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Abstract

While aggregation of neuroimaging datasets from multiple sites and scan-
ners can yield increased statistical power, it also presents challenges due to
systematic scanner effects. This unwanted technical variability can introduce
noise and bias into estimation of biological variability of interest. We propose
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a method for harmonizing longitudinal multi-scanner imaging data based on
ComBat, a method originally developed for genomics and later adapted to
cross-sectional neuroimaging data. Using longitudinal cortical thickness mea-
surements from 663 participants in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study, we demonstrate the presence of additive and mul-
tiplicative scanner effects in various brain regions. We compare estimates of
the association between diagnosis and change in cortical thickness over time
using three versions of the ADNI data: unharmonized data, data harmo-
nized using cross-sectional ComBat, and data harmonized using longitudinal
ComBat. In simulation studies, we show that longitudinal ComBat is more
powerful for detecting longitudinal change than cross-sectional ComBat and
controls the type I error rate better than unharmonized data with scanner
included as a covariate. The proposed method would be useful for other
types of longitudinal data requiring harmonization, such as genomic data,
or neuroimaging studies of neurodevelopment, psychiatric disorders, or other
neurological diseases.

Keywords: ADNI, Alzheimer’s, ComBat, cortical thickness,
harmonization, MRI

1. Introduction

Aggregation of neuroimaging data across sites and scanners can poten-
tially increase statistical power to detect biological variability of interest.
However, the use of different scanner hardware, software, and acquisition
protocols can introduce unwanted technical variability (Han et al., 2006;
Jovicich et al., 2006; Takao et al., 2011). Harmonization methods seek to
remove unwanted technical variability while preserving biological variability.

ComBat (named for “combining batches”) is an empirical Bayesian method
for data harmonization that was originally designed for genomics (Johnson
et al., 2007). It has recently been adapted to neuroimaging studies and ap-
plied to diverse data types including diffusion tensor imaging (DTI) (Fortin
et al., 2017), cortical thicknesses (Fortin et al., 2018), functional connectivity
measurements (Yu et al., 2018), and radiomic features derived from positron
emission tomography (PET) imaging (Orlhac et al., 2018). ComBat has also
recently been extended to cross-sectional studies of structural brain changes
across the lifespan using a generalized additive model framework (Pomponio
et al., 2020).
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In general, ComBat is applicable to situations where multiple features of
the same type are measured for each participant, where features might be
expression levels for different genes, or imaging-derived metrics from different
voxels or anatomic regions. In this paper, we extend the ComBat method-
ology from a cross-sectional to a longitudinal setting, where participants are
imaged repeatedly over the course of the study.

In contrast to a general linear model approach that includes site or scan-
ner as a fixed effect covariate, there are several benefits to the empirical
Bayes estimation method used in ComBat. Notably, ComBat is more robust
to outliers in the case of small within-scanner sample sizes (Johnson et al.,
2007). ComBat assumes that for a given scanner, the scanner effects across
features derive from a common distribution, and thus borrows information
across features to shrink estimates towards a common mean. Furthermore,
in addition to removing additive scanner effects, ComBat also corrects multi-
plicative scanner effects by removing heteroscedasticity of model errors across
scanners. Prior studies have shown that the location (mean) and scale (vari-
ance) adjustment implemented in ComBat outperforms methods that merely
include scanner as a covariate (Fortin et al., 2018).

While longitudinal studies are important for measuring within-subject
change, there has been little work on longitudinal data harmonization. Müller
et al. (2016) examined a variety of batch correction methods in longitudinal
gene expression data and found that a combination of quantile normaliza-
tion and ComBat performed best. However, their batch effect estimation
method relied on biological replicates collected at baseline, and processed
at both baseline and follow-up. This does not translate well to longitudinal
neuroimaging study designs, as there is no way to obtain analogous biolog-
ical replicates. Venkatraman et al. (2015) estimated scanner fixed effects in
cross-sectional and longitudinal DTI data using linear mixed effects models.
They then used these estimates to apply a linear correction to new data.
The authors found that accounting for within-subject variability led to bet-
ter scanner effect estimates in longitudinal as compared with cross-sectional
data. However, their method does not enjoy the benefits of empirical Bayes
discussed above, nor does it adjust for multiplicative scanner effects.

Rather than explicitly estimating and removing scanner effects, other ap-
proaches have sought to address scanner effects at a more global level or fur-
ther upstream in the processing pipeline. Erus et al. (2018) used a multi-atlas
segmentation approach to harmonize structural MRI neuroimaging data, cre-
ating mutually consistent inter-scanner atlases derived from scans of the
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same participant on different scanners. Authors reported more similar cross-
sectional age trends across scanners, and increased within-subject consistency
(i.e., intra-class correlation) after harmonization. However the method did
not completely remove scanner effects, so scanner still needed to be included
as a covariate. Dewey et al. (2019) applied a contrast harmonization ap-
proach, using a fully convolutional neural network to harmonize structural
MRI brain images between two protocols. They showed that protocol change
had substantially less effect on atrophy estimation after harmonization. Both
of these methods require an overlap cohort, i.e., that each pair of scanners
or protocols have some shared participants, and so would not be applicable
to existing datasets without this design.

In this work, we aim to estimate and correct for additive and multiplica-
tive scanner effects while explicitly accounting for the within-subject corre-
lation inherent to longitudinal studies, such that the harmonization method
may be flexibly applied to existing and future longitudinal multi-scanner neu-
roimaging datasets. We illustrate the longitudinal ComBat method using
cortical thickness data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study (Weiner et al., 2015). Alzheimer’s disease (AD) is a neurode-
generative disease characterized by aggregation of amyloid β plaques and
accumulation of neurofibrillary tangles. Brain atrophy is one of the earliest
biomarkers of AD that is visible on structural magnetic resonance imaging
(MRI), particularly in certain regions such as the hippocampus and entorhi-
nal cortex (Dickerson et al., 2008; Bakkour et al., 2009). ADNI is a multi-site
longitudinal study including cognitively normal, mild cognitive impairment
(MCI), which is a prodromal stage of AD, and AD participants.

In Section 2 we describe the ADNI data and assess the presence of scan-
ner effects; in Section 3 we outline the proposed longitudinal ComBat har-
monization method; in Section 4 we use the ADNI dataset to compare model
estimates and inference for longitudinal ComBat, cross-sectional ComBat,
and unharmonized data; and in Section 5 we present a simulation study. We
provide discussion and conclusions in Section 6. Code for implementing longi-
tudinal ComBat is available at https://github.com/jcbeer/longCombat.

2. Quantifying site and scanner effects in ADNI data

2.1. Methods

We examined longitudinal cortical thickness data from participants en-
rolled in the first phase of the ADNI study. Data were obtained from the
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ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early AD. For up-to-date
information, see www.adni-info.org. All ADNI participants gave written
informed consent at enrollment for data collection, storage, and use for re-
search. Institutional Review Boards approved the study at each respective
participating ADNI site. ADNI data was used in compliance with the ADNI
Data Use Agreement and Data Sharing and Publication Policy.

We included 663 ADNI-1 participants from 58 study sites. (See Figure
1A for distributions of participant age, sex, and diagnoses.) Structural MRI
brain scans were done at 6 or 12 month intervals for up to 3 years from base-
line. Many sites used multiple MRI scanners over the course of the study,
and a given participant may have been scanned on different scanners across
visits. The data was acquired on 142 total scanners, where scanners were
identified as unique combinations of site, scanner vendor, model, head coil,
and field strength variables. Since our proposed method required there be
at least 2 scans per scanner in order to estimate scanner effects, we had to
omit 16 scanners with only one scan. Thus, 126 scanners were included in
our analyses, of which 35 were 3.0 T and the remainder were 1.5 T. Supple-
mentary Figure S1 shows scans and scanner changes over time in the ADNI
dataset. Participants were diagnosed at baseline as cognitively normal (CN,
n = 197), late mild cognitive impairment (LMCI, n = 324), or Alzheimer’s
disease (AD, n = 142). They were reassessed at each study visit, but no
participants changed diagnostic category during the study.

Cortical thicknesses for 62 brain regions defined using the Desikan-Killiany-
Tourville atlas (Klein and Tourville, 2012) were obtained using the Ad-
vanced Normalization Tools (ANTs) longitudinal cortical thickness pipeline
(Tustison et al., 2019). Specifically, we used data processed with the ANTs
Longitudinal-SST pipeline, which involves first rigidly transforming each sub-
ject to a single subject template (SST) and then estimating cortical thickness
in the SST space. In comparison to the well-known FreeSurfer longitudinal
processing pipeline, ANTs Longitudinal-SST results in superior statistical
power for differentiation of diagnostic groups in this dataset, with greater
between-subject to residual variance ratios and tighter confidence and pre-
diction intervals (Tustison et al., 2019). For further details on this dataset,
please refer to Tustison et al. (2019) and references therein. Sample tra-
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Figure 1: (A) Characteristics of n = 663 ADNI-1 participants. (B) Example trajectories
for left superior frontal cortical thickness at 3 ADNI sites. Each line represents the tra-
jectory for one participant at the given site, and each data point represents the cortical
thickness in mm derived from the given scan using the ANTs Longitudinal-SST pipeline.

jectories of the unharmonized cortical thickness data are depicted in Figure
1B.

We first assessed via statistical testing whether site or scanner additive
(i.e., shift in mean) and multiplicative effects (i.e., heteroscedasticity) were
present in the data, while also controlling for known differences in biological
variability (i.e., age, sex, diagnosis) across site or scanner. We considered two
sources of potential technical variability (encoded as the ‘scanner’ variable
in the model below): (1) site effect only (m = 58), and (2) scanner effect
(m = 126). For both of these scenarios and for each of the V = 62 cortical
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regions, we fit the linear mixed effects model

yijν(tk) = αν + βν1(baseline age) + βν2I(sex = male) (1)

+ βν3I(diagnosis = LMCI) + βν4I(diagnosis = AD)

+ βν5 · tk + βν6I(diagnosis = LMCI) · tk + βν7I(diagnosis = AD) · tk
+ βν8I(scannerk = 2) + · · ·+ βν(m+7)I(scannerk = m)

+ ηjν + εijν(tk),

where i ∈ {1, . . . ,m} is the site or scanner index, j ∈ {1, . . . , N} is the
participant index, ν ∈ {1, . . . V } is the feature index (corresponding to the
62 regional cortical thickness measurements, in this case), k ∈ {0, . . . , Kj} is
the visit index and Kj is total number of visits for participant j, tk ∈ R≥0

is years from baseline visit for visit k, αν is an intercept term, I(·) is an
indicator function equal to one if the argument condition is true and zero
otherwise. Reference levels for factor variables are female sex, cognitively
normal diagnosis, and scannerk = 1. All parameters represent fixed effects
except for the subject-specific random intercept, ηjν , for which we assume
the distribution N(0, ρ2

ν), and the error term, εijν(tk), for which we assume
the distribution N(0, σ2

ν). Furthermore, we assume the ηjν ’s and εijν(tk)’s
are mutually independent.

Models were fit using the R package lme4 (Bates et al., 2015) and R
version 3.5.3 (R Core Team, 2019). To test for additive site or scanner
effects, we also fit models omitting the site or scanner fixed effects and used
the package pbkrtest (Halekoh and Højsgaard, 2014) to carry out tests of
their joint significance using the Kenward-Roger (KR) approach (Kenward
and Roger, 1997). We also tested for a differential scaling effect by site
or scanner. We fit the model represented in Equation (1) above, including
the site or scanner fixed effects. Due to small within-site or within-scanner
sample sizes in some cases, we used the non-parametric Fligner-Killeen (FK)
test (Conover et al., 1981) to assess heteroscedasticity of the residuals (ε̂ijν(t))
across site or scanner. Additionally, we tested whether incorporating specific
scanner information rather than site alone significantly improved the model.
Since the two scenarios correspond to nested models, we used the KR test.
Finally, we did exploratory visualizations to assess whether additive and
multiplicative scanner effects were associated with scanner field strength,
vendor, number of subjects scanned, total number of scans, percentage of
scans with AD diagnosis, or percentage of scans with CN diagnosis.
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All brain figures in this manuscript were made using freesurfer statsurf display

(Murdoch Childrens Research Institute Developmental Imaging Group, 2017)
and MATLAB R2018a (MATLAB, 2018).

2.2. Results

The KR test for additive site effects was significant (p < 0.05) for all
but 8 of the 62 regional cortical thickness measurements (i.e., “features”).
Nonsignificant site effects occurred in medial and lateral occipital, inferior
parietal, middle temporal, and paracentral regions (Supplementary Figure
S2 and Table S1). The KR test for additive scanner effects was significant
for all features (Supplementary Figure S3 and Table S2). Figure 2A illus-
trates the additive scanner effects for the feature with the largest KR test
F -statistic and shows − log10 p-values across brain regions. Additive scan-
ner effects were particularly large in medial occipital and medial temporal
regions. Visualizations showed that 3.0 T scanners tended to result in larger
cortical thickness measurements (Supplementary Figures S6-S11).

Across both site and scanner, all features had significantly different resid-
ual variances (Supplementary Figures S4-S5, Supplementary Tables S3-S4).
Figure 2B illustrates the multiplicative scanner effects for the feature with the
largest FK test χ2-statistic and shows − log10 p-values across brain regions.
Multiplicative scanner effects were particularly prominent in superior frontal
and superior parietal regions. Visualizations indicated that vendor 1 scanners
generally tended to have larger, while vendor 3 scanners had smaller, residual
variability, with vendor 2 scanners falling in between (Supplementary Figures
S12-S17).

Scanner significantly improved the model for all 62 features (Supplemen-
tary Table S5). Hence, we use scanner instead of site in all subsequent
analyses.

3. Longitudinal ComBat

3.1. Longitudinal ComBat model

For a longitudinal version of the ComBat harmonization method, we pro-
pose the model

yijν(t) = αν + γiν + XT
j (t)βν + ηjν + δiνεijν(t),

where i ∈ {1, . . . ,m} is the scanner index, j ∈ {1, . . . , N} is the participant
index, ν ∈ {1, . . . V } is the feature index, t is time (continuous or categorical),
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A  Additive scanner effects

B  Multiplicative scanner effects
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Figure 2: (A) Additive scanner effects. Boxplots show distributions of residuals across
scanners after fitting a model with baseline age, sex, diagnosis, time, and diagnosis × time
fixed effects and a subject-specific random intercept. Right lingual cortex was the region
with the largest additive scanner effects according to the Kenward-Roger F -test; parahip-
pocampal and entorhinal cortical regions also showed large effects. 3.0 T scanners tended
to produce larger estimates of cortical thickness than 1.5 T scanners. (B) Multiplicative
scanner effects. Boxplots show distributions of residuals across scanners after fitting a
model with baseline age, sex, diagnosis, time, scanner, and diagnosis × time fixed effects
and a subject-specific random intercept. Left superior frontal cortex was the region with
the largest multiplicative scanner effects according to the Fligner-Killeen χ2-test. Vendor
1 scanners tended to have larger, while vendor 3 scanners had smaller, residual variability.
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yijν(t) is the observed data for feature ν, participant j, scanner i, and time
t, αν is overall mean for feature ν at baseline, γiν is the additive scanner i
parameter for feature ν, Xj(t) is a p × 1 vector of potentially time-varying
covariates for participant j at time t (e.g., age, sex, the outcome that we
ultimately intend to assess in association with the harmonized data such as
diagnosis or cognitive test score, and time), βν is a p×1 vector of coefficients
for feature ν, ηjν is a subject-specific random intercept for participant j and
feature ν, δiν is the scanner i scaling factor for feature ν, and εijν(t) is the
error term. We assume ηjν ∼ N(0, ρ2

ν) and εijν(t) ∼ N(0, σ2
ν), and ηjν ’s and

εijν(t)’s are mutually independent.
The ComBat-harmonized data is

yComBat
ijν (t) =

yijν(t)− α̂ν − γ̂iν −XT
j (t)β̂ν − η̂jν

δ̂iν
+ α̂ν + XT

j (t)β̂ν + η̂jν ,

where α̂ν , γ̂iν , β̂ν , η̂jν , and δ̂iν are parameter estimates.

3.2. Parameter estimation

3.2.1. Standardization step

The empirical Bayes estimation for ComBat parameters assumes that for
a given scanner, the additive scanner parameters across features ν all derive
from a common distribution, γiν ∼ N(γi, τ

2
i ), and similarly for scanner scaling

factors, δ2
iν ∼ Inverse Gamma(λi, θi). To obtain unbiased empirical Bayes

prior distribution estimates of scanner effects, we first standardize features
so they have similar overall mean and variance. For this step, Johnson et al.
(2007) used a feature-wise ordinary least squares approach to obtain the

estimates α̂ν , β̂ν , γ̂iν . To properly account for the dependence of repeated
within-subject observations, we propose using a feature-wise linear mixed
effects model with a random subject-specific intercept, ηjν ∼ N(0, ρ2

ν). We
estimate the fixed effect parameters αν ,βν , γiν using the best linear unbiased
estimator (BLUE), the subject random effect variance ρ2

ν and error variance
σ2
ν with the restricted maximum likelihood (REML) estimator, and subject-

specific intercepts ηjν using the best linear unbiased predictor (BLUP). For
parameter identifiability, we constrain

∑
i niγ̂

BLUE
iν = 0, where ni the is total

number of images from scanner i.
Standardized data are calculated as

zijν(t) =
yijν(t)− α̂BLUEν −XT

j (t)β̂BLUEν − η̂BLUPjν

σ̂REML
ν

.
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Note that we do not subtract off the scanner additive effect γ̂BLUEiν . We as-
sume that the standardized data zijν(t) are from the distribution N(γiν , δ

2
iν).

Prior distributions on the scanner effect parameters are assumed to be γiν ∼
N(γi, τ

2
i ), and δ2

iν ∼ Inverse Gamma(λi, θi).
We also note that the REML estimator for σ2

ν is usually preferred for
mixed models due to its unbiasedness, as it accounts for error associated with
estimation of the fixed effects (Patterson and Thompson, 1971). However, for
the sake of harmonization, we may not care about unbiased estimation of er-
ror variance, as it can be accounted for in the final modeling stage (excepting
error associated with estimation of scanner effects). Thus, we also consider

the estimator σ̃2
ν =

∑
ij(yijν(t) − α̂BLUEν − XT

j (t)β̂BLUEν − η̂BLUPjν )2/
∑

i ni.
We refer to this as the mean squared residual (MSR) method. This is similar
to the estimator used in Johnson et al. (2007).

3.2.2. Empirical Bayes estimation of scanner effects

After standardization, parameter estimation for longitudinal ComBat is
similar to that for standard ComBat. Hyperparameters γi, τ

2
i , λi, θi are esti-

mated from standardized data using the method of moments, and empirical
Bayes estimates for scanner effect parameters γiν and δ2

iν are given by condi-
tional posterior means. Please refer to Appendix A for derivations of these
estimators.

3.3. Longitudinal ComBat-harmonized data

Finally, we use the empirical Bayes estimates γ̂∗iν and δ̂2∗
iν and the linear

mixed effects model estimates to adjust the data:

yComBat
ijν (t) =

σ̂REML
ν

δ̂∗iν
(zijν(t)− γ̂∗iν) + α̂BLUEν + XT

j (t)β̂BLUEν + η̂BLUPjν .

The first term performs the location and scale adjustment, thereby remov-
ing additive and multiplicative scanner effects, and remultiplies by the error
variance estimate to put features back on their original scale; the remaining
terms add back estimates of biological effects of interest.

4. Comparison of data harmonization approaches in ADNI data

4.1. Methods

We used the ADNI cortical thickness data to compare three data harmo-
nization approaches: (1) data harmonized across scanners using longitudinal
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ComBat (REML and MSR methods), (2) data harmonized across scanners
using a cross-sectional version of ComBat, which does not account for the
within-subject repeated measures (i.e., we omit the subject-specific random
intercept from the ComBat steps, but include it in the final model), and (3)
unharmonized cortical thickness data. Since our method is specifically de-
signed for longitudinal data, we focused on the diagnosis by time interaction
coefficients. Parameters of interest are βν6 and βν7 in Equation (1); these
quantify differential rates of cortical thickness loss over time for LMCI and
AD groups, respectively, relative to CN. For each of the three harmonization
approaches, we fit the model given in Equation (1) for each feature, using the
corresponding harmonized or unharmonized outcomes, and either included
or omitted the scanner fixed effects.

We evaluated the results using the following criteria. First, we visually
examined standardized data distributions across features for both longitudi-
nal and cross-sectional ComBat, to assess whether they were approximately
normal. We also visualized additive and multiplicative scanner effect prior
distributions for longitudinal ComBat, to assess whether they were approx-
imately normal and inverse gamma-distributed across features, respectively.
Then, as in Section 2 for the unharmonized data, we tested whether any resid-
ual additive or multiplicative scanner effects remained after applying longitu-
dinal and cross-sectional versions of ComBat. (We did the above assessments
for the REML version of longitudinal ComBat only, but expect similar results
for MSR as the data only differ slightly in scale.) Cross-sectional ComBat
and unharmonized data both showed residual scanner effects while longitu-
dinal ComBat harmonized data did not. Thus, for cross-sectional ComBat
and unharmonized data, we only considered results for models with scanner
fixed effects included.

For each coefficient of interest, we compared the numbers of significant
features, i.e., features with p < 0.05/62 (Bonferroni-corrected across fea-
tures), across methods. Then, to avoid biasing our analyses to favor any
particular method, we considered only features which were significant for all
cases. A good data harmonization method will ideally preserve the biological
signal of interest while removing unwanted technical variability. Therefore,
we might expect to see greater biological signal for the proposed method,
in the form of greater magnitudes or smaller p-values for the longitudinal
diagnosis-specific effects. Thus, for the statistically significant feature sub-
sets, we compared coefficient magnitudes and p-values across the three meth-
ods.
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We also created exploratory visualizations to assess relationships between
the magnitudes of additive and multiplicative scanner effects in unharmo-
nized data, and magnitudes of changes in coefficient and p-values between
models fit on longitudinal ComBat (REML method) harmonized data with
no scanner covariate and unharmonized data with a scanner covariate. We
expected that brain regions with larger scanner effects would show greater
differences in coefficients and p-values after harmonization.

4.2. Results

Standardized data distributions were largely symmetric and approximately
normal, particularly for longitudinal ComBat. Example distributions for the
scanner with the most scans (ni = 74) are shown in Supplementary Figures
S18-S21. For longitudinal ComBat, additive and multiplicative scanner ef-
fect prior distributions were approximately normal and inverse gamma across
features, respectively (Supplementary Figures S22-25).

We found no significant additive or multiplicative scanner effects after
applying longitudinal ComBat (Supplementary Tables S6-S7). However, af-
ter cross-sectional ComBat, additive and multiplicative scanner effects were
still significant for all features (Supplementary Tables S8-S9). Figure 3 shows
residual boxplots by scanner before and after harmonization for left superior
frontal cortical thickness data. Figure 4 shows left fusiform cortical thick-
ness trajectories before and after applying longitudinal ComBat. Examples
of unharmonized and harmonized trajectories are shown in Supplementary
Figure S26.

Coefficient estimates and corresponding KR p-values for the AD × time
interaction for different methods are shown in Figure 5. Table 1 summarizes
the number of significant features for each method, and compares coefficient
magnitudes and p-values for longitudinal ComBat versus other methods for
the shared significant features only. Coefficient estimates were nearly iden-
titcal between REML and MSR longitudinal ComBat methods, but p-values
tended to be smaller for the MSR method.

Estimated coefficients and p-values for different methods for the AD ×
time interaction are tabulated in Supplementary Tables S10-S11, and for the
LMCI × time interaction these are shown in Supplementary Figure S27 and
Supplementary Tables S12-S13. We present results summarized into larger
brain regions in Supplementary Figure S28.

We expected that larger scanner effects would relate to larger changes
in diagnosis-related atrophy rate estimates (i.e., β̂ν6 and β̂ν7) after harmo-
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nization. Contrary to our expectation, there were no apparent associations
between the magnitudes of scanner effects and changes in coefficient and
p-values (Supplementary Figures S29-S30).

Table 1: Comparison of harmonization methods in ADNI data
AD×time AD×time AD×time LMCI×time LMCI×time LMCI×time

# significant # coef / p # coef / p # significant # coef / p # coef / p
Method features < Cross < Unharm features < Cross < Unharm
LongComBatREML, no scanner 30 17 / 16 13 / 2 10 2 / 3 3 / 1
LongComBatREML, with scanner 29 16 / 13 12 / 0 10 2 / 1 3 / 0
LongComBatMSR, no scanner 33 15 / 25 13 / 21 15 2 / 8 3 / 8
LongComBatMSR, with scanner 31 14 / 24 12 / 16 14 2 / 7 3 / 4
CrossComBat, with scanner 27 11
Unharmonized, with scanner 31 11
Shared significant features 25 9

Notes: Table shows number of Bonferroni-corrected significant features for each method. Coefficient estimate and p-value
comparisons between methods only include shared significant features. LongComBatREML: longitudinal ComBat, restricted
maximum likelihood method; LongComBatMSR: longitudinal ComBat, mean squared residual method; CrossComBat, Cross:
cross-sectional ComBat; Unharm: unharmonized; coef: estimated coefficient; AD: Alzheimer’s disease; LMCI: late mild
cognitive impairment

4.3. Comparison of longitudinal ComBat in one versus multiple scanners per
participant cases

Distinguishing scanner effects from between-person effects might espe-
cially be a problem when a given scanner is only used for a single participant,
and that participant is only scanned on that scanner. To better understand
the performance of longitudinal ComBat under conditions where scanner and
subject-level effects might be difficult to distinguish, we applied longitudi-
nal ComBat (REML method) to a subset of the data, restricting to the case
where each participant is scanned only on one scanner at multiple time points
(“restricted case”). We compared to another subset with the same partici-
pants, but using all the time points for each participant, allowing multiple
scanners per participant (“general case”). We then compared the estimates
of the subject-level random effects obtained in the initial standardization step
of longitudinal ComBat (η̂BLUPjν ), and the empirical Bayes estimates of addi-

tive and multiplicative scanner effects (γ̂∗iν and δ̂2∗
iν ) for the scanners common

to each case.
Detailed methods and results are given in Supplementary Section 5. While

we found some significant differences for the various estimated effects between
cases, longitudinal ComBat harmonized data distributions differed signifi-
cantly for only 4 of 92 scanners, and there were no significant differences
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Figure 3: Distributions of left superior frontal cortical thickness residuals across scanners
before harmonization (A), after cross-sectional ComBat (B), and after longitudinal Com-
Bat (REML method) (C). Residuals are derived from linear mixed effects models including
explanatory variables baseline age, sex, diagnosis, time, diagnosis × time interaction, and
a subject-level random intercept. Scanners are ordered left to right by increasing residual
means (red dots). Kenward-Roger (KR) test for additive scanner effects and Fligner-
Killeen (FK) test for multiplicative scanner effects were significant for unharmonized and
cross-sectional ComBat-harmonized data, but not for longitudinal ComBat harmonized
data, confirming that longitudinal ComBat successfully removed scanner effects.
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Figure 4: Left fusiform cortical thickness trajectories before harmonization (left), after
longitudinal ComBat REML (center), and after longitudinal ComBat MSR (right). In-
dividual subject trajectories and linear mixed effects model fit for the fixed effects are
shown for the different diagnostic groups. Scanner was included as a fixed effect covari-
ate for unharmonized data. Fitted lines are for females at the mean baseline age of 75.3
years. Estimated coefficients (coef) for late mild cognitive impairment (LMCI) by time
interaction and Alzheimer’s disease (AD) by time interaction, and Kenward-Roger (KR)
test p-values, are displayed in lower right corners.

in the distributions of residuals after final models were fit. Nonetheless, we
recommend researchers pay close attention to distributions of participants
and their associated covariate values across scanners and strive to achieve
balance for these in a multi-scanner study design whenever possible.

5. Simulation Study

5.1. Methods

We performed a simulation study comparing the same approaches used
above, longitudinal ComBat (REML and MSR methods), cross-sectional
ComBat, and unharmonized data, each with and without including scan-
ner fixed effects in the model. For each iteration of the simulation, we began
with the cognitively normal (CN) subset (n = 197) of the ADNI cortical
thickness dataset. We randomly assigned each participant to either a CN
control group or an AD group. In the AD group, for 6 of the 62 features, we
added both an intercept and a slope effect to their cortical thickness trajec-
tories. The magnitudes of these effects were estimated from the full ADNI
dataset. We chose 2 strong, 2 moderate, and 2 weak effects (see Supplemen-
tary Table S15 for exact magnitudes of these effects). We then performed
longitudinal ComBat and cross-sectional ComBat and fit the linear mixed ef-
fects model in Equation (1) (omitting the LMCI terms) to both harmonized
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Figure 5: Comparison of data harmonization methods for the ADNI cortical thickness
dataset. (A) Estimated coefficients and − log10 p-values for the AD × time coefficients.
Plots show results for each harmonization method, with and without scanner included as
a fixed effect covariate in the final models. Features are sorted by coefficient magnitude for
longitudinal ComBat (REML method) with no scanner covariate in the final model. (B)
Estimates obtained from data harmonized using longitudinal ComBat (REML method,
no scanner in final model) are displayed on the inflated cortical surface. AD: Alzheimer’s
disease
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and unharmonized datasets, with and without the scanner fixed effects in
the model. The simulation was repeated for 1000 iterations.

We focused our primary analyses on estimation and inference for the AD
× time coefficient. For the 56 null features, we compared across methods the
distributions of the coefficient estimate means and standard errors over the
1000 simulations. We also assessed distributions of type I error by calculating
the percent of p < 0.05 from the KR test for each null feature. For the 6
features with nonzero effects, we compared distributions of the coefficient
estimates and their standard errors, and calculated mean squared error and
bias. We assessed statistical power by calculating the proportion of p <
0.05 from the KR test. Finally, we looked at the distributions of intra-class
correlation coefficients (ICC; ρ̂2/(ρ̂2 + σ̂2)) for the nonzero features across
each of the 8 methods. The ICC is a ratio of between-subject variation to
total variation. Larger ICC is desirable because it allows for more clearly
discernible between-subject differences.

5.2. Results

For the 56 null features, Figure 6A shows that the distribution of the
means of these coefficient estimates tend to be clustered more closely around
zero for longitudinal ComBat as compared with the other methods, regardless
of whether scanner was included as a covariate. Additionally, standard errors
tended to be lower for longitudinal ComBat and unharmonized data meth-
ods than for cross-sectional ComBat. Longitudinal ComBat REML method
resulted in type I error closer to the nominal rate than the other methods,
ranging from 1.8 to 8.6% (below 5% for 22 features) and 0.6 to 6.5% (be-
low 5% for 49 features) when scanner was omitted or included in the final
model, respectively. In contrast, type I error for unharmonized data was 4.3
to 14.5% (below 5% for 1 feature) and 4.5 to 13.1% (below 5% for 2 features)
when scanner was omitted or included in the final model, respectively. Lon-
gitudinal ComBat MSR did worst at controlling type I error, which ranged
from 6.0 to 15.1% (below 5% for 0 features) and 3.7 to 12.5% (below 5% for
5 features) when scanner was omitted or included in the final model, respec-
tively. Simulation study null results are summarized in Supplementary Table
S16.

Results showed a similar pattern among the six nonzero features. Figure
6B shows results for one of each of the different effect sizes. (Supplemen-
tary Figures S34 and S35 and Supplementary Table S17 show results for all
nonzero features.) Again, the longitudinal ComBat methods resulted in the
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smallest standard errors in most cases, while cross-sectional ComBat tended
to show the largest standard errors. Longitudinal ComBat MSR was the
most powerful for weak effect sizes, correctly rejecting the null (uncorrected
p < 0.05) in more than 80% of cases. Longitudinal ComBat REML method
was more powerful in detecting a weak effect size than cross-sectional Com-
Bat and about as powerful as unharmonized methods, rejecting the null in
80.1 and 75.0% of cases when scanner was omitted or included, respectively,
versus 55.0 and 51.6% for cross-sectional ComBat, and 78.3% and 77.9% for
unharmonized data. For all six features, the ICC tended to be largest for lon-
gitudinal ComBat MSR method, followed by unharmonized data, indicating
more between-subject and less within-subject variability for these methods.
Cross-sectional ComBat had the lowest ICC (Supplementary Figure S36).

6. Discussion

Traveling subject studies have shown that, even with harmonized pro-
tocols across different sites and scanners, there are still wide variations in
features derived from images of the same individual obtained on different
scanners (Shinohara et al., 2017). The most impactful harmonization ap-
proaches will address both protocol and post-data collection analysis. While
the ADNI protocol was harmonized across sites and scanners, we showed
that scanner effects are still present. Few methods have been developed for
post-data collection harmonization of longitudinal data. Thus, in the present
study, we proposed and validated longitudinal ComBat, a novel method for
harmonizing longitudinal data across different scanners. This constitutes a
natural extension of the widely-used ComBat methodology (Johnson et al.,
2007; Fortin et al., 2017, 2018) to a linear mixed effects model context.

We assessed two slightly different versions of longitudinal ComBat —
REML and MSR methods — that differed in statistical properties. Our sim-
ulation study revealed that both longitudinal ComBat methods produced
estimates with smaller standard errors than cross-sectional ComBat and un-
harmonized data methods. The longitudinal ComBat MSR method and un-
harmonized data demonstrated greatest statistical power and had the highest
ICC. However, both methods also showed inflated type I error rate under the
null hypothesis, even when scanner was included as a fixed effect covariate
in the final models. Meanwhile, the longitudinal ComBat REML method
controlled the type I error closer to the nominal rate, and was particularly
conservative when scanner was included in the final models. This illustrates
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A Null Hypothesis (56 features)

B Alternative Hypothesis: Estimated Coefficients (mm/year)

C Alternative Hypothesis: -log10 p-values

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Lo
ng

C
om

Ba
tR

EM
L

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tR
EM

L
sc

an
ne

r
Lo

ng
C

om
Ba

tM
SR

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tM
SR

sc
an

ne
r

C
ro

ss
C

om
Ba

t
no

 s
ca

nn
er

C
ro

ss
C

om
Ba

t
sc

an
ne

r
U

nh
ar

m
on

ize
d

no
 s

ca
nn

er
U

nh
ar

m
on

ize
d

sc
an

ne
r

−1e−03

−5e−04

0e+00

5e−04
Means (mm/year)

Truth

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

Lo
ng

C
om

Ba
tR

EM
L

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tR
EM

L
sc

an
ne

r
Lo

ng
C

om
Ba

tM
SR

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tM
SR

sc
an

ne
r

C
ro

ss
C

om
Ba

t
no

 s
ca

nn
er

C
ro

ss
C

om
Ba

t
sc

an
ne

r
U

nh
ar

m
on

ize
d

no
 s

ca
nn

er
U

nh
ar

m
on

ize
d

sc
an

ne
r

0.000

0.005

0.010

0.015

0.020
SE (mm/year)

●

Lo
ng

C
om

Ba
tR

EM
L

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tR
EM

L
sc

an
ne

r
Lo

ng
C

om
Ba

tM
SR

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tM
SR

sc
an

ne
r

C
ro

ss
C

om
Ba

t
no

 s
ca

nn
er

C
ro

ss
C

om
Ba

t
sc

an
ne

r
U

nh
ar

m
on

ize
d

no
 s

ca
nn

er
U

nh
ar

m
on

ize
d

sc
an

ne
r

0

5

10

15

20
Type I Error (%)

N
om

inal R
ate

●

●

●●
●

●

●

●

●●
●

●

● ●

●

●●●

●

● ●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●
● ●

●

●

●
●●

●

●●

Lo
ng

C
om

Ba
tR

EM
L

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tR
EM

L
sc

an
ne

r
Lo

ng
C

om
Ba

tM
SR

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tM
SR

sc
an

ne
r

C
ro

ss
C

om
Ba

t
no

 s
ca

nn
er

C
ro

ss
C

om
Ba

t
sc

an
ne

r
U

nh
ar

m
on

ize
d

no
 s

ca
nn

er
U

nh
ar

m
on

ize
d

sc
an

ne
r

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Strong

Truth ●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●
●

Lo
ng

C
om

Ba
tR

EM
L

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tR
EM

L
sc

an
ne

r
Lo

ng
C

om
Ba

tM
SR

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tM
SR

sc
an

ne
r

C
ro

ss
C

om
Ba

t
no

 s
ca

nn
er

C
ro

ss
C

om
Ba

t
sc

an
ne

r
U

nh
ar

m
on

ize
d

no
 s

ca
nn

er
U

nh
ar

m
on

ize
d

sc
an

ne
r

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Moderate

Truth

●

●
●●●●

●

●

●

●●

●

●
●●
●●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●
●●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●●

●
●

●

●

●●
●

●

●●●
●●
●
●

●

●

●●

●

●
●
●
●●

●

●●

Lo
ng

C
om

Ba
tR

EM
L

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tR
EM

L
sc

an
ne

r
Lo

ng
C

om
Ba

tM
SR

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tM
SR

sc
an

ne
r

C
ro

ss
C

om
Ba

t
no

 s
ca

nn
er

C
ro

ss
C

om
Ba

t
sc

an
ne

r
U

nh
ar

m
on

ize
d

no
 s

ca
nn

er
U

nh
ar

m
on

ize
d

sc
an

ne
r

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Weak

Truth

●
●●
●
●●

●
●

●
●

●

●●●
●
●
●

●
●

●
●
●

●●●

●●●

●

●

●
●

●

●●●●●

●
●
●

●

●●
●
●

●●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

Lo
ng

C
om

Ba
tR

EM
L

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tR
EM

L
sc

an
ne

r
Lo

ng
C

om
Ba

tM
SR

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tM
SR

sc
an

ne
r

C
ro

ss
C

om
Ba

t
no

 s
ca

nn
er

C
ro

ss
C

om
Ba

t
sc

an
ne

r
U

nh
ar

m
on

ize
d

no
 s

ca
nn

er
U

nh
ar

m
on

ize
d

sc
an

ne
r

0

10

20

30

Strong

Bonferroni
correction

●●
●●

●

●

●
●
●

●

●

●
●

●
●

●

●

●●●

●

●

●●
●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●
●
●
●
●● ●●

●

●
●●

●●

●

●●

●

●

●

●
●

●●●●

●

●

●●●
●●

●●●

●

●

Lo
ng

C
om

Ba
tR

EM
L

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tR
EM

L
sc

an
ne

r
Lo

ng
C

om
Ba

tM
SR

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tM
SR

sc
an

ne
r

C
ro

ss
C

om
Ba

t
no

 s
ca

nn
er

C
ro

ss
C

om
Ba

t
sc

an
ne

r
U

nh
ar

m
on

ize
d

no
 s

ca
nn

er
U

nh
ar

m
on

ize
d

sc
an

ne
r

0

10

20

30

Moderate

Bonferroni
correction

●

●
●
●
●
●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●
●
●
●

●

●

●
●●
●
●
●●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●
●●
●

●

●

●
●
●
●
●

●●
●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

Lo
ng

C
om

Ba
tR

EM
L

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tR
EM

L
sc

an
ne

r
Lo

ng
C

om
Ba

tM
SR

no
 s

ca
nn

er
Lo

ng
C

om
Ba

tM
SR

sc
an

ne
r

C
ro

ss
C

om
Ba

t
no

 s
ca

nn
er

C
ro

ss
C

om
Ba

t
sc

an
ne

r
U

nh
ar

m
on

ize
d

no
 s

ca
nn

er
U

nh
ar

m
on

ize
d

sc
an

ne
r

0

5

10

15
Weak

Bonferroni
correction

Figure 6: Simulation study results for 8 harmonization methods, each without or with
scanner fixed effect covariates in the model. (A) Boxplots show distributions of the mean
AD × time coefficient estimates over 1000 simulations for the 56 null features (left), the
standard errors of the estimates (center), and the percentage of p-values < 0.05 from
the Kenward-Roger test (right). (B) Distributions of the AD × time coefficient esti-
mates over 1000 simulations for one strong, one moderate, and one weak effect size. (C)
Distributions of the corresponding − log10 Kenward-Roger p-values. AD: Alzheimer’s dis-
ease; LongComBatREML: longitudinal ComBat, restricted maximum likelihood method;
LongComBatMSR: longitudinal ComBat, mean squared residuals method; CrossComBat:
Cross-sectional ComBat
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the trade-off that occurs between type I and type II error. The right balance
to strike may depend on the context of particular research questions.

In the real ADNI data, longitudinal ComBat REML and MSR methods
produced similar estimated coefficient magnitudes. But, consistent with the
simulation study result, the longitudinal ComBat MSR method and unhar-
monized data tended to yield smaller p-values for brain regions with AD-
related cortical atrophy. We note that statistical power should be consid-
ered within the context of proper type I error control, and the simulation
study showed inflated type I error for longitudinal ComBat MSR method
and unharmonized data. Further research may explore optimal methods for
estimating the residual variance in the standardization step so as to achieve
the desired type I and type II error control. Also, we note that we did not
adjust for apolipoprotein E (APOE) genotype in our models. While we do
not expect it would be likely to change the main conclusions of this study,
the APOE-4 allele has been associated with cortical thinning in cognitively
normal participants (e.g., Donix et al. 2010), and including APOE genotype
as a covariate could potentially explain more variability in the data.

The cross-sectional version of ComBat we implemented, which does not
account for within-subject repeated measures, did not completely remove
additive and multiplicative scanner effects, and in fact tended to exacerbate
multiplicative scanner effects. Longitudinal ComBat, however, successfully
removed both types of scanner effects. As found by Venkatraman et al.
(2015), when dependence is properly accounted for, there are advantages
to using the entire longitudinal data to estimate scanner effects, as this al-
lows one to decompose the within- and between-subject variability, and thus
estimate scanner effects with greater precision. This may be particularly
important when estimating and correcting for scanner-related heteroscedas-
ticity.

Our finding that incorporating scanner information accounted for signif-
icantly more variability in the data than site alone is consistent with prior
studies. Forty-four of the 58 sites included in our dataset used more than
one scanner, or upgraded scanners over the course of the study. Some sites
used both 1.5 and 3.0 T scanners. Han et al. (2006) previously reported that
higher field strengths tend to generate larger cortical thickness estimates,
which aligns with our results. Prior research also indicates that scanner ef-
fects have other sources beyond field strength (Han et al., 2006; Gunter et al.,
2009; Lee et al., 2019). For example, Lee et al. (2019) found that inter-vendor
and pulse sequence changes had the largest effects, as did, to a lesser extent,
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intra-vendor scanner upgrades, on percent brain volume change measured in
a sample of ADNI participants scanned at 1.5 T. Thus, when seeking to min-
imize effects of scanner-induced variability in multi-scanner analyses, specific
information about scanner hardware, acquisition parameters, and protocols
should be taken into account whenever possible.

Moreover, in this dataset, multiplicative scanner effects showed a rela-
tionship with scanner vendor. While much work went into standardizing
protocols across sites and platforms in ADNI-1 (Jack Jr et al., 2008), tech-
nical variability was not completely eliminated. For example, Gunter et al.
(2009) report that longitudinal analyses of the ADNI phantom revealed that,
prior to mid-2007, autoshim was incorrectly disabled for one vendor proto-
col. This was later corrected. It is not immediately clear how this and other
inter-vendor differences might have impacted the current dataset. In any
case, the proposed harmonization method may be applied without explicit
knowledge of the mechanisms underlying the mean shift or heteroscedasticity
across scanners. However, a limitation of our methods is that our definition
of scanner, as a unique combination of study site, scanner vendor, head coil,
and field strength, may have missed hardware changes of the same model.
Additionally, we were unable to account for changes in acquisition protocol
such as the autoshim status, as Gunter et al. (2009) report that this was
not recorded in DICOM headers. This highlights the importance of carefully
tracking any hardware, software, or protocol changes in longitudinal imaging
studies.

The longitudinal ComBat harmonization method presents advantages and
disadvantages with respect to existing methods discussed in the Introduc-
tion. We showed that longitudinal ComBat removes additive and multiplica-
tive scanner effects to a sufficient extent such that no scanner covariates are
needed in final models, in contrast to the approaches in Erus et al. (2018)
and Dewey et al. (2019). Furthermore, unlike these approaches, longitudi-
nal ComBat does not require an overlap cohort of participants scanned on
each pair of scanners to train the harmonization model, and thus can po-
tentially be used to harmonize existing datasets without an overlap cohort
design. However, the method requires at least 2 scans per scanner to esti-
mate scanner effects, and it is also important that sample size and covariates
be sufficiently balanced and controlled for across scanners to enable unbiased
estimation of scanner effects (e.g., see Supplementary Section 5).

Also, since the harmonization is applied to model residuals, the longitudi-
nal ComBat model should ideally match the linear mixed effects model used
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in the final analysis. If researchers want to investigate different models (e.g.,
inclusion of quadratic effects of time or different covariates), we recommend
harmonizing the data multiple times to match these models. Another con-
sideration is the spatial resolution of features included in the harmonization
model. Ideally, features will be similar enough in scale such that scanner
effects on these features can be assumed to derive from a common distribu-
tion. Even though feature scaling is included in the standardization step of
ComBat, in our experience including features of dramatically different scales
(e.g., including total hemispheric volume with smaller regional volumes) can
bias results. We also note that features harmonized together should be of the
same type, e.g., cortical volumes and cortical thicknesses should be harmo-
nized separately. While there should be sufficient numbers of features such
that prior distribution parameters can be reliably estimated, it is also desir-
able to have reasonable correspondence between features within and across
subjects. For example, harmonization at the level of individual voxels could
potentially be too noisy due to registration errors between individuals or
time points, and harmonization of total hemispheric brain volumes may not
provide sufficient data to reliably estimate distribution parameters.

Additional avenues for future work include further assessment of the
method in other datasets, including comparisons with previously discussed
existing methods using studies with an overlap cohort. We considered in-
cluding a subject-specific random slope in our linear mixed effects model,
in addition to the subject-specific random intercept, but this accounted for
relatively little variation in the data (only up to 0.7%). Thus, for the sake of
parsimony, we chose to omit random slopes. However, it would be worthwhile
to consider random slopes, along with more hierarchical versions of ComBat
in the future. For example, it may be useful to incorporate information about
site, field strength, or scanner vendor, in addition to scanner, so as to bor-
row information across scanners of similar type. Furthermore, as mentioned
above, additional research into methods for estimating the residual variance
in the standardization step could be explored in relation to type I and type
II error control.

The proposed longitudinal version of ComBat would be useful for other
types of longitudinal data requiring harmonization, such as genomic data, or
neuroimaging studies of neurodevelopment, psychiatric disorders, or neuro-
logical diseases other than AD. The method is flexible and may be applied to
many existing and future longitudinal datasets. Code for implementing longi-
tudinal ComBat is available at https://github.com/jcbeer/longCombat.
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Appendix A. Parameter estimation

Hyperparameters γi, τ
2
i , λi, θi are estimated from standardized data using

the method of moments. Let γ̂iν = 1
ni

∑
jk zijν(tijk) (scanner i sample mean

for feature v; note that these are on a different scale than the γ̂iν above),
where k ∈ {1, . . . , K} is the visit index and ni is total number of images
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from scanner i. Method of moments estimates for γi and τ 2
i are

γi =
1

V

∑
ν

γ̂iν and τ 2
i =

1

V − 1

∑
ν

(γ̂iν − γi)
2 .

Let δ̂2
iν = 1

ni−1

∑
jk (zijν(tijk)− γi)

2 (scanner i sample variance for feature v).

The sample mean and variance of the δ̂2
iν can be calculated as

Di =
1

V

∑
ν

δ̂2
iν and S

2

i =
1

V − 1

∑
ν

(
δ̂2
iν −Di

)2

,

respectively. We then set these sample moments equal to the theoretical
moments of the Inverse Gamma distribution; the mean is θi/(λi− 1) and the
variance is θ2

i / [(λi − 1)2(λi − 2)] . Solving the system for λi and θi gives the
estimates

λi =
D

2

i + 2S
2

i

S
2

i

and θi =
D

3

i +DiS
2

i

S
2

i

.

Empirical Bayes estimates for scanner effect parameters γiν and δ2
iν are

given by conditional posterior means. Let the conditional posterior distribu-
tion of γiν be denoted by π(γiν |Ziν , δ

2
iν). According to Bayes’ Theorem,

π(γiν |Ziν , δ
2
iν) ∝ L(Ziν |γiν , δ2

iν)π(γiν)

∝ exp

{
− 1

2δ2
iν

∑
jk

(zijν(tijk)− γiν)2

}
exp

{
− 1

2τ 2
i

(γiν − γi)2

}

∝ exp

{
−1

2

(
niτ

2
i + δ2

iν

δ2
iντ

2
i

)[
γ2
iν − 2

(
τ 2
i

∑
jk zijν(tijk) + δ2

iνγi

niτ 2
i + δ2

iν

)
γiν

]}
.

By completing the square, we can identify the above as the kernel of a Normal
distribution with expected value

E[γiν |Ziν , δ
2
iν ] =

τ 2
i

∑
jk zijν(tijk) + δ2

iνγi

niτ 2
i + δ2

iν

.

This can be estimated using γ̂iν , γi, τ
2
i , as defined above, and δ̂2∗

iν , defined
below:

γ̂∗iν = Ê[γiν |Ziν , δ
2
iν ] =

niτ
2
i γ̂iν + δ̂2∗

iν γi

niτ
2
i + δ̂2∗

iν

.
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Let the conditional posterior distribution of δ2
iν be denoted by π(δ2

iν |Ziν , γiν).
According to Bayes’ Theorem,

π(δ2
iν |Ziν , γiν) ∝ L(Ziν |γiν , δ2

iν)π(δ2
iν)

∝
(
δ2
iν

)ni
2 exp

{
− 1

2δ2
iν

∑
jk

(zijν(tijk)− γiν)2

}(
δ2
iν

)−λi+1
exp

{
− θi
δ2
iν

}

=
(
δ2
iν

)−(ni
2

+λi)−1
exp

{
−
θi + 1

2

∑
jk(zijν(tijk)− γiν)2

δ2
iν

}
.

This is an Inverse Gamma distribution with expected value

E[δ2
iν |Ziν , γiν ] =

θi + 1
2

∑
jk(zijν(tijk)− γiν)2

ni

2
+ λi − 1

.

This can be estimated using θi, λi, and γ̂∗iν as defined above:

δ̂2∗
iν =

θi + 1
2

∑
jk (zijν(tijk)− γ̂∗iν)

2

ni

2
+ λi − 1

.

Note that the estimates for γ̂∗iν and δ̂2∗
iν depend on each other. They can

be estimated iteratively, for example by first substituting δ̂2
iν for δ̂2∗

iν to obtain

the estimate γ̂∗iν , then plugging this into the formula for δ̂2∗
iν , and so on. As

Johnson et al. (2007) note in their supplementary material, this is a special
case of the expectation-maximization algorithm and tends to converge rather
quickly in less than 30 iterations.
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