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Multiplexed single-cell profiling of post-perturbation transcriptional responses to define 
cancer vulnerabilities and therapeutic mechanism of action  
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Abstract 
Assays to study cancer cell responses to pharmacologic or genetic perturbations are typically restricted to 
using simple phenotypic readouts such as proliferation rate or the expression of a marker gene. 
Information-rich assays, such as gene-expression profiling, are generally not amenable to efficient 
profiling of a given perturbation across multiple cellular contexts. Here, we developed MIX-Seq, a 
method for multiplexed transcriptional profiling of post-perturbation responses across a mixture of 
samples with single-cell resolution, using SNP-based computational demultiplexing of single-cell RNA-
sequencing data. We show that MIX-Seq can be used to profile responses to chemical or genetic 
perturbations across pools of 100 or more cancer cell lines, and combine it with Cell Hashing to further 
multiplex additional experimental conditions, such as multiple post-treatment time points or drug doses. 
Analyzing the high-content readout of scRNA-seq reveals both shared and context-specific transcriptional 
response components that can identify drug mechanism of action and can be used to predict long-term cell 
viability from short-term transcriptional responses to treatment. 
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Introduction 
Large-scale screens of chemical and 

genetic vulnerabilities across hundreds of cancer 
cell lines are important for identifying new 
therapeutic targets and are providing key 
insights into cancer biology and gene function1–

7. However, the ability of these approaches to 
reveal the cellular mechanisms and pathways 
underlying such cancer vulnerabilities is 
typically limited by their reliance on a single 
readout of cell viability to assess the effects of 
each perturbation. 

 In contrast, information-rich, high-
content readouts may provide opportunities to 
capture a more detailed picture of the cellular 
effects of a perturbation that underlie an 
observed fitness effect, or arise independently of 
any observable fitness effects8–11. In particular, 
expression profiles are a robust and informative 
measure for characterizing cellular responses to 
perturbations, with applications such as 
identifying drug mechanism of action (MoA), 
gene function, and gene regulatory networks8–12. 
High-throughput gene expression profiling in a 
limited number of contexts10,13,14 has been used 
to produce large datasets of perturbation 
signatures – most notably the Connectivity Map 
(CMAP)10 – enabling systematic analysis of the 
space of transcriptional responses across 
perturbations.  

Until recently, however, such assays 
required each perturbation or cell type to be 
profiled separately, limiting the cost-
effectiveness and broader adoption of gene 
expression profiling. In particular, previous 
efforts have largely focused on studying 
responses in a small number of cell line 
contexts. However, the response to perturbation 
is very often context specific, reflecting the 
interaction between the perturbation and a cell’s 
particular genomic or functional features. For 
example, targeted drugs may elicit responses 

only in cell lines harboring particular oncogenic 
mutations, or expressing certain genes, making 
observed results specific to the particular cell 
line models chosen4,6,7,15,16. More generally, the 
inability to efficiently measure transcriptional 
responses across diverse cell contexts has 
limited our understanding of how perturbation 
effects differ across the broad range of genomic 
and molecular cell states, which could be critical 
for predicting the therapeutic response of patient 
tumors. The recent advent of single-cell 
genomics17,18, and development of methods for 
profiling cell viability in pooled cell cultures19 
could together help address these challenges. In 
parallel, new assays, such as Perturb-Seq8,9, have 
combined pooled perturbation screens with a 
single-cell RNA-Seq (scRNA-seq) readout and 
could thus provide the necessary scale and 
resolution to assay many cells within a mixed 
culture. 

To facilitate the study of post-treatment 
gene expression signatures across multiple cell 
lines in parallel, we have developed MIX-Seq: 
Multiplexed Interrogation of gene eXpression 
through single-cell RNA Sequencing. This 
approach leverages the ability to pool hundreds 
of cancer cell lines and co-treat them with one or 
more perturbations. We then apply scRNA-seq 
to simultaneously profile the cells’ responses 
and resolve the identity of each cell based on 
single nucleotide polymorphism (SNP) profiles. 
MIX-Seq enables efficient study of 
transcriptional signatures after pharmacologic or 
genetic perturbation, evaluation of temporal 
evolution of post-perturbation transcriptional 
response, investigation of the mechanism-of-
action (MoA) of novel small-molecule 
compounds and development of novel 
therapeutic response prediction methods in 
cancer cell models. 
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Results 

MIX-Seq: Multiplexed cell line 
transcriptional profiling using 
scRNA-seq 

MIX-Seq uses scRNA-seq to measure 
the transcriptional effects of a perturbation 
across diverse cancer cell lines grown and 
perturbed in a pool (Fig. 1a). Specifically, we 
co-culture cancer cell lines in pools and treat 
them with a small molecule compound (or 
genetic perturbation), following our PRISM 
approach19. To ascertain transcriptional response 
signatures, cell-specific transcriptomes are 
measured using scRNA-seq after a defined time 
interval following perturbation. To assign each 
profiled cell to its respective cell line, we created 
a computational demultiplexing method that 
classifies cells by their genetic fingerprints. 
Specifically, we first estimated allelic fractions 
across a panel of commonly occurring SNPs for 
a set of reference cell lines (Supplementary 
Table 1). For each single cell, we then 
determine the reference cell line with the highest 
likelihood of generating the observed pattern of 
SNP reads, using a generalized linear model (see 
Methods). This approach also allows for 
identification of multiplets of co-encapsulated 
cells20, where two or more cells from different 
cell lines are unintentionally tagged with the 
same cell barcode during droplet-based single-
cell library preparation, and it provides quality 
metrics that can be used to identify and remove 
low-quality cells (Supplementary Fig. 1), such 
as empty droplets18,21. 

We confirmed the classification 
accuracy of our SNP-based demultiplexing 
approach on scRNA-seq profiles from pools of 
either 24 or 99 cancer cell lines at baseline 
(either untreated, or treated with a vehicle 
control DMSO) in two ways. First, we classified 
cell identities independently by either their gene 

expression profiles (see Methods) or their SNPs. 
After removal of low-quality cells and doublets 
(Supplementary Fig. 1), we found that 
classifications based on SNP and gene 
expression profiles were very similar (> 99% 
agreement; Fig. 1b; Supplementary Fig. 2). 
While either feature could be thus used to 
accurately classify cell identities; we focus on 
SNP-based classification here as it is inherently 
robust to perturbations that could dramatically 
alter the cells’ gene expression profiles, and 
could be applied to pools of primary cells of the 
same type from different individuals (e.g. iPS 
cells). 

Second, we estimated the error rate of 
SNP-based classification by assessing the 
frequency with which the model selected cell 
lines that were not in the experimental pools. 
Out of a reference panel of 494 cell lines, the 
model consistently selected a cell line from 
within the experimental pool with high 
confidence (Fig. 1c), and never picked an out-
of-pool cell line (0/84,869 cells were classified 
‘out of pool’). Notably, though we tested MIX-
Seq with experimental pools of up to 99 cell 
lines, these analyses show that SNP profiles can 
be used to distinguish among much larger (> 
500) cell line pools. Furthermore, based on 
downsampling analysis, we found that SNP-
based cell classifications can be applied robustly 
to cells with as few as 50-100 detected SNP 
sites20 (Supplementary Fig. 3). Our SNP-based 
model also detected doublets at the expected rate 
(based on the cell loading densities)22, and 
consistently identified both cells of doublet pairs 
among those in the experimental pool 
(Supplementary Fig. 1).  

In summary, these results show that 
MIX-Seq allows for multiplexed transcriptional 
profiling across pools of cancer cell lines using 
scRNA-seq, with robust SNP-based 
demultiplexing and doublet detection that can be 
scaled to large pools of cell lines.  
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Fig. 1: MIX-Seq platform leverages SNP-based demultiplexing of mixtures of single-cell 
transcriptional profiles.  
a) Schematic diagram illustrating the MIX-Seq platform. b) t-SNE representation of expression profiles from an example 
negative-control experiment (combination of DMSO-treated and untreated cells), showing clear clustering by cell line (color 
indicates SNP-based parental cell line classification). Black dots show cells classified as doublets. Red dots indicate cells where 
gene expression and SNP-based classifications disagree (0.2% of singlet cells, 16/6926). c) Heatmap showing likelihoods 
assigned by the SNP-classification model for each cell coming from each parental cell line. The model consistently picks out a 
single cell line, from among the 24 ‘in-pool’ cell lines, with high confidence.  
 

MIX-seq identifies selective 
perturbation responses and MOA 

Next, we evaluated whether MIX-Seq 
could distinguish biologically meaningful 
changes in gene expression in the context of 

drug treatment, including identifying differential 
cell line responses related to an established 
biomarker, and recovering the compounds’ MoA 
from the measured transcriptional responses. We 
treated pools of well-characterized cancer cell 
lines with 13 drugs, followed by scRNA-seq at 6 
and/or 24 hours after treatment (Supplementary 
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Table 2). These included 8 targeted cancer 
therapies with known mechanisms, 4 pan-lethal 
compounds that broadly kill most cell lines, and 
one tool compound (BRD-3379) with unknown 
MoA, which was found to induce strong 
selective killing in a high-throughput screen. We 
compared our scRNA-seq based phenotyping to 
long-term viability responses measured for these 
drugs and cell lines from the genomics of drug 
sensitivity in cancer (GDSC) screening 
dataset4,7, as well as data generated using the 
PRISM assay16,19 (see Methods). 

As an example, we first consider nutlin, 
a selective MDM2 inhibitor, which we applied 
to a pool of 24 cell lines. MDM2 is a negative 
regulator of the tumor suppressor gene TP53, 
and nutlin is known to elicit rapid apoptosis and 
cell cycle arrest exclusively in cell lines that 
have wild-type (WT) TP5323. Jointly embedding 
the expression profiles of 7,317 single cells 
treated with either nutlin or vehicle control 
(DMSO) in 2D-space revealed clear clustering 
by cell line, with robust shifts in the nutlin-
treated cell populations for some cell lines, but 
not others (Fig. 2a). Estimating the average 
drug-induced change in gene abundance for each 
cell line (see Methods) revealed a robust 
response in each of the 7 TP53 WT cell lines in 
the pool, but only minimal changes in cell lines 
harboring TP53 mutations, as expected (Fig. 2b-
d). Furthermore, pathway enrichment analysis 
(see Methods) of the average transcriptional 
response among TP53 WT cell lines showed 
clear up-regulation of genes in the TP53 
downstream pathway, as well as down-
regulation of cell cycle processes (Fig. 2e). 
Thus, the differential transcriptional programs 
identified by MIX-Seq can be used to inform a 
compound’s MoA. 

Across nearly all 13 drugs profiled, we 
were able to identify robust transcriptional 
response signatures, and these signatures were 
often highly informative about the compounds’ 
MoA24,25. For example, treatment with the 

proteasome inhibitor bortezomib elicited strong 
up-regulation of protein folding and heat-shock 
response pathways (Supplementary Fig. 4a). 
Gemcitabine, a chemotherapy drug, altered 
expression of apoptosis-related genes 
(Supplementary Fig. 4b), and mTOR signaling 
was the top down-regulated gene set following 
treatment with the mTOR inhibitor everolimus 
(Supplementary Fig. 4c). For the two inhibitors 
of anti-apoptotic proteins (navitoclax, and the 
MCL1i AZD-5591) we observed relatively weak 
transcriptional responses without clear cell line 
selectivity, as discussed further below. Taken 
together, these results demonstrate the ability of 
MIX-Seq to measure selective transcriptional 
effects of a drug across a pool of cell lines, and 
highlight the utility of such information for 
identifying a drug’s cellular effects and 
MoA10,12. 

In addition to measuring drug-responses, 
MIX-Seq can also be used to study the 
transcriptional effects of genetic perturbations in 
a pool of cell lines. For example, we introduced 
two sgRNAs targeting the gene glutathione 
peroxidase 4 (GPX4) by lentiviral transduction 
into a pool of 50 cell lines, and performed 
scRNA-seq at either 72 or 96 hours post-
infection (see Methods). GPX4, a gene involved 
in lipid metabolism, was selected in part because 
it represents a strong selective dependency 
among cell lines with a mesenchymal 
phenotype26, and is highly and ubiquitously 
expressed, allowing us to directly assess the 
level of on-target knockdown of GPX4 mRNA8. 
Both GPX-targeting guides produced robust on-
target reduction of GPX4 mRNA compared to 
control guides (Supplementary Fig. 5a) across 
each of the 49 cell lines detected in the pool 
(Supplementary Fig. 5b,c). The up-regulated 
genes included EEF1A2, shown to play a role in 
regulating lipid metabolism27, and genes 
involved in glycan-synthesis, which has been 
reported to regulate glutathione levels28 
(Supplementary Fig. 5d). Notably, however, 
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we did not observe clear differences in the 
transcriptional responses of cell lines known to 
be dependent vs. non-dependent on GPX4 

CRISPR viability screens2 (Supplementary Fig. 
5e).  

Fig. 2: Identification of selective transcriptional responses and compound MoA.  
a) t-SNE representation of cells treated with DMSO control (blue) or nutlin (red) across a pool of 24 cell lines. Arrows indicate 
the shift in the population median coordinates for each cell line. b) Heatmap showing average log fold-change estimates for each 
cell line for top differentially expressed genes. Nutlin sensitivity is given by 1 – area under dose response curve (AUC, see 
Methods). c) Volcano plot showing strong gene expression changes in response to nutlin treatment across TP53 WT cell lines (n 
= 7). p-values were estimated based on empirical-Bayes moderated t-statistics, using the limma-trend pipeline29,30. d) Same as c 
for TP53 mutant cell lines (n = 17), showing little gene expression change in response to nutlin treatment. e) Gene set analysis 
identifies gene sets that are up- (right) and down- (left) regulated by nutlin treatment in the TP53 WT cell lines. 
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Single-cell profiling enables 
characterization of heterogeneous 
population responses  

The single-cell resolution from MIX-
Seq further allows us to determine how 
perturbations affect the composition and state of 
heterogeneous cell populations. For instance, we 
can infer the cell cycle phase of each cell from 
its expression profile31, and then determine how 
perturbations impact the cell cycle phase 
composition of different cell lines. Applying this 
approach showed that nutlin treatment elicited a 
pronounced G0/G1-arrest phenotype selectively 
among the TP53 WT cell lines (Fig. 3a,b), as 
expected.  

We next systematically assessed the 
average effects of each compound on cell cycle 
phase composition (Fig. 3c, Methods). At 24 
hours post-treatment, most drugs produced an 
increase in the proportion of cells in G0/G1 
(10/13 drugs) and concomitantly decreased the 
proportion of cells in S (9/13) and G2/M phases 
(9/13), consistent with cell cycle arrest at the 
G1/S transition (Fig. 3c). Two notable 
exceptions were the DNA-damaging agent 
gemcitabine and the CHEK1/2 inhibitor 
prexasertib. Gemcitabine also decreased the 
proportion of cells in G2/M but with an increase 
in S-phase cells, consistent with its known role 
in triggering CHEK1-mediated S-phase arrest. 
Prexasertib decreased the proportion of S-phase 
cells, and slightly increased the fraction of G2/M 
cells, consistent with inhibition of CHEK-1 
mediated DNA-damage checkpoints leading to 
dis-regulated progression of cells through the 
cell cycle32. 

For compounds that are selectively 
active in only some cell lines, cell cycle effects 
were well-correlated with their measured 
viability effects across the cell lines, such that 

drugs typically had larger cell cycle effects in 
cell lines that were more sensitive (Fig. 3d). We 
also used the single-cell data to directly estimate 
drug-induced changes in relative cell abundance, 
finding that selective compounds consistently 
decreased the representation of more sensitive 
cell lines in the pool, particularly when 
measured 24 hours post-treatment 
(Supplementary Fig. 6). Thus, MIX-Seq can 
reliably read out the effects of perturbations on 
cell cycle progression as well as overall cell 
viability. 
 We next leveraged the single-cell nature 
of MIX-Seq data to study how perturbations 
affect different sub-populations of cells, and 
potentially alter patterns of transcriptional 
heterogeneity within a cell line. Cancer cell lines 
exhibit substantial genetic33–35, epigenetic31,36,37, 
and transcriptional35,36,38,39 heterogeneity. For 
example, we found that the lung cancer cell line 
IALM was composed of two distinct 
subpopulations at baseline, and these 
subpopulations showed significant differences in 
their transcriptional response to trametinib (Fig. 
3e; Supplementary Fig. 7a,b). In another 
example, the kidney cancer cell line 
RCC10RGB consisted of a single population at 
baseline, but  treatment with bortezomib gave 
rise to two distinct cell populations that were 
distinguished by expression of cell cycle and 
DNA damage response genes (Fig. 3f; 
Supplementary Fig. 7c-e), a pattern that was 
also observed in several other cell lines 
(Supplementary Fig. 7f-i).  
 These examples highlight the ability of 
MIX-Seq to not only identify differences in 
average perturbation responses across cell lines, 
but also to reveal the detailed effects of such 
perturbations on heterogeneous cell populations 
with single-cell resolution.  
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Fig. 3: Single-cell resolution enables identification of heterogeneity in pre- and post-perturbation 
transcriptional programs. 
 a) t-SNE representation of gene expression profiles of DMSO (light gray outline) and nutlin-treated (dark red outline) cell 
populations for a pool of 24 cell lines (as in Fig. 2). Cells are colored by their inferred cell cycle phase. TP53 WT cell lines (blue 
arrows) show predominance of G0/G1-phase cells after nutlin treatment not observed in TP53 mutant cell lines (red arrows). b) 
Quantification of the change in proportion of cells in G0/G1 shows that nutlin treatment elicits G1-arrest selectively among the 
TP53 WT cell lines. Error bars show the 95% CI. c) Average change in the fraction of cells in each cell cycle phase for each drug 
treatment (averages are weighted by measured drug sensitivity, all for 24 hr time points). d) Comparison of the Pearson 
correlation between measured drug sensitivity and the changes in G2/M-, G0/G1-, and S-phase cell proportions for all 
compounds. Lattice shows the regression plane of the z-coordinate e) 2D representation of IALM single-cell expression profiles 
after DMSO (gray stroke) or trametinib (blue stroke) treatment (24 hours). Inferred cell cycle phase depicted by fill color. f) 
Similar to e, showing two sub-populations of RCC10RGB cells emerging 24 hours after treatment with bortezomib
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Large-scale profiling identifies shared 
viability-related response signatures 
across drugs  

Next, we wanted to understand the 
relationship between short-term transcriptional 
responses and long-term viability effects. While 
we initially profiled cells in a pool of 24 cell 
lines; we now leveraged SNP-demultiplexing in 
two much larger cell line pools of nearly 100 
cell lines each (97 and 99) treated with 8 and 4 
small molecules respectively. This allowed us to 
identify context-dependent response signatures, 
and short term differential responses related to 
long-term drug sensitivity (Fig. 4a,b). We 
employed a statistical modeling approach 
relating the (average) transcriptional changes 
measured in each cell line to their viability 
response in the drug sensitivity data from GDSC 
and PRISM4,16,19. Specifically, we decompose 
the change in expression of each gene into two 
components: a viability-independent response 
component (β0) characterizing the response of 
completely insensitive cell lines, and a viability-
related response component (β1) characterizing 
the difference between sensitive and insensitive 
cell lines (Fig. 4c, top, Methods).  

As an example, we first consider 
treatment of the 99 cell line pool with the MEK 
inhibitor trametinib, along with vehicle control 
(DMSO). We recovered more than 100 cells per 
cell line on average in each condition, detecting 
97/99 cell lines with a minimum of 20 cells in 
each condition (average 130 cells/condition; Fig. 
4a,b). Downsampling analysis suggested that 
measuring tens of cells per condition was 
sufficient to estimate each cell line’s 
transcriptional response profile (Supplementary 
Fig. 8). 

The viability-independent response to 
trametinib included a strong down-regulation of 
MAPK signaling genes, including EGR1, 
ETV4/5, DUSP4/5/6, and SPRY2/4, the KRAS 

signaling pathways, and TNF-alpha signaling, as 
well as up-regulation of the interferon response 
(Fig. 4c), consistent with previous reports40,41. In 
contrast, the viability-related component showed 
strong down-regulation of cell-cycle processes 
(Fig. 4d). This result, along with the inferred 
G0/G1-arrest in sensitive cell lines (Fig. 3c,d), 
implicates a selective cell cycle arrest as 
mediating the long-term viability effects of 
trametinib.  

Applying this analysis across all 8 
selective compounds profiled with MIX-Seq, we 
found several core components of the viability-
related response that were largely shared across 
compounds. These were highly enriched for cell-
cycle genes, which were selectively down-
regulated in the sensitive cell lines in virtually 
all the selective compounds profiled 
(Supplementary Fig. 9). A smaller set of genes 
related to translation were consistently up-
regulated in sensitive cell lines, potentially 
owing to elevated translation in G1-arrested 
cells42. Notably, the shared signature was also 
apparent in cells treated with pan-toxic 
compounds, such as prexasertib, the BRD2-
inhibitor JQ-1, bortezomib, and gemcitabine 
(Supplementary Fig. 9). This suggests that this 
is a general transcriptional signature of 
decreased cell viability and/or proliferation. 
Other viability-related response components 
were compound-specific, most notably a set of 
TP53-signaling related genes that were up-
regulated in sensitive cell lines only with nutlin 
treatment (Supplementary Fig. 9). Finally, the 
two inhibitors of anti-apoptotic proteins -- 
navitoclax and AZD5591 -- were unique among 
the compounds tested in that they did not 
produce robust transcriptional response 
signatures despite having strong selective 
viability effects. Despite the lack of strong 
transcriptional response, AZD5591 (but not 
navitoclax) produced a clear depletion of cell 
abundance in the more sensitive cell lines at this 
time point (24 hr), and the magnitude of this cell 
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line depletion was well-correlated with external 
measurements of drug-sensitivity 
(Supplementary Fig. 6). 

In order to determine how the number of 
different cell lines profiled impacts estimation of 
these transcriptional response components we 
performed a downsampling analysis 
(Supplementary Fig. 10). While the average 

response across cell lines could be estimated 
reliably from relatively few (5-10) lines, 
estimates of the viability-related and viability-
independent response components became more 
robust (as measured by their similarity to 
estimates using all cell lines) when including 
data from many lines (i.e. ~50 or more) 
(Supplementary Fig. 10).  

Fig. 4: Post-perturbation transcriptional response signatures are comprised of distinct viability-
related and -independent components.  
a) t-SNE representation of single-cell expression profiles in a 99 cell line pool treated with vehicle control (gray) or trametinib 
(red). Arrows indicate trametinib-induced shift of population median coordinates for each cell line. b) Histogram showing the 
number of cells recovered in each cell line and condition. c) Volcano plot showing the viability-independent response for each 
gene, representing the ‘y-intercept’ of a linear fit of expression change to drug sensitivity. Inset at left shows this relationship for 
an example gene: EGR1. Inset below shows top up- (right, red) and down-regulated (left, blue) gene sets. d) Same as c for the 
viability-related response
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Dual multiplexing of cell lines and 
time points highlights early onset of 
viability-independent programs and 
later onset of viability-related 
programs 

Many perturbations will elicit cellular 
responses that evolve in complex ways over 
time, suggesting that more information could be 
obtained by profiling cells across an entire 
sequence of time points post-treatment. Several 
methods have recently been developed for 
introducing sample-specific barcodes to allow 
multiplexing of scRNA-seq measurements 
across experimental conditions21,43, such as 
multiple time points43. In particular, Cell 
Hashing21 uses oligonucleotide-conjugated 
antibodies against cell-surface antigens (called 
hashtags) to label cells with unique barcodes for 
each experimental condition. Since MIX-Seq 
uses naturally occurring “SNP barcodes” to 
multiplex cell lines, it can easily be combined 
with such approaches to allow for dual-
multiplexing of cell lines and experimental 
conditions with a single scRNA-seq readout.  

Leveraging this approach, we measured 
responses of a pool of 24 cell lines to trametinib 
along 5 time points, ranging from 3 to 48 hours 
post-treatment, using Cell Hashing to multiplex 
treatment conditions (Fig. 5a). As controls, we 
included DMSO-treated samples at each of the 5 
time points, in addition to untreated samples, for 
a total of 11 conditions. Hashtag reads provided 
robust labeling of treatment conditions, with 
good tagging efficiency across all cell lines 
(Supplementary Fig. 11). Since we did not 
observe substantial differences in DMSO-treated 
cells across time points (Supplementary Fig. 
12), we pooled them together for subsequent 
analysis, yielding a total of 13,713 clearly 
tagged single cells across all treatment 
conditions and cell lines. 

The single-cell expression profiles 
illustrated strong time-dependent changes in 
response to trametinib treatment, whose 
magnitude varied considerably across cell lines 
(Fig. 5b). To better understand these changes, 
we examined the time courses of transcriptional 
changes for key trametinib-response genes. For 
example, EGR1, an immediate early response 
gene known to be activated by MAPK 
signaling44, was dramatically down-regulated 3 
hours after trametinib treatment in both the 
sensitive cell line RCM1 and the insensitive line 
TEN (Fig. 5c). In contrast, MCM7, a cell-cycle-
related gene that was part of the viability-related 
response, was selectively down-regulated only 
in the sensitive line RCM1, and only after 12-24 
hours post-treatment (Fig. 5d). 

We next applied our statistical model 
(Fig. 4c,d) to quantify the temporal evolution of 
viability-related and viability-independent 
components of the trametinib response for each 
gene, integrating across all cell lines. Down-
regulated genes in the viability-independent 
response showed a range of temporal patterns, 
with several (such as EGR1 and DUSP6) 
reaching maximal down-regulation 3 hours post-
treatment (Fig. 5e). In contrast, the viability-
related response emerged much later, with genes 
such as GINS2, E2F1, and MCM4 showing 
selective down-regulation in sensitive cell lines 
only 12-24 hours post-treatment (Fig. 5f). The 
viability-independent down-regulation of the 
KRAS signaling pathway emerged 3 hours after 
treatment (Fig. 5e), while the viability-related 
down-regulation of cell cycle genes started 24 
hours after treatment (Fig. 5f). The latter was 
also consistent with the time course of G0/G1-
arrest based on inferred cell cycle phases (Fig. 
5g). 

These results thus highlight the utility of 
large-scale transcriptional profiling, both across 
cell lines and time points, to identify the 
different components of drug response. The 
ability to separate these transcriptional 
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components could provide clues to both the 
initial effects of target-engagement, as well as 

the mechanism underlying selective loss of cell 
viability, and more powerfully inform MoA.  

Fig. 5: Temporal resolution of post-treatment transcriptional response using dual-multiplexing 
across cell lines and time points.  
a) Schematic diagram illustrating experiment using Cell Hashing to multiplex scRNA-seq of cell line pools sampled at different 
time points following drug treatment. b) UMAP plot showing 13,713 cells across a pool of 24 cell lines at different times 
following treatment with trametinib (shades of blue), or DMSO control (pink). c) Single-cell expression levels of EGR1 at 
different time points following trametinib treatment for an example insensitive/sensitive cell line (left/right). Red dots depict the 
mean expression levels at each time point, and error bars show the interval +/- s.e.m. d) Same as c, for MCM7. e) (Top) Time 
course of the viability-independent response for top down-regulated genes. (Bottom) Enrichment of 
HALLMARK_KRAS_SIGNALING_UP genes in the down-regulated viability-independent response at each time point. f) (Top) 
Same as e, showing time course of the viability-related response for top down-regulated genes. (Bottom) Enrichment of 
HALLMARK_G2M_CHECKPOINT genes in the viability-related response at each time post-treatment. g) Average time course 
of G0/G1-arrest across cell lines (n = 24). Error bars indicate interval +/- s.e.m.  
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Prediction of long-term viability 
responses from short-term post-
treatment MIX-Seq profiles 
 Transcriptional profiling of drug 
responses across large panels of cell lines also 
enables the application of machine learning 
methods to discover different response patterns 
across cell lines without a priori knowledge of 
the relevant genomic/molecular features driving 
such differences. As a simple illustration of this, 
we first applied principal component analysis 
(PCA) to the matrix of trametinib responses 
across cell lines, measured 24 hours post-
treatment (Fig. 6a). The first principal 
component (PC1), captured differences in 
trametinib sensitivity across cell lines (Fig. 
6b,c). Indeed, across 9/13 tested drugs, PC1 of 
the transcriptional response matrix (measured at 
24 hours post-treatment) was significantly 
correlated with the cell lines’ measured drug 
sensitivity (FDR < 0.1; Supplementary Fig. 
13), suggesting that this is often a predominant 
source of response heterogeneity. For trametinib 
treatment, PC2 identified a pattern of differential 
response among a subset of trametinib-sensitive 
cell lines with high baseline expression of 
SOX10 (mostly BRAF mutant melanomas) (Fig. 
6d,e). This example thus highlights the power of 
transcriptional profiling across cell contexts to 
identify multiple biologically-relevant factors 
underlying the differential cellular response to 
the drug.  

In order to identify, in an unsupervised 
manner, global patterns of transcriptional 
responses across cell lines, compounds and time 
points, we used UMAP45 to create a 2D map of 
all the combined perturbation response profiles. 
While perturbation response profiles mostly 
grouped by perturbation type (drug and post-
treatment time point) (Fig. 6f), relationships 
between the set of responses for related 
perturbation types were also apparent. For 

example, responses to the same drug profiled at 
multiple post-treatment time points were nearby 
in UMAP space, and functionally related drugs 
such as taselisib (PIK3CAi) and everolimus 
(MTORi), as well as trametinib (MEKi) and 
afatinib (EGFRi), clustered near one another. 
Interestingly, the response of BRAF mutant cell 
lines to the BRAFi dabrafenib grouped  with 
trametinib response profiles, rather than with the 
other dabrafenib responses (Fig. 6f).    

Finally, we tested the feasibility of using 
short-term transcriptional responses to predict 
the long-term viability effects of a drug, which 
could have clinical applications in therapeutic 
response prediction, as patient cells can be 
transcriptionally profiled without long term 
cultures. We trained random forest models to 
predict long-term viability responses using the 
measured transcriptional response profiles for 
each cell line (across-cell averages). We 
evaluated the accuracy of the models using the 
R2 of predictions on held-out test cell lines (by 
10-fold cross-validation; see Methods). For 
comparison, we also trained models to predict 
the viability response data using the baseline 
‘omics’ features of the cell lines, including their 
baseline expression levels (from bulk RNA-seq 
data) and the presence of damaging or hotspot 
mutations6,46. Across drugs, transcriptional 
response signatures were more predictive of 
long-term viability responses compared to the 
cell lines’ baseline features (Fig. 6g; n = 17; p = 
8.4x10-4; Wilcoxon signed rank test). This 
difference was particularly pronounced for the 
transcriptional responses measured 24 hours 
post-treatment, though we also obtained good 
predictive performance using 6-hour responses 
for some drugs. Notably, even when we used all 
available data to train models on the baseline 
features, such that they had access to much 
larger training samples (e.g., n = 741 vs 24 cell 
lines for nutlin), transcriptional response profiles 
still compared favorably for predicting viability 
effects for most drugs (Supplementary Fig. 14). 
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These results suggest that post-treatment 
transcriptional signatures can provide a robust 
signal of cellular response to drugs that could be 

applied to predict their long-term viability 
effects.  

 

Fig. 6: Machine learning analysis powered by large-scale transcriptional profiling  
a) Matrix of measured transcriptional responses across cell lines 24 hr after trametinib treatment. b) Eigenvalue spectrum of PCA 
applied to the matrix from a. c) The projection of each cell line’s response onto PC1 is plotted against its measured trametinib 
sensitivity (yellow points indicate cell lines with activating RAS/RAF mutations). Linear regression trend line (with 95% CI 
interval) are shown in blue. d) Scatterplot of PC1 vs PC2 loadings across cell lines. While PC1 captures differences in trametinib 
sensitivity, PC2 largely captures the difference between KRAS mutant lines (green) and BRAF mutant melanomas (red). e) 
Comparison of PC2 scores with expression of the melonoma-specific transcription factor SOX10 across cell lines. f) UMAP 
embedding of transcriptional response profiles across drugs, cell lines, and post-treatment time points. Points are colored by 
treatment condition (drug and time point). Inset below shows zoomed view of the region indicated by the rectangle, with the 
larger green dots representing responses of BRAF mutant melanoma lines to the BRAFi dabrafenib. g) Accuracy of models 
trained to predict drug sensitivity using either measured transcriptional responses or baseline ‘omics’ features of the cell lines 
(using the same set of cell lines). Predictions based on transcriptional profiling at 6 and 24 hr post-treatment are indicated by the 
gold and blue dots respectively.
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Discussion 
Here we present an experimental and 

computational platform (MIX-Seq) for 
performing highly multiplexed transcriptional 
profiling of perturbation responses across many 
cell contexts using single-cell RNA-seq applied 
to co-treated pools of cancer cell lines. We 
demonstrate this approach by profiling the 
responses of pools of 24 - 99 cell lines to a range 
of different drugs, as well as to CRISPR 
perturbations.  

To demultiplex the data, as well as to 
identify droplets containing ambient mRNA 
(empty droplets) or two cells (‘doublets’), we 
developed a computational method based on 
SNP-fingerprinting, which classifies single cells 
with negligible error rates, even for cells with 
low sequencing depth. During the course of this 
project, several other methods for SNP-based 
demultiplexing have been published20,47,48. In 
particular, Demuxlet applies a similar approach, 
using pre-computed reference SNP profiles for 
the samples being pooled to identify single cells 
and detect doublets. Indeed, for data sets where 
we could run both models, we found that they 
produced identical single-cell classifications, 
and similar doublet detection results 
(Supplementary Fig. 1). The key advantage of 
our approach is that it can be applied to very 
large pools of samples. We demonstrate this 
directly on pools of ~100 cell lines, and our 
analysis shows that our method can be applied 
with even larger pools of hundreds of cell lines. 
This is because we detect doublets by leveraging 
a Lasso-regularized generalized linear model 
(Methods) that efficiently estimates the most 
likely mixture of two reference SNP profiles for 
each single cell. In contrast, Demuxlet detects 
doublets by explicitly computing the likelihood 
of all possible pairwise combinations of 
samples, making it computationally intractable 
for such larger pools20. 

A number of approaches have been 
developed for high-throughput transcriptional 
profiling that can be used to study perturbation 
responses at scale. The Connectivity Map 
project has utilized a low-cost bead-based assay 
that measures a reduced set of 1000 ‘landmark’ 
genes to profile thousands of different 
perturbation responses10,12. More recently, 
methods such as DRUG-seq14 and PLATE-seq13 
use oligo-tagging of treatment conditions to 
perform multiplexed RNA-sequencing, greatly 
reducing library preparation costs. Similar 
sample-barcoding strategies have also been 
employed with scRNA-seq21,43, allowing for 
multiplexed profiling across treatment 
conditions such as time points and drugs. MIX-
Seq complements these existing approaches by 
allowing for multiplexed profiling of 
perturbation responses across broad panels of 
heterogeneous cell contexts, without the need for 
additional experimental barcoding steps. As we 
demonstrate, MIX-Seq can also be combined 
with existing sample-barcoding strategies, such 
as Cell Hashing, to enable dual-multiplexing 
across treatment conditions and cell contexts.  

The single-cell resolution of the data 
empowers novel biological analyses as well. For 
example, we show that analysis of perturbation-
induced changes in the inferred cell cycle 
composition across cell lines can provide 
insights into mechanisms underlying decreased 
proliferation. Single-cell profiling could also be 
used to isolate the effect of perturbations on 
different cell subpopulations, as well as to 
measure changes to the overall composition of 
the cell population, which could be a powerful 
tool when studying more hetergenous samples, 
and mechanisms of drug resistance.  

MIX-Seq’s ability to efficiently profile 
genome-wide transcriptional responses across a 
broad panel of cell lines provides several 
advantages relative to traditional approaches that 
assess perturbation responses in a small number 
of representative cell lines. First, profiling across 
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a broad panel of heterogeneous cell lines allows 
for detection of context-specific responses. For 
highly selective drugs like dabrafenib and nutlin 
it’s often critical to profile cell lines with the 
appropriate genomic context (i.e. TP53 WT, 
BRAF mutant) in order to see a clear 
transcriptional response (e.g. Fig. 2, Fig. 6). 
Even among sensitive cell lines, however, there 
can be substantial response heterogeneity, and 
profiling many cell lines naturally makes results 
less sensitive to the particular choice of cell line 
models under study. For example, we found that 
responses to the BRAF-inhibitor dabrafenib 
showed substantial variation, even among the 
highly sensitive BRAF-mutant melanoma cell 
lines (Supplementary Fig. 15).  

By profiling perturbation responses 
across large panels of well-characterized cell 
lines, we can also uncover how patterns of 
transcriptional changes relate to the underlying 
genomic and functional features of the cells. In 
particular, pairing MIX-Seq with PRISM19, 
which can measure long-term drug sensitivity 
across the same panel of cell lines, allows us to 
dissect the components of transcriptional 
response associated with decreased cell viability 
in order to better understand the mechanisms 
underlying a drug’s fitness effects. For the drugs 
studied here, we found that viability-related 
responses were broadly similar across drugs, 
mostly reflecting a down-regulation of cell-cycle 
genes and up-regulation of genes involved in 
translation (Supplementary Fig. 9), though 
transcriptional signatures associated with 
apoptosis were also observed for some drugs 
(e.g. Supplementary Fig. 4). The two clear 
exceptions to this pattern were both inhibitors of 
anti-apoptotic proteins -- the BCL-2i navitoclax 
and the MCL1i AZD5591. These drugs did not 
produce strong and/or selective transcriptional 
responses. This suggests that compounds which 
directly induce apoptosis may not elicit a clear 
transcriptional signature, at least when measured 
24 hour post-treatment as done here.  

 One potential caveat of profiling 
transcriptional responses in pools of cell lines is 
that paracrine signaling between cell lines in the 
pool could affect the measured responses. We 
found that scRNA-seq profiles at baseline for 
cells grown in a pooled format were consistently 
most similar to bulk RNA-seq measurements of 
the same cell lines grown individually (Fig. 1c), 
suggesting that such paracrine-signaling effects 
are likely to be modest. Measuring treatment and 
control conditions within the same pool of cell 
lines also provides some internal control for 
baseline effects of paracrine signaling. Finally, 
previous work has shown that drug response 
profiles measured in cell line pools are largely 
concordant with standard measurements19. 
Nevertheless, the potential for interactions 
between cell lines in the pool must be 
considered when measuring perturbations 
responses using MIX-Seq. 

We also used MIX-Seq to show that 
transcriptional responses measured 6 - 24 hours 
after drug treatment can be used to predict long-
term cell viability remarkably well across a 
handful of targeted cancer drugs. Notably, for 
the drugs tested here, the ability of machine 
learning models to predict drug sensitivity (as 
measured by conventional cytotoxicity assays) 
from a cell line’s transcriptional response was 
substantially better than when using baseline 
‘omics’ features. These results suggest that 
transcriptional profiling could be used as a 
robust functional pharmacodynamic marker of 
drug sensitivity, which may provide improved 
predictions of tumor vulnerabilities compared 
with standard biomarker approaches. An 
important potential future application of this 
approach would be to utilize scRNA-seq to 
rapidly assess the sensitivity of primary tumor 
cells to various drug treatments ex vivo, 
circumventing the prolonged primary cell 
cultures needed to achieve sufficient cell 
numbers for standard long-term viability assays 
such as Cell-Titer-Glo49,50. However, it will be 
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important to extend these tests to a broader 
range of drugs, and primary patient-derived 
cancer models, in order to understand the 
generalizability of these results.  
 We envision that MIX-Seq could be 
used to efficiently build a database of 
transcriptomic changes elicited by a broad range 
of different chemical and genetic perturbations, 
each measured across a large heterogeneous 
panel of cancer models. Analogously to the 
CMAP project10,12, such a database could be 

used for predicting the mode of action of 
compounds and genetic manipulations whose 
cellular effects remain to be uncovered. By 
measuring perturbation responses across many 
different cell contexts, with single-cell 
resolution, MIX-Seq provides a powerful tool 
for identifying the core transcriptional programs 
of cancer cells, and better understanding how 
perturbations interact with the underlying cell 
context to alter these programs.
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Methods: 

Method of cell line pooling 

Cell line pools were made in sets of 25 cell lines. These 25 cell line pools were chosen based on 
doubling time and were grown in RPMI without phenol red and with 10% FBS. Cell lines were then 
washed with 10 mLs of PBS, and trypsinized with 1 mL trypsin which was then removed.  Ten mLs of 
RPMI media were added to the cells post trypsinization and resuspended. Cells were then counted by a 
Nexcelom cellometer using 10 uL of cell suspension and 10ul of Trypan blue. Equal numbers of cells per 
cell line were mixed together and spun down at 1,250 RPM for 5 minutes. Media was aspirated and the 
cells were resuspended in Sigma Cell Freezing media and frozen in 1 mL aliquots. This process was 
repeated for all of the 25 cell line pools. For MIX-Seq experiments involving larger pools, multiple 25 
cell line pools were thawed in RPMI with 10% FBS, spun down and resuspended in 5 mLs of RPMI 
media. Cells were then counted and equal numbers were combined together on the day of plating to form 
larger pools of up to ~100 cell lines. 

Cell culture 
For drug treatment experiments, cell line pools were cultured in RPMI containing 10% fetal 

bovine serum but did not contain phenol red or penicillin/streptomycin. Cell line pools were validated as 
mycoplasma free prior to initiating the experiment. Cell line pools were plated at 200,000 cells per well in 
6 well plates containing 2 mL of RPMI culture media described above. Cell seeding density did not vary 
depending on pool size (~25, 50 or 100 cell line pools). Cell pools were plated ~16-20 hours prior to drug 
treatment. Cells were treated with the described drugs or vehicle (DMSO) with a 0.2% final media DMSO 
concentration.  

For GPX4 knockout, cell line pools were plated at 200,000 cells per well in 12 well plates 
containing 1 mL of RPMI culture media. 24 hours later, the cells were infected with lentivirus expressing 
Cas9 and sgRNA at a multiplicity of infection of 20 in the presence of 4 ug/mL of polybrene. At 48 hours 
after the infection, the culture medium was replaced with medium containing 1 ug/mL puromycin. Cells 
were harvested at 72 or 96 hours after the infection.  

Cell harvesting 
Generally cells were harvested after drug treatment using standard cell culture methods. After 

drug treatment, cells that were in suspension (presumably containing dead cells from drug treatment) 
were collected and reserved for addition to the adherent cell fraction. Adherent cells were washed once 
with 1x PBS, trypsinized in 1 mL trypsin, incubated for 3-7 minutes are 37C, and then trypsin inactivated 
with 1 mL growth media. For cell hashing, cells were treated with TrypLE Express (ThermoFisher) 
instead of trypsin to reduce the amount of cell surface proteins digested that may affect the binding of cell 
hashing antibodies.  

For the trametinib time course experiment, cells were treated with trametinib with a staggered 
dosing schedule so all timepoints could be collected simultaneously. Cells were plated 19 hours prior to 
the first drug treatment, corresponding to the 48 hour time point. Cells were harvested for 10X capture 
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~67 hours after initial seeding. Final concentrations for drug treatments are listed in Supplementary 
Table 3. 

Preparation of cell suspensions and scRNA-Seq 
After trypsinization, adherent and suspension cells were combined for each treatment, pelleted, 

and resuspended in Cell Capture Buffer (1x PBS with 0.04% BSA). Cells were counted (including trypan 
blue non viable cells) and resuspended at a concentration of 1,000 cells per microliter for standard loading 
on the Chromium Controller (10x Genomics), or at 1,500 cells per microliter for “super loaded” samples. 
Up to 40,000 cells were loaded per 10x channel for “super loaded” samples, with expected recovery of up 
to 20,000 cells per channel. Cell suspensions were captured on a 10x Chromium controller using Single 
Cell 3' reagent chemistries (either version 2 or version 3 reagents) (Supplementary Table 2). 

Cell Hashing cell labelling 
Cell Hashing21 was performed using the cell harvest method described above with the following 

changes. All steps were performed on ice. Harvested cells were resuspended in Cell Hashing Staining 
Buffer (1x PBS with 2% BSA and 0.02% Tween) prior to cell counting. Samples were counted in 
duplicate with two technical replicates by Countess (Life Technologies) to estimate total cell number. Up 
to 1,000,000 cells (range 3e5-1e6 cells) were resuspended in 100 microliters of Cell Hashing Staining 
Buffer. Cells were blocked with 10 microliters of Human TruStain FcX blocking solution (BioLegend) 
for 10 minutes at 4C. Cells were then incubated with 2µL (1µg) of the appropriate BioLegend 
TotalSeq™-A Hashing antibody (product codes: 394607, 394609, 394611, 394613, 394615, 394617, 
394619, 394623, 394625, 394627, 394629) for 30 minutes at 4C. Cells were washed three times with 
0.5mL of Cell Hashing Staining Buffer and filtered through low volume 40µm cell strainers (Flowmi). 
All cell suspensions were recounted to achieve a uniform concentration of 1,500 cells per microliter 
before pooling for 10x capture.  

Cell hashing library preparation 
Separation of hashtag oligo (HTO)-derived cDNAs (<180bp) and mRNA-derived cDNAs 

(>300bp) was done after whole transcriptome amplification by performing 0.6X SPRI bead purification 
(Agencourt) on cDNA reactions as described in 10x Genomics protocol. Briefly, the supernatant from 
0.6X SPRI purification contains the HTO fraction, which was subsequently purified using two 2X SPRI 
purifications per manufacturer protocol (Agencourt). HTO’s were eluted by resuspending SPRI beads in 
15 µl TE.  

Purified HTO sequencing libraries were then amplified by PCR. PCR reactions were as follows: 
 

Reagent Volume 

Purified HTO fraction after 2X SPRI ~1 uL (5 ng) 

2x NEB Next Master Mix 25 uL 

Illumina TruSeq DNA D7xx_s primer (containing 
i7 index) 10 µM 

1 uL 
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SI PCR oligo 10 µM 1 uL 

H2O To 50 uL final volume 

 
Typically 3 identical “dial out” PCR reactions were performed per HTO library. We varied the 

number of PCR cycles to avoid under or overamplifying the HTO libraries. PCR cycling conditions were 
are follows 

 

Step Temperature Time 

1 98C 10 sec 

2* 98C 2 sec 

3* 72C 15 sec 

4 72C 1 min 

 
*Steps 2&3 were repeated for 15, 18, or 22 cycles 
 
PCR reactions were purified using another 2X SPRI clean up and eluted in 15 µL of 1x TE. HTO libraries 
were then analyzed for amplification quality. Libraries were quantified by Qubit High sensitivity DNA 
assay (ThermoFisher) and loaded onto a BioAnalyzer high sensitivity DNA chip (Agilent) to determine if 
an intended HTO product size of ~180 bp was achieved. 

Sequencing 
Samples were sequenced using HiSeq X (Illumina) and NovaSeq 6000 (Illumina) platforms. The 

read structure (for 10x 3’ v3 chemistry) was as follows: 

Platform Read Cycles 

HiSeq Read 1 28 (26)* 

  Read 2 96 

  Index 1 8 

NovaSeq Read 1 28 (26)* 

  Read 2 80 

  Index 1 8 

*For 10x 3’ v2 chemistry 
  
The hashing library for the trametinib time-course experiment was sequenced twice with spike-ins of 2.5-
10%. 
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Data processing 
Sequencing data were processed using 10x Cell Ranger software, run using the ‘Cumulus’ cloud-

based analysis framework51. Our initial experiments were done with 10x Single Cell 3’ v2 chemistry, and 
were processed using version 2 of the Cell Ranger software. In our later experiments we used v3 
chemistry, and the corresponding version 3 of Cell Ranger. Reads were aligned to the hg19 reference 
genome. 

SNP identification 
To define a SNP panel for cell line classification, we identified SNPs that occurred frequently 

across a large panel of 1,160 cell lines, and that were also detected in scRNA-seq data. Specifically, we 
ran MuTect 1 (version 1.1.6) to call SNVs from bulk RNA-seq data and scRNA-seq data from 200 cell 
lines using a downsample to coverage rate of 1,000 and a fraction contamination rate of 0.02, and with all 
other parameters set to defaults. We took the subset of SNPs that were observed in both the bulk and 
single-cell data, then ordered all SNPs by the frequency of their occurrence (in the bulk RNA-seq data), 
selecting the 100,000 most frequently observed SNPs.  

For the bulk RNA-seq data, we used Freebayes52 to estimate allelic fractions across the reference 
SNP panel, using the settings “pooled-continuous” and “report-monomorphic”, and adding a pseudocount 
of 1 to the reference and alternate allele read counts. For the single-cell data, we used the method 
scAlleleCount (https://github.com/barkasn/scAlleleCount) to extract reference and alternate allele counts 
at all SNP sites. 

SNP-based cell line classification 
To estimate the likelihood of the observed SNP reads for an individual cell having come from 

each reference parental cell line, we use a generalized linear modeling approach. Specifically, we use a 
logistic regression model, where the probability of a read at SNP site i being an alternate allele is given 
by: , where  is the logistic function,  is the allelic fraction of the given cell 
line j at site i (estimated from bulk RNA-seq data), and  are parameters estimated for each single cell 

and reference cell line by maximizing the likelihood: , where  is the binomial 
likelihood,  is the number of alternate reads, and  is the total number of reads observed at site i. We fit 
models using the glm function in R, and the cell line whose SNP profile  produced the highest 
likelihood for the observed single-cell SNP reads was selected. Goodness-of-fit was quantified by the 
deviance ratio: 1 – deviance_fit/deviance_null. We also compute a measure of the classification 
confidence, given by the margin between the best-fitting and second-best-fitting model deviance ratios, 
normalized by the standard deviation of deviance ratio values across reference cell lines (excluding the 
best matching cell line j*). 

Estimates of the SNP classification error rate were given by , where  is the number of 
cells erroneously classified as out-of-pool cell lines,  is the total number of cells recovered in the 
experiment (excluding doublets and low-quality cells), and  is a correction factor to account for the 
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probability of cells being classified incorrectly among the ‘in-pool’ cell lines. Assuming errors are made 

with equal probability among all reference cell lines, this is given by .  

Modeling doublets 
Doublet detection is performed using a similar generalized linear modeling approach, where 

alternate allele probabilities are modeled as a mixture of the allelic fraction profiles from two reference 
cell lines  and : , where the ratio  represents the 
proportion of mRNA reads from cell line j vs cell line k. In order to efficiently estimate the most likely 
pairwise mixture of reference cell lines, we use a Lasso-regularized generalized linear model 
(implemented in the R package glmnet53), considering the allelic fraction profiles for all in-pool reference 
cell lines  as covariates. We constrained coefficient estimates to be non-negative, and limiting the 
model to use a maximum of 2 non-zero coefficients (i.e. 2 reference SNP profiles). After using the Lasso 
model to estimate the most-likely ‘doublet’ pair of cell lines, we then refit the GLM without 
regularization to estimate the goodness-of-fit of the doublet model (deviance), as well as the optimal 
mixing ratio. To measure the evidence in favor of a cell being a doublet, we use the difference of 
deviance ratios of the best-fit doublet and singlet models (equivalent to the log likelihood ratio of the 
doublet and singlet models, normalized by the log likelihood ratio between the saturated and null models). 

Classifying low-quality cells and doublets 
To identify low-quality cells and classify doublets, we first remove cells which have a high or 

low proportion of UMIs from mitochondrial genes (> 0.25 or < 0.01), or with reads at fewer than 50 of 
the reference SNP sites. In many experiments we observed groups of cells with distinct gene expression 
profiles, and SNP profiles that did not match to any reference cell line (or pairwise combination of cell 
lines) in particular, but rather resembled more a mixture of SNPs from all the in-pool cell lines, 
suggesting these were empty droplets containing ambient mRNA in the pool18,21. To identify these 
putative empty droplets, we first clustered the single-cell expression profiles using Seurat’s default graph-
based clustering with 10 nearest neighbors and a resolution parameter of 1-4 (depending on the pool size). 
We then identified gene expression clusters which consistently had poor-fitting SNP models (i.e. that did 
not resemble singlets or doublets based on their SNPs). For this, the overall SNP model goodness-of-fit 
for each cell was assessed by the deviance ratio of the doublet model, which was strictly greater than or 
equal to that of the restricted singlet model. The median SNP-model deviance ratio was computed for 
each gene-expression cluster, and clusters with a median deviance ratio of less than 0.3 were considered 
to be low quality, and were removed from the data before further analysis.  

We then separated doublets from singlets using a 2-component Gaussian mixture model (GMM) 
fit with two features: the singlet model deviance ratio, and the doublet model goodness-of-fit (difference 
in deviance ratios relative to the singlet model). GMMs were fit using the R package MClust54, with the 
default conjugate prior on the covariance matrices, and no shrinkage on the component means. Cells with 
a probability > 0.5 of being doublets were then taken to be doublets.  

Finally, to ensure cells labeled singlets were confidently identified, we also required that the 
difference in goodness-of-fit between the best-fitting and second best-fitting reference cell lines was at 
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least 2 z-score. Cells that were excluded based on any of the above criteria (other than doublets) were 
labeled ‘low-quality’ (Supplmenetary Fig. 1).  

Visualizing single-cell expression profiles 
2D representations of single-cell expression profiles (e.g. Fig. 1b) were generated using Seurat 

v355. Single-cell counts data were first normalized and log-transformed using the NormalizeData function, 
with a scale_factor of 105. Data were then normalized across cells using the ScaleData function. The top 
5,000 most variable genes (based on the ‘vst’ selection method) were selected using the 
FindVariableGenes function, and principal components were computed using the RunPCA function, 
retaining the top 2N PCs, where N is the number of cell lines in the pool. t-SNE embeddings were 
computed based on the PCs, using the RunTSNE function with a perplexity parameter of 25. UMAP 
embedings were computed using the RunUMAP Seurat function with 15 nearet neighbors, and a 
‘min.dist’ parameter of 0.6 (default parameters otherwise). 

Gene-expression based cell line classification 
For comparison with SNP-based cell line classification, we also classified single cells based on 

the similarity of their gene expression profiles to bulk RNA-seq measurements from the parental cell lines 
(using the 19Q2 DepMap gene expression data; depmap.org)46. For this analysis we combined the control 
datasets for each cell line pool (untreated or DMSO-treated).  

Rather than comparing each individual cell’s expression profile with the bulk RNA-seq data 
directly, we first derived ‘de-noised’ estimates of the single-cell expression profiles by clustering cells 
and then computing the within-cluster average expression profiles. Specifically, single-cell expression 
profiles were normalized and scaled, followed by principal component analysis, as described above. We 
then applied Seurat’s default graph-based clustering with 10 nearest neighbors and a resolution parameter 
of 1 (24 cell line pool) or 20 (99 cell line pool). After identifying clusters, we sum-collapsed read counts 
across cells within each cluster, and then transformed the data to log counts-per-million (with a pseudo 
count parameter of 1). These cluster-averages were taken as estimates of each single cell’s expression 
profile.  

To compare these single-cell profiles with bulk RNA-seq profiles we first mean-centered each 
dataset across samples per gene. We then identified the 5000 genes (present in bulk and single-cell 
datasets) with highest variance across bulk RNA-seq samples. Each cell was then classified according to 
the cell line whose bulk RNA-seq profile was most correlated (Pearson correlation) across these 5,000 
genes.  

Differential expression analysis 
To estimate the average transcriptional response of each cell line to a perturbation, we first sum-

collapsed the data -- summing read counts across cells for each cell line and treatment condition -- to 
produce a bulk RNA-seq style read counts profile for each sample56,57. We then computed normalization 
factors per sample (cell line and condition) using the “TMMwzp” method from the edgeR R package58, 
and transformed the profiles to log counts-per-million (using a ‘pseudo count’ of 1) using the edgeR 
function ‘cpm’ before computing the log-fold-change difference in relative gene abundances between 
treatment and control conditions.  
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Differential expression analyses across cell lines was performed using the “limma-trend” 
pipeline29,30, applied to these sum-collapsed and normalized profiles. For this analysis we included data 
from cells both 6 and 24 hours post-treatment with vehicle control (DMSO) in the control group, as we 
did not observe a consistent time-related effect of DMSO treatment in our data (e.g. Supplementary Fig. 
12). Global differences between the two control conditions were incorporated into the model to help 
mitigate batch effects57.  

To identify the average drug response across cell lines we thus used models of the form: 
, 

where , the logCPM expression level of gene g in cell line j and condition k, is modeled as a sum of 
several terms. The first term captures the average treatment effect, where  is the average LFC of gene g 
in response to treatment and  is an indicator variable representing whether condition k is treatment or 
control. The second term captures differences in average expression across the control conditions, and the 
final term captures the baseline expression of each cell line. 

To estimate the ‘viability-related’ and viability-independent’ response components, we used a 
similar modeling approach, including the measured drug sensitivity of each cell line as a covariate 
interacting with treatment as follows: 

, 
where  is the measured sensitivity of cell line j to the treatment (one minus the area under the dose-
response curve),  is the ‘viability-independent’ response of gene g to treatment, and  is the 
viability-related response of gene g to treatment.  
  Only genes with at least 5 reads detected (summed across cells) in at least 5% of the samples 
were included in analysis. p-values were derived from empirical-Bayes moderated t-statistics, and FDR-
adjusted p-values were obtained using the Benjamini-Hochberg method59.  

When comparing the transcriptional responses of two cell lines to a drug (e.g. Supplementary 
Fig. 14), the above method cannot be applied as there would be a single sample for each condition. 
Hence, we compared the uncollapsed single-cell expression profiles. Specifically, we used the edgeR 
quasi-likelihood approach60, following the pipeline used in61, including cell detection rate (the fraction of 
genes with non-zero reads detected) as a covariate. 

Drug sensitivity data 
Cell line drug sensitivity data were taken from the Sanger GDSC dataset4,7, as well as data 

generated using the PRISM multiplexed drug screening platform16,19. For most compounds we used the 
area under the dose-response curve (AUC) to measure sensitivity. When data were available from both 
PRISM and GDSC datasets for a given drug, we used the average of each cell line’s AUC values, after 
quantile normalization of the AUC measurements from each dataset.  

For nutlin treatment, we combined nutlin-3a data from GDSC with PRISM data for the nutlin-
family compound idasanutlin (RG7388). For the tool compound BRD-3379, we found that the (PRISM) 
data were most reliable for the highest dose, so we used log viability measurements at a single dose of 10 
uM, though results were similar when using the AUC.  
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Gene set enrichment analysis 
For analysis of gene set enrichment of transcriptional response signatures, we used a simple 

approach, measuring the set overlap (Fisher’s-exact test) between each gene set and the 50 top up- and 
down-regulated genes across (based on the estimated log-fold-change). The collection of gene sets used 
was the combination of the ‘Hallmark’, and ‘Canonical’ gene set collections from MSigDB v6.262.  

Estimating relative cell line abundance 
Estimates of the effects of perturbations on relative cell line abundance were obtained by 

counting the number of (QC-passing) single cells from each cell line in each treatment condition, adding a 
‘pseudo-count’ of 1, and normalizing counts across cell lines per condition. These relative abundance 
estimates were averaged across samples for each treatment condition to compute the log2-fold-change 
difference between drug-treated and control relative cell line abundances.  

Cell cycle analysis 
Cell cycle phase classification was performed with the Seurat function CellCycleScoring, using 

the S- and G2M-phase gene lists reported in31. The change in proportion of cells in each phase between 
treatment and control conditions, along with associated confidence intervals, were estimated using the 
prop.test R function for each cell line. For Fig. 3c, we computed aggregate scores representing how each 
compound altered the cell cycle composition by computing weighted averages across cell lines of the 
change in proportion of cells in each phase, where the weights were determined by the cell lines’ 
measured drug sensitivity (1 minus AUC, bounded between 0 and 1). 

Principal component analysis 
For PCA (and other machine learning analyses), we used a slightly different procedure to 

estimate each cell line’s average transcriptional response to drug treatment. Rather than ‘sum-collapsing’ 
the read count data, we ‘mean-collapsed’ the single-cell gene expression profiles by normalizing each 
single-cell profile to counts-per-million, averaging across cells, and then log-transforming the averaged 
profiles (using a larger pseudo count value of 10 to help stabilize log-fold change estimates for lowly 
expressed genes). PCA was then computed on the matrix of cell line log-fold change profiles, mean-
centered per gene, using the 5000 genes with most across-cell-line variance. We only used cell lines 
where there were at least 5 cells in both control and treatment conditions. 

The use of mean-collapsed, rather than sum-collapsed, profiles for machine learning analysis 
helped prevent any bias in the estimated log-fold change responses related to the number of cells 
recovered for each cell line. Both sum-collapsed and mean-collapsed log-fold change estimates produced 
similar results, differing primarily in whether cells with greater sequencing depth are given more weight. 

Comparisons of PC1 loadings with measured drug sensitivity across cell lines (Supplementary 
Fig. 13) were made using Pearson correlations, with p-values estimated using the ‘cor.test’ R function. 
FDR adjusted p-values were estimated using the Benjamini-Hochberg method59. 
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Transcriptional response embedding 
 To compute the embedding of transcriptional response profiles (Fig. 6f), we used the UMAP 
method45, as implemented in the Seurat package. Specifically, we compiled all log-fold change response 
profiles across cell lines and treatment conditions (computed using mean-collapsed profiles). We 
restricted analysis to response profiles supported with at least 10 cells per condition and 40 cells total. We 
then took the 5,000 genes with highest variance across the selected profiles, and computed the top 30 
principal components. UMAP was then run using cosine distance between samples in this principle 
component space, with an ‘n.neighbors’ parameter of 15, and ‘min.dist’ of 0.6.  

Predictive modeling analysis 
To assess how well we could predict a cell line’s drug sensitivity from baseline features, or 

measured transcriptomic responses, we used random forest regression models (implemented in the R 
package ranger63) with default parameters. Prediction accuracy (R2 of model predictions) was evaluated 
using 10-fold cross-validation. To help mitigate overfitting, we also applied a pre-filtering of the features, 
selecting the top 1000 features based on the magnitude of their marginal correlation with the response 
variable (feature selection was performed separately for each cross-validation set, using training data 
only).  
 For the ‘baseline omics’ features, we used baseline logTPM expression levels of each protein 
coding gene, as well as the damaging and hotspot missense mutation status of each gene. These data were 
taken from the DepMap 19Q2 data release, available at depmap.org6,46. 
 We only included cell lines with at least 5 cells per condition (treatment and control) for a given 
drug to ensure the estimated transcriptional response profiles were sufficiently robust. 

Time course analysis 
Classification of single-cell treatment conditions, as well as doublet classification, from the 

hashtag read counts data was performed using DemuxEM64, with default parameters.  
We used the same approach described above to estimate the viability-related and viability-

independent components of the response at each time point post-trametinib treatment. Since we did not 
observe substantial transcriptional changes across time points after DMSO-treatment (Supplementary 
Fig. 10), we pooled together data across DMSO conditions for analysis.  

For figure 5e,f, we plotted the time course of viability-independent and viability-related 
responses for the top 10 down-regulated genes in each component, taking the coefficient with the largest 
magnitude across post-treatment time points for each gene (after filtering for coefficients with FDR < 
0.1). 

Sub-population heterogeneity analysis 
Analysis of cell subpopulations for a given cell line were performed by first restricting analysis to 

cells from the target cell line, then using the scTransform method to normalize the data and identify 
variable genes (we used 5,000 genes)65. We then used Seurat’s default clustering methods to identify sub-
populations of cells (with 10 PCs, 20 nearest neighbors, and a clustering resolution parameter of 0.25). 
When identifying subpopulations across experimental conditions (treatment and control), we first 
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regressed out experimental condition as a covariate (using the ‘vars.to.regress’ input of the SCTransform 
function) before applying the above clustering procedure.    

GPX4 analysis 
Differential expression analysis of GPX4 KO was done by comparing the average effects of the 

two GPX4 targeting guides against the average of the two control guides (one targeting and one non-
targeting), following the same analysis procedure as used for drug treatment data. We identified GPX4 
dependent and non-dependent lines using the estimated probability of GPX4 dependency for each cell line 
from the Achilles 19q2 “gene dependency” file (DepMap, Broad, 2019). Cell lines with GPX4 
dependency probability greater than 0.5 were considered dependent.    

Data and code availability 
 All data reported in this manuscript, including single-cell RNA-sequencing data, drug sensitivity 
measures, and other cell line features used in the analysis, can be accessed at 
https://figshare.com/articles/MIX-seq_data/10298696.    
 Custom code used in the analysis, and for generating all figures, is available at 
https://github.com/broadinstitute/mix_seq_ms. Code used for SNP classification is available at 
https://github.com/acwarren/single_cell_classification.    
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