 RASPberry’s wallclock compute time, we divided the 2500 admixed individuals into 250 sets of 10
138  individuals. We analyzed the data using a compute server with two 6-core Intel Xeon E5-2630 2.6 GHz
139 processors and 128 GB memory running CentOS Linux. RASPberry required 20.1 cpu hours on average
140  to estimate the ancestry switches for each set of 10 individuals. For comparison, our method required

141 11.1 cpu hours (1.0 hour of wall clock time, multi-threaded) to call the IBD segments, fill IBD gaps, and

142 estimate the recombination map for the whole set of 2500 admixed individuals.

143 In assessing the accuracy of the estimates, we trimmed 5 Mb from each end of the simulated region
144  (Figure 3) before computing the Pearson correlation coefficient with the true recombination rates,
145 because accuracy is reduced near chromosome ends (results without this trim are shown in Figure S2).
146 Estimates from our IBD-based method (IBDRecomb) have higher correlation with the true
147 recombination rates than RASPberry at all scales. At a 10kb scale, our method’s estimates have a
148 correlation coefficient around 0.9, while RASPberry’s correlation coefficient is around 0.65 (Figure 3). A
149 likely explanation for the higher accuracy of our method is that our method utilizes recombination
150 events before and after admixture, while RASPberry can only use recombination events that occurred

151 after admixture.

152 Constructing a fine scale recombination map for the Framingham Heart Study data

153 We refer to the recombination rates that we estimated from the TOPMed Framingham Heart Study data
154  as the FHS map. We compare the FHS map to other existing recombination maps, including the deCODE

155 map based on Icelandic pedigrees?, the LD-based combined map from Hapmap 11*>, and LD-based maps
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156  from the 1000 Genomes Project3®. Since most of these existing maps are available in the Genome
157 Reference Consortium Human Build 37 (GRCh 37), we lifted over the deCODE map from build 38 to build

158 37, removing intervals not conserved between two genome builds (Methods).

159 Examination of a region on chromosome 1 shows that our FHS map captures the same hotspots that are
160 found with other methods (Figure 4). For a genome-wide comparison, we calculate correlation
161  coefficients between maps. We regard the deCODE map as the “gold standard” in our comparison of
162 recombination maps estimated from Europeans, because this European-specific map is based on directly
163 observed recombination events from a very large number of meioses. We calculate the Pearson
164  correlation coefficient between a map’s recombination rate estimates and the deCODE map’s rates. In
165 order to calculate the correlation coefficient at a given scale (such as 1kb), we divide the genome into
166 intervals of this length, and obtain the estimated recombination rate for each such interval for every
167 compared map. Since each map covers a slightly different subset of the genome, we ignore intervals
168  that are not fully covered by all maps included within a given comparison. We excluded Bhérer et al's
169 refined maps'® from the comparison because Bhérer et al used the deCODE recombination events in
170  their estimation. We find that all the European-ancestry maps have similar correlation coefficients to
171 the deCODE map at scales ranging from 50 kb to 500 kb, while our FHS map has the highest correlation
172 coefficients at scales ranging from 1kb to 10kb (Figure 5). Our map has higher correlation coefficients
173 than the European LD-based maps at fine scales, indicating that our method can provide superior

174 recombination rate estimation over LD-based methods.

175 Constructing a fine scale recombination map for the Jackson Heart Study data

176  We also used our method to construct a recombination map for African Americans based on the data
177  from the TOPMed Jackson Heart Study data. We compare our map (the JHS map) with three other maps

178  constructed with African American data: the AA map?*, the AfAdm map?, and the 1000 Genomes LD-
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179  based map for the ASW (Americans of African ancestry in SW USA) population3®. The AA and AfAdm
180 maps are constructed using counts of ancestry switches in 30,000 and 2864 admixed African Americans,
181 respectively. We also compare to a 20%:80% weighted average of the 1000 Genomes LD-based maps for

182 CEU (Utah residents with northern and western European ancestry) and YRI (Yoruba in Ibadan, Nigeria).

183 Again examining a region on chromosome 1, we find that our JHS map includes the same recombination
184  hotspots found by other LD-based and admixture-based methods (Figure S3). For a genome-wide
185  comparison, we calculate correlation coefficients between maps. The AA map, the JHS map, the LD-
186 based ASW map, and the weighted CEU+YRI map are highly correlated at large scales (Pearson
187 correlation coefficients > 0.85 at scales >50kb), and slightly different at fine scales (Table 1, Table S1). At
188 scales ranging from 1kb to 10kb, the CEU+YRI map has the best performance with highest correlation
189 coefficients to each other map (Table S1). It is even better than the ASW map which is inferred from an
190  African American population, possibly because populations in the Americas experienced founding
191 bottlenecks®** which reduce the number of unique historical recombination events represented in

192 current-day genomes from these populations.

193 At fine scales (1-10kb), the JHS map and the admixture-based AA map have similar correlation with
194  other maps , while at large scales (50-500kb) the AA map has higher correlation (Table 1, Table S1).
195 Since the AA map is based on SNP array data, it is not surprising that it has lower relative accuracy at
196  fine scales, while its large sample size (around 15 times as many individuals as in our JHS analysis) gives
197 it high accuracy at large scales. Both the JHS map and the AA map have much higher correlations than
198  the admixture-based AfAdm map to other maps at all scales. The AfAdm map is based on data with a
199 sample size that is similar to that of our JHS data (2864 individuals for the AfAdm map and 2046
200 individuals for our JHS map). Hence it is notable that our JHS map has much better accuracy than the

201 AfAdm map.

10
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202 DISCUSSION

203  We have presented the first IBD-based recombination rate estimation method, along with estimates of
204  recombination rates in European Americans and African Americans. Our approach and maps have
205 significant advantages over existing approaches and maps. Our approach is applicable to large
206 population-based samples with sequence data, enabling the generation of high-resolution population-
207 specific recombination maps. Our maps constructed from the Framingham Heart Study and the Jackson
208 Heart Study will be useful for downstream analyses that require recombination maps, including
209 haplotype phase estimation, genotype imputation, inference of demographic history, and inference of

210 local ancestry in admixed individuals.

211 As with other indirect methods (admixture-based or LD-based estimation), our method requires the
212 total genetic length of chromosomes from direct (family-based) estimation in order to convert relative
213 recombination rates to absolute recombination rates. While family-based estimation of high-resolution
214 genetic maps requires very large numbers of informative meioses, obtaining the approximate genetic
215 length of a chromosome requires many fewer meioses. In addition, while recombination rates may
216  change at small scales due to changes in hotspots, large-scale rates are conserved across populations®’.
217  Thus chromosome lengths from the Icelandic deCODE map (for example) may be used to normalize IBD-

218  based relative recombination rates estimated in other human populations.

219  Generation of new maps with our method is straightforward, and we provide software to do so (Online
220 Resources). Our method is applicable to humans and to other diploid species. With reductions in
221 sequencing costs, it is likely that there will soon be suitable data for a variety of species, including model
222 organisms, domesticated species, and wild species. The generation of high-resolution maps will facilitate
223 other analyses in these populations. As input, our method requires high-quality genotype data (variant

224  calls) on at least several hundred individuals, and a high-quality genome build for determination of

11
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225 physical positions. Sequence data is needed for accurate fine-scale estimation, but array data is

226  adequate for estimation at large scales (Figure S4).

227 Our IBD-based method gives greater resolution than ancestry-switch based methods for constructing
228 recombination maps from admixed individuals. This is because our method can detect recombination
229 events that occurred before admixture, as well as those that occurred after admixture, while ancestry-
230  switch based methods only use recombination between different ancestry segments that occurred after
231 admixture. We built an African American recombination map with 2,046 unrelated African American
232 individuals from the TopMED Jackson Heart Study data, which had significantly better accuracy than the
233 admixture-based map constructed on 2,864 unrelated African American and Afro-Caribbean individuals,
234  and similar accuracy at fine scales to an ancestry-switch based map constructed from 15 times as many

235  samples (n = 30,000).

236 We also built a recombination map using data from the TopMED Framingham Heart Study data
237 (n=1626), which represents a European-American population. This map shows better accuracy at fine
238 scales (1-10 kb) than the LD-based maps for the 1000 Genomes Project European populations. Like our
239 method, LD-based methods are based on past recombination events, however our method depends on
240 recent recombination events, while LD-based methods are primarily based on recombination events
241 occurring in the much more distance past. In contrast, family-based methods use recombination events
242 from the past few generations. Recombination rates evolve over time, so restricting the analysis to

243 more recent events is advantageous for some applications.

244  Current recombination rates in Europeans and other out-of-Africa populations may differ from rates in
245  African populations because of drift that occurred in the out-of-Africa bottleneck. For example, non-
246  African populations predominantly carry the A allele of PRMD9, while African populations carry that

247  allele at a frequency of only around 50%*. Thus LD-based recombination rates, which are based on older

12
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248  recombination events, may be more appropriate for African populations than for out-of-Africa
249 populations. Indeed, while the LD-based maps for the 1000 Genomes European populations had inferior
250  accuracy to our IBD-based map, LD-based maps from the 1000 Genomes African populations (the ASW
251 map and the weighted CEU+YRI map) provided slightly superior accuracy to our IBD-based map. With
252 larger sample sizes, we anticipate that our IBD-based approach could provide better maps than the LD

253 approach, which is limited by computational cost to relatively small sample sizes.

254  The IBD-based approach has some limitations. The major obstacle to achieving higher accuracy at fine
255 scales for our method is the difficulty in accurately establishing the exact IBD endpoints. Wrongly placed
256 IBD endpoints may lead to false recombination rate peaks at fine scales and may also lead to
257 underestimation in recombination hotspots. Currently, IBD estimation methods do not provide a

258 representation of the uncertainty around the exact IBD endpoints. Future work could address this issue.

259  METHODS

260 Data processing

261 We used a coalescent-based simulator, msprime?®’, to simulate genetic data under different scenarios.
262 We removed the phase information from the simulated haplotypes and added genotype error. Given a
263 genotype error rate €, and considering each genotype in turn, we added an error to the genotype with
264 probability e. When adding an error to a genotype, we selected one of the genotype’s two alleles at
265 random, and changed that allele to its alternative form (all simulated markers are biallelic). Then we
266  filtered sites to keep those with minor allele frequency larger than 0.05, and phased the data with

267  Beagle 5.0%'3 (version 04Jun18.a80).

268  We applied our method to TOPMed whole genome sequence data from the Framingham Heart Study

269  (FHS, download from dbGaP, phs000974.v2.p2), and the Jackson Heart Study (JHS, downloaded from

13
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270 dbGaP, phs000964.v2.p1). The individuals in the FHS data are European Americans, while the individuals
271 in the JHS data are African Americans. To control genotype error, we only used biallelic SNPs passing all
272  quality filters and with minor allele frequency larger than 0.05. We used Beagle 5.0%! (version
273  04Jun18.a80) to infer haplotype phase for each data set. We then used King v2.2.2°%%! to select
274 unrelated individuals separated by at least two degrees of relatedness. After filtering, we have 1626
275 unrelated individuals in the FHS data and 2046 unrelated individuals in the JHS data. The purpose of
276 removing relatives is to improve computational efficiency. Accuracy is unchanged when relatives are

277  included (data not shown).

278  When phasing haplotypes, detecting IBD segments, and gap-filling IBD segments, we used a 1cM/Mb
279  recombination rate. The IBD segments for our method were obtained by applying Refined IBD*? (LOD
280  threshold = 1, minimum length 300kb) with gap-filling (maximum gap distance = 500kb, maximum
281 number of discordant sites = 1). The thresholds (LOD 1 and minimum length 300kb) used in Refined IBD
282 are quite low. However, in conjunction with the gap-fill step they allow the procedure to find as much
283 IBD as possible, some of which will have a large genetic length and hence pass the subsequent filtering
284  for IBD coverage (see the next section). The low thresholds used with Refined IBD will result in some
285  short reported IBD segments that are actually the conflation of several shorter IBD segments®.
286 However, for the purpose of estimating the genetic map, the benefit of the increased number of IBD
287  segments is greater than the additional noise due to some IBD segment conflation. Use of a larger

288  minimum physical length for IBD segments results in loss of accuracy (Figure S5).

289  The estimated recombination maps are normalized by the genetic length of each chromosome from the
290 deCODE map, or by the true total genetic length for the simulated data. For comparison with our maps,
291 we lifted over the AA map and the AfAdm map from build 36 to build 37 and the deCODE map from
292 build 38 to build 37 using the following strategy. First we converted the target map to the bed interval

293 and rate format, as “chr#:from-to rate”. Then we lifted over using the UCSC online tool:
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294  https://genome.ucsc.edu/cgi-bin/hglLiftOver, outputting the interval positions in bed format. We

295 removed intervals that failed to be converted or for which the interval length changed by more than 1%.
296 In total 133.7Mb was removed from the deCODE map, 139.6Mb was removed from the AA map, and
297  283.8Mb was removed from AfAdm map. Finally we mapped the recombination rates from each original

298 map to the remaining intervals in build 37.

299  Counting IBD ends to estimate recombination rates

300 One major issue in using IBD segments to estimate recombination rates is that IBD segments of a given
301 physical length are not evenly distributed along the target genome when the recombination rates vary.
302 To deal with this issue, we use a coverage threshold to make sure that the IBD endpoints for each

303 interval use IBD segments drawn from equivalent distributions.

304 The IBD coverage of an interval (a genomic region of specified physical length) is the number of IBD
305 segments covering the interval. IBD segments that partially cover the interval contribute a fractional
306 value to the coverage equal to the proportion of the interval covered. The coverage is calculated for
307 each interval, and the minimal value is determined. Then, in each interval, the segments with shortest
308 genetic length are removed until removing an additional segment from the interval would reduce the
309 coverage below this minimal level. An IBD segment may be removed from one interval but retained in

310 another.

311 We use a constant recombination rate (1cM/Mb) to initiate the iterative estimation procedure. In each
312 iteration, we re-estimate the genetic lengths of the IBD segments using the current recombination map,
313 and we re-apply the coverage threshold. We then update the recombination rates for each interval

314 based on the number of IBD endpoints located in the interval:

(Equation 1)

| =~

315 R = 2
i~ TS v
XX
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316 For the i-th interval, R; is the estimated recombination rate, X; is the number of IBD segment endpoints
317 in the interval, L is the genetic length of the chromosome, and B is the physical length of the interval
318 (the same for each interval). The genetic length of the chromosome is obtained from an external source

319  such as a family-based genetic map.

320 In order to improve convergence, we use the average of the two previous estimates as the input
321 recombination map to the next iteration (starting with the third iteration). Without this averaging, we
322  found that the correlation between the true and simulated map oscillated up and down between

323 successive iterations (Figure S6).

324  Estimation at chromosome ends

325 We need to treat the ends of the chromosome differently, because IBD segments cannot continue
326 beyond the end of the chromosome. Thus IBD segments starting or ending at a chromosome end are
327 shorter on average, and fewer of these IBD segments will be detected. This results in a lack of right ends
328 of IBD segments in intervals near the left end of the chromosome, and of left ends of IBD segments near

329  theright end of the chromosome.

330 When estimating the recombination rate in an interval near the chromosome end, we make several
331 changes to the algorithm described above. In order to describe these changes, we define chromosome
332  end regions, and their neighboring adjunct regions (Figure 6). The end region starts at the chromosome
333 end and has genetic length equal to the median genetic length of all IBD segments that extend to that
334  chromosome end, plus any additional length required in order to have the end of this region correspond
335 to a breakpoint between intervals. The remaining region between the two ending regions is the mid
336 region. The adjunct region corresponding to an end region immediately follows the end region (on the
337 side towards the middle of the chromosome) and has the same physical length as the end-region. During

338  this procedure, we are not estimating the recombination rates of the intervals in the adjunct region.

16
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339 Rates in this region are estimated using the unmodified procedure described earlier. In what follows, we
340 describe the changes to the algorithm with respect to the left end of the chromosome; the right end is

341  analogous.

342  The first change is that we count only the left ends of the IBD segments, rather than both endpoints of
343 the IBD segments. This is because there will be a relative lack of right ends of IBD segments near the left
344  chromosome end because many IBD segments that are censored by the left chromosome end will not
345 be detected. In contrast, there will be no reduction in left ends of IBD segments close to the end of the

346 chromosome.

347  The second change is that we need to modify the application of the IBD coverage threshold so that it has
348  equal effect in all intervals in the end region, regardless of how close they are to the chromosome end.
349 The left chromosome end left-censors the IBD segments that reach that chromosome end, so the visible
350 lengths of the segments are shorter than they would otherwise be. For intervals other than the left-most
351 one, we can mimic this censoring by removing those parts of IBD segments that fall beyond the left
352 boundary of the interval. This trimming reduces the lengths of the IBD segments, and is performed only
353 with respect to a given interval. The part of an IBD segment that is trimmed off when calculating
354  segment lengths for one interval may be retained when calculating lengths for another interval. Thus,
355 for each interval, not only for the left-most interval, the IBD segments that intersect the interval are left-
356 censored by the left side of the interval. These adjusted IBD lengths are used when excluding the

357  shortest IBD segments to equalize IBD coverage in each interval.

358 Recombination rates calculated with our method are relative. We use a user-specified total
359 chromosome genetic length to normalize them. Since the estimation procedure for the end region and
360 the mid region differ, we must put the two sets of results on the same scale. We do this by applying the

361  end-region procedure for censoring IBD segments and equalizing IBD segment coverage to the adjunct

17
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362 region. Since we also have IBD end counts from the mid-region procedure for the adjunct region, we
363 normalize the results from IBD end point counts for the end region by multiplying by the ratio of the IBD

364  end counts in the adjunct region obtained from the mid-region and end-region methods.

365  Thus for intervals in the end region we obtain an estimate of what the two-sided end count would be if

366  the interval was not affected by the chromosome end censoring:

. T/
367 XE=vFL
LY
368  where Yf is the left-sided IBD end count for interval i in the left end-region; ZYjA is the total count of
369 left-sided IBD ends for intervals in the adjunct region, applying the end-region algorithm described in

370  this section; and ZX]-A is the total count of IBD ends (left and right) for intervals in the adjunct region,

371 based on the original (mid-region) algorithm. The value )?lE is the adjusted end count for interval i in the

372  end-region; this is used in place of X; in the recombination rate estimation formula (Equation 1).

373  Fine-scale estimation

374  We have proposed a procedure for estimating recombination rates from IBD endpoints in the previous
375 two sections. This procedure works well when the number of detected IBD segments is large due to a
376 large sample size, and the interval size is large. However, when the interval size decreases for fine-scale
377 estimation, the coverage threshold tends to decrease, resulting in loss of information at small sample
378 sizes. We thus improve fine scale estimation by running our algorithm in two steps. First, we construct a
379 recombination map at a large scale, for example with an interval size of 500kb (which we use as the at
380 the first step scale in all the analyses in this paper). We obtain estimates of genetic length for each large
381 interval, and we fix these large-scale lengths in the second step. In the second step, we divide each large

382 interval into many smaller sub-intervals at the desired scale. For example, if results at a 10 kb scale are
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383 desired, sub-intervals of length 10 kb are used. The estimation procedure for these short intervals is

384  slightly modified from the algorithm described above.

385 For the fine-scale estimation, the IBD coverage threshold is based on the minimal coverage of the sub-
386 intervals within a large interval, rather than on the minimal coverage of intervals across the whole
387 chromosome. The local coverage threshold tends to be larger than the global threshold used in the
388  large-scale estimation because there is typically less variability in recombination rate across an interval

389 than across a whole chromosome.

390  After the large-scale estimation, the lengths of the large intervals in the end region are known and it is
391 no longer necessary to use an adjunct region to normalize lengths in the end region. However, we do
392  still need to use only the one-sided IBD end counts, and to censor the IBD segments intersecting each
393 interval when applying the IBD coverage threshold in the end region. As in the large-scale step, we
394  adjust the genetic lengths by trimming off that part of the IBD segment that extends beyond the sub-

395 interval in the direction of the nearby chromosome end.

396  Within each large interval (whether within an end region or not), we estimate the recombination rates
397 of the sub-intervals using the formula in Equation 1, using the previously calculated genetic length of the
398 large interval as the region length L. For intervals that are not in the end regions, we use two-sided IBD
399 end counts for the X;, while for intervals within the two end regions, we replace these with the one-

400 sided IBD end counts.

401 We have implemented this two-step procedure in the IBDrecomb program, and the fine scale estimation
402 step is automatically applied when the fine interval size parameter (for the second stage of estimation)
403 is set to a value that is smaller than the large interval size parameter (for the first stage of estimation;

404  500kb by default).
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405

406  Online Resources

407  IBDrecomb (including FHS and JHS maps): https://github.com/YingZhou001/IBDrecomb

408  Msprime: https://msprime.readthedocs.io/en/stable

409 Refined IBD and Gap-filling tool: http://faculty.washington.edu/browning/refined-ibd.html

410 AA map (build 36): http://www.well.ox.ac.uk/~anjali/AAmap/aamap.tar.gz

411  AfAdm map (build 36):

412 https://www.eeb.ucla.edu/Faculty/Novembre/software/AfricanAmerican AfricanCaribbean recombina

413 tion _maps.zip

414  deCODE map (build 38):

415 https://science.sciencemag.org/highwire/filestream/721792/field highwire adjunct files/4/aaul043 D

416 ataS3.gz

417  Hapmap Il combined map (build 37): ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-

418 01 phasell B37/genetic map HapMapll GRCh37.tar.gz

419 1000 genome maps (build 37):

420  ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/working/20130507 omni recombination rates/

421 Bhérer et al’s refined maps (build 37):

422 https://github.com/cbherer/Bherer etal SexualDimorphismRecombination/raw/master
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FIGURES AND TABLES

After filtering
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Figure 1: An illustration of the procedure for enumerating IBD endpoints for recombination rate
estimation. In each iteration, IBD segments with short estimated genetic length are filtered out to
achieve the required level of IBD coverage in the target interval, which is delineated with vertical dashed
lines. In this example, segments in light blue are filtered out and the three remaining IBD endpoints
falling within the interval (marked by red stars) are counted as recombination events corresponding to

this interval.
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Figure 2: Pearson correlation coefficients between estimated recombination rates and true rates. 100
Mb of data were simulated using the Hapmap Il combined LD map and a constant effective population
size of 10,000. Sample sizes were 250 (panel A), 500 (panel B) or 1000 (panel C). Simulations with
different genotype error rates have different colors. The x-axis gives the estimation scale (size of
intervals in which recombination rates are estimated and for which correlation coefficients are

calculated) on a log scale. The black dashed line shows a correlation coefficient of 0.9 for reference.
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Figure 3: Pearson Correlation coefficients between estimated recombination rates and true rates. The
results are based on simulations with different levels of added genotype error. Each end of the region

was trimmed by 5 Mb before calculating correlation coefficients.
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Figure 4: Estimated European recombination rates around chr1:100Mb. A) 20Mb at 100kb scale; B)
2Mb at 10kb scale; C) 200kb at 1kb scale. The three maps represent three different methods: pedigree-

based (deCODE), LD-based (CEU from the 1000 Genomes Project), and IBD-based (FHS).
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Figure 5: Pearson correlation coefficients between each map and the deCODE map at different scales.
FHS is our IBD-based map from the TopMED Framingham Heart Study data. LDhat_Hapmap is the LD-
based Hapmap combined map, while LDhat_CEU/FIN/GBR/TSI/IBS are the LD-based 1000 Genomes
maps for the Utah residents with Northern and Western European ancestry (CEU), Finnish in Finland
(FIN), British in England and Scotland (GBR), Toscani in Italia (TSI), and Iberian in Spain (IBS) populations,

respectively.
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Figure 6: Chromosome regions for recombination rate estimation. The end region has genetic length
equal to the median genetic length of IBD segments that extend to the chromosome end, and the

adjunct-region is next to the end region and has the same genetic length as the end region.
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Scale AA JHS AfAdm ASW CEU+YRI
AA 1.00 0.79 0.36 0.78 0.81
JHS 0.79 1.00 0.36 0.79 0.83

5kb AfAdm | 0.36 0.36 1.00 0.39 0.38
ASW 0.78 0.79 0.39 1.00 0.91
CEU+YRI | 0.81 0.83 0.38 0.91 1.00
AA 1.00 0.90 0.81 0.91 0.93
JHS 0.90 1.00 0.79 0.87 0.89

100kb AfAdm | 0.81 0.79 1.00 0.81 0.82
ASW 0.91 0.87 0.81 1.00 0.96
CEU+YRI | 0.93 0.89 0.82 0.96 1.00

Table 1: Pearson correlation coefficients between estimated recombination rates for five African
American genetic maps at different scales. The CEU+YRI map is the 20%:80% weighted average of the
1000 Genomes Project CEU and YRI maps. Results at other scales from 1kb to 500kb can be found in

Table S1.
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