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Abstract. Environmental fluctuations can mediate coexistence between competing species via the stor-
age effect. This fluctuation-dependent coexistence mechanism requires three conditions: (i) a positive
covariance between environment conditions and the strength of competition, (ii) species-specific environ-
mental responses, and (iii) buffered population growth whereby species are less sensitive to competition
in environmentally unfavorable years. In serially uncorrelated environments, the covariance condition
(i) only occurs if favorable environmental conditions immediately and directly increase the strength of
competition. However, for many demographic parameters such as maximal fecundity or adult survival,
this direct link between favorable years and competition may not exist. Moreover, many environmental
variables are temporal autocorrelated, but these correlations aren’t accounted for in the theory. To
address these limitations, a theory for coexistence of competing species in autocorrelated environments
is developed. This theory shows the positive autocorrelations in demographic rates that increase fitness
(e.g. maximal fecundity or adult survival) produce the positive environment-competition covariance.
Hence, when these demographic rates contribute to buffered population growth (e.g. maximal fecun-
dity), positive temporal autocorrelations generate a storage effect, otherwise (e.g. fluctuations in adult
adult survival) they destabilize competitive interactions. For negatively autocorrelated environments,
this theory highlights an alternative stabilizing mechanism that requires three conditions: (i’) a negative
environmental-competition covariance, (ii), and (iii’) species are less sensitive to competition in more
favorable years. When the conditions for these stabilizing mechanisms are violated, temporal auto-
correlations can generate stochastic priority effects or hasten competitive exclusion. Collectively, these
results highlight that temporal autocorrelations in environmental conditions can play a fundamental role
in determining ecological outcomes of competing species.

Introduction

Most species are engaged in competitive interactions with other species [Gurevitch et al., 1992,
Kaplan and Denno, 2007]. This mutual antagonism can result in one species driving other species
extinct. According to ecological theory, this competitive exclusion is inevitable when there are more
species than limiting factors and the community approaches a steady state [Volterra, 1928, McGehee
and Armstrong, 1977]. Hutchinson [1961] proposed that fluctuations in environmental conditions may
allow species competing for few limiting factors to coexist. In an series of influential papers [Chesson
and Warner, 1981, Chesson, 1983, 1988, 1994], Peter Chesson developed a mathematical theory for when
and how environmental fluctuations, via nonlinear averaging and the storage effect, mediate species
coexistence. In the past decade, empirical evidence for these coexistence mechanisms were identified in
a diversity of systems including zooplankton [Cáceres, 1997], prairie grasses [Adler et al., 2006], desert
annual plants [Angert et al., 2009], tropical trees [Usinowicz et al., 2012], phytoplankton [Ellner et al.,
2016], sagebrush [Chu and Adler, 2015, Ellner et al., 2016], and nectar yeasts [Letten et al., 2018].

A key assumption of this theory and its extensions is that the environmental fluctuations are un-
correlated in time [Chesson, 1994, Schreiber et al., 2011]. Environmental fluctuations, however, are
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often autocorrelated [Steele, 1985]. Minimum and maximal monthly temperatures in both terrestrial
and marine systems are typically positively autocorrelated [Vasseur and Yodzis, 2004]; months with
higher temperature maxima tend to be followed by months with higher maxima. Approximately 20%
of terrestrial sites on earth exhibit positively autocorrelated yearly rainfall, while 5% exhibit negatively
autocorrelated rainfall [Sun et al., 2018]. Although considered less frequently, negative autocorrela-
tions may be common in other situations [Metcalf and Koons, 2007]. For example, density-dependent
driven oscillations of an herbivore or predator can result in negatively autocorrelated fluctuations in
the mortality rates of its prey species.

Theoretical and empirical studies show that autocorrelated, environmental fluctuations can have
large impacts on population demography [Foley, 1994, Petchey et al., 1997, Cuddington and Yodzis,
1999, Pike et al., 2004, Gonzalez and Holt, 2002, Cuddington and Hastings, 2016]. Theory predicts
that positively autocorrelated fluctuations increase extinction risk when populations exhibit under-
compensatory dynamics, but decreases extinction risk when populations exhibit overcompensatory
dynamics [Petchey et al., 1997]. Consistent with the first theoretical prediction, clonal populations of
Folsomia candida exhibited shorter times to extinction when fluctuating mortality rates were positively
autocorrelated [Pike et al., 2004]. For structured populations, temporal autocorrelations can alter long-
term population growth rates [Roy et al., 2005, Tuljapurkar and Haridas, 2006, Schreiber, 2010]. For
example, lab experiments with paramecia and theory predicted that positively autocorrelated fluctua-
tions in the local fitnesses of spatially structured populations can increase long-term population growth
rates [Roy et al., 2005, Matthews and Gonzalez, 2007, Schreiber, 2010].

As autocorrelated fluctuations are common and have demographic impacts, they likely influence eco-
logical outcomes of competing species. As recent mathematical theory [Benäım and Schreiber, 2019]
provides the analytical tools to explore this influence, I analyze models of two species competition
accounting for autocorrelated fluctuations in environmental conditions. As these models correspond
to competition for single, limiting factor and undercompensatory density-dependence, stable coexis-
tence doesn’t occur in constant environments. Therefore, using a mixture of analytical and numerical
approaches applied to the stochastic models, I tackle the following questions: When do positively
autocorrelated fluctuations in survival or reproduction mediate coexistence? When do they disrupt
coexistence and, if they do, is the identity of the excluded species predictable? What types of shifts in
competitive outcomes are possible as temporal autocorrelations shift from negative to positive?

Model and Methods

Consider two competing species with densities n1 and n2. The fitness of individuals within species i,
f(C,Ei), decreases with the strength of competition C and increases with respect to an environmental
response variable Ei. The strength of competition is given by a weighted combination of the species
densities, C = a1n1 + a2n2 where ai determines the per-capita contribution of species i to the strength
of competition. The environmental variable Ei represents the net effect of environmental conditions
on species i’s fitness. Consistent with meteorological models of various weather variables [Wilks and
Wilby, 1999, Semenov, 2008], fluctuations in the environmental response variables follow a multivariate
autoregressive (MAR) process with means ei, standard deviations σi, cross-correlation τ , and temporal
autocorrelation ρ. Under these assumptions, the dynamics of the system are

(1)
ni(t+ 1) =ni(t)f(a1n1(t) + a2n2(t), ei + ∆ei(t)) with i = 1, 2

∆ei(t+ 1) =ρ∆ei(t) +
√

1− ρ2ξi(t+ 1)

where ∆ei(t) are the deviations of the environmental variables away from the mean ei, ξi(t) are inde-
pendent in time with mean 0, standard deviation σi, and cross-correlation Cor[ξ1(t)ξ2(t)] = τ. Provided
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that |ρ| < 1 (i.e. the environmental fluctuations are neither perfectly positively or negatively auto-

correlated), the environmental deviations ∆ei(t) converge to a unique stationary distribution ∆̂ei with

mean 0, variance σ2
i , and cross-correlation τ. The

√
1− ρ2 term in (1) allows one to independently vary

the variance of the stationary distribution and the temporal autocorrelation.
I study the dynamics of (1) using a mixture of analytical and numerical methods. The analysis

assumes that the per-capita growth rates, E[log f(0, ei + ∆ei(t))], of each species in the absence of
competition are positive, and the fitness function f exhibits compensating density-dependence. These

assumptions ensure there exists unique, positive stationary distributions (n̂i, Ê1, Ê2) for species i in

the absence of competition with species j 6= i [Benäım and Schreiber, 2009]. Here, Êi = ei + ∆̂ei.
Conditions for coexistence or exclusion depend on the realized per-capita growth rate of species j 6= i
at these stationary distributions:

rj = E[log f(ain̂i, Êj)] j 6= i.

If both realized per-capita growth rates are positive (r1 > 0, r2 > 0), then the species coexist in the
sense of stochastic persistence [cf. Theorem 1 in Benäım and Schreiber, 2019] i.e. a statistical tendency
to stay away from the extinction set (Fig. 1A). If r1 < 0 < r2 (respectively, r2 < 0 < r1), then
species 2 excludes species 1 (respectively, species 1 excludes species 2) [cf. of Corollary 2 in Benäım
and Schreiber, 2019] (Fig. 1B). Finally, if both realized per-capita growth rates are negative, then the
system exhibits a stochastic priority effect: with complementary positive probabilities either species
goes extinct while the other species persists [cf. of Theorem 3 and Corollary 2 in Benäım and Schreiber,
2019].

To derive mathematically rigorous approximations for the realized per-capita growth rates rj, I use a
diffusion-type scaling in which e1− e1, σ2

1, and σ2
2 are small and of the same order [Turelli, 1977, Karlin

and Taylor, 1981]. To illustrate the analytic results, I numerically compute the realized per-capita
growth rates for the fitness function f(C,Ei) = λ/(1 + C) + s where the environmental response Ei

either determine the maximal fecundity λ or determine the annual survivorship s. This functional form
is used extensively in the theoretical and empirical literature [e.g., Adler et al., 2007, Godoy et al., 2014].
For the fecundity fluctuations, the maximal fecundity for species in year t equals exp(ei + ∆ei(t)). For
the survival fluctuations, the survival of species i in year t equals exp(ei + ∆ei(t))/(1 + ei + ∆ei(t)).
In both cases, the variables ξi(t) are drawn from multivariate normals with mean 0, variances σ2

i , and
cross-correlation τ .

Results

I first present results for the deterministic model that show stable coexistence does not occur without
environmental fluctuations. Next, I present results for environmental fluctuations where species only
differ to the degree their environmental responses are correlated. In this special case, the deterministic
dynamics are neutrally stable and environmental fluctuations either lead to coexistence or to a sto-
chastic priority effect. Finally, I present results in which the species differ in their mean environmental
response (e1 6= e2), the variation in their environmental responses (σ1 6= σ2), and the correlation in
their environmental responses. The general case highlights when environmental stochasticity reverses
competitive outcomes as well as stabilizes competitive interactions.

Neutrality or exclusion in constant environments. When the mean environmental responses
are equal (e1 = e2) and there are no environmental fluctuations (σ1 = σ2 = 0), the species exhibit
neutral coexistence (proof in Appendix). Specifically, there exists a line of equilibria connecting the
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Figure 1. Stochastic coexistence (A) or exclusion (B) for models of competition in a
fluctuating environment. Parameters: The fitness function is f(C,Ei) = λ/(1 + C) +
exp(Ei)/(1 + exp(Ei)) where C = a1n1 + a2n2 is the strength of competition, λ is the
maximal fecundity and Ei determines survivorship of competitor i. λ = 2, a1 = a2 = 0.01,
and ξi(t) are normally distributed with means ei = 0, standard deviations σi = 0.5, cross-
correlation τ = −1, and autocorrelations ρ = −0.5 in (A) and 0.5 in (B).

single species equilibria. Community trajectories always converge to one of these equilibria, but dif-
ferent initial conditions can converge to different equilibria. This coexistence isn’t stable in that small
pulse perturbations typically shift the community to a different equilibrium state [Schreiber, 2006]. In
contrast, if one species has a higher mean environmental response than the other (e1 6= e2), then this
species competitively excludes the other species (proof in Appendix).

From Neutrality to Coexistence or Alternative Stable States. The simplest case in which
environmental fluctuations alter ecological outcomes is when both species have the same mean environ-
mental response (e1 = e2) and experience the same degree of variation in their environmental response
(σ1 = σ2). Without environmental fluctuations, this leads to neutral coexistence in which rj = 0
for both species. With environmental fluctuations, our diffusion approximation yields (derivation in
Appendix)

(2) rj ≈
∂2 log f

∂C∂E
× Cov[n̂i, Êj − Êi]

where the mixed partial derivative, ∂2 log f
∂C∂E

, is evaluated at E = ei and the equilibrium value C = n∗i
where f(ain

∗
i , ei) = 1. The sign of this mixed partial derivative determines whether the log fitness

function is superadditive (positive sign) or subadditive (negative sign) with respect to the interactive
effects of competition and environmental fluctuations [see e.g. Puterman, 2014]. Subadditivity means
that the log fitness function, log f , is less sensitive to the effects of competition when environmental
conditions are poor. This corresponds to population buffering, a necessary component of the storage
effect [Chesson, 1994, Ellner et al., 2016]. Superadditivity, in contrast, means that the log fitness
function is more sensitive to the effects of competition when environmental conditions are poor, but also
that is less sensitive to the effects of competition when environmental conditions are good. For example,
when there are environmental fluctuations in the maximal fecundity (e.g. f(C,Ei) = exp(Ei)/(1+C)+
s), the log-fitness function is subadditive and population buffering occurs. In contrast when there are
environmental fluctuations in survival (f(C,Ei) = λ/(1 + C) + exp(Ei)/(1 + exp(Ei))), the log fitness
function is superadditive and populations are less sensitive to competition in years with high survival.
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Figure 2. Positively autocorrelated fluctuations in fecundity (A) and negative autocor-
related fluctuations in survival (B) mediate coexistence. Numerically computed realized
per-capita growth rates rj as a function of the temporal autocorrelation ρ for competing
species with fitness functions f(C,E) = λ/(1 +C) + s where the environmental variable
E either determines the maximal reproductive rate λ (A) or survivorship s (B). Differ-
ent curves corresponds to different levels of cross-correlation τ where competitors only
differ demographically if τ < 1. For positive realized per-capita growth rates, the com-
petitors coexist (stochastic persistence). For negative realized per-capita growth rates,
each competitor is excluded with positive complementary positive probabilities (stochas-
tic bistability). Parameters: a1 = a2 = 1 and (ξ1(t), ξ2(t)) normally distributed with
standard deviation 0.3 for both panels. For A, s = 0.9, λi(t) = exp(e + ∆ei(t)), and
e = ln 2. For B, si(t) = exp(e+ ∆ei(t))/(1 + exp(e+ ∆ei(t))), e = 0, and λ = 2.

The final term in equation (2) corresponds to the covariance between the density of the common
species (ni) and the difference (Ej −Ei) between the environmental responses of the rare and common
species. This term is positive when years with high and low densities, respectively, of the common
species also correspond to years where the rare species has a higher and lower environmental response,
respectively. This covariance is proportional to a product of three terms (derivation in Appendix):

(3) Cov[Ĉi, Êj − Êi] ∝ ρ× (τ − 1)× σ2

Whenever the species are not identically responding to the fluctuations (τ < 1), equation (3) implies
that the sign of this covariance is opposite of the sign of the autocorrelation. Hence, in positively
autocorrelated environments, years with greater densities of the common species tend to be years
where the environmental conditions are less favorable to the rare species.

Collectively, equations (2) and (3) imply environmental fluctuations promote coexistence (i.e. rj > 0)
in two situations: (i) the log-fitness is superadditive and environmental fluctuations are negatively
autocorrelated, and (ii) the log-fitness is subadditive and environmental fluctuations are positively
autocorrelated i.e. the storage effect. In contrast, if (iii) the log-fitness function is superadditive
and environmental functions are positive autocorrelated or (iv) the log-fitness function is subadditive
and the fluctuations are negatively autocorrelated, then the system is stochastically bistable: with
complementary, positive probabilities species 1 or 2 is excluded.

Figure 2 illustrates these analytical conclusions for the fitness function f(C,Ei) = λ/(1 + C) + s
where E determines the maximal fecundity (λ) or survival (s). As the log fitness log f is subadditive
with respect to fecundity, positively autocorrelated fluctuations in fecundity mediate coexistence, while
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Figure 3. Interactive effects of fitness differences and autocorrelation on ecological out-
comes. In A, species 1 has a positive mean fitness advantage (e1 − e2 > 0) over species
2. In B, species 1 has a small mean fitness advantage over species 2 but experiences
greater environmental variation (σ2 − σ1 ≥ 0) than species 2. Regions of coexistence,
competitive exclusion, and bistability are shown. Solid contour lines correspond to r1 = 0
and r2 = 0. Coloring is determined by the minimum of the realized per-capita growth
rates, min{r1, r2}, with tan for most negative values to blue for the most positive values.
Parameters: fitness functions given by exp(ei +∆ei(t))/(1+n1 +n2)+0.9 where e2 = ln 2
in A and B, e1 = ln 2.01 in B, e1 as determined by the fitness difference e1 − e2 in A,
ξi(t) are normally distributed with τ = −1, σ1 = σ2 = 0.3 in A, and σ2 = 0.3 and σ1 as
shown in B.

negative autocorrelations lead to stochastic bistability (Fig. 2A). In contrast, as the log fitness log f
is superadditive with respect to survival, positively autocorrelated fluctuations in survival lead to
stochastic bistability, while negative autocorrelations promote coexistence (Fig. 2B).

The Effects of Fitness Differences and Nonlinear Averaging. Asymmetries in the mean re-
sponse (e1 6= e2) and the variability of these responses (σ1 6= σ2) lead to two additional terms in the
realized per-capita growth rate (derivation in Appendix):

(4) rj ≈
∂ log f

∂E
(ej − ei) +

1

2

∂2 log f

∂E2
(σ2

j − σ2
i ) +

∂2 log f

∂C∂E
× Cov[Ĉi, Êj − Êi]

As the log fitness increases (log f) with the environmental response variable (E), the first term in (4) is
proportional to the difference, ej−ei, in the mean environmental response between the rare and common
species. Intuitively, when the rare species benefits more, on average, from the environmental conditions
(ej > ei), the realized per-capita growth rate of the rare species is larger. The sign of the second term in
equation (4) depends on the concavity of log fitness with respect to the environmental response variable.
When the log fitness function is concave (as one might normally expect), the second term contributes
positively to the realized per-capita growth if the rare species exhibits less variation in its environmental
response (σ2

i < σ2
j ). This second term corresponds to the effect of nonlinear averaging [Chesson, 1994].

Namely, there is a reduction (respectively, increase) in the realized per-capita growth rate due to the
concavity (respectively, convexity) of the log fitness function.
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Differences in the variation of the environmental responses also impact the covariance between the
density of common species and difference in the environmental responses i.e. the third term of (4).
Specifically, a refinement of expression (3) shows that (derivation in Appendix)

(5) Cov[Ĉi, Êj − Êi] ∝ ρσi(τσj − σi).

Hence, the sign of this covariance no longer only depends on the sign of the autocorrelation coeffi-
cient. Specifically, when the common species experiences greater fluctuations in their environmental
responses and these fluctuations are sufficiently positively correlated with the rare species’ environmen-
tal responses (i.e. τσj > σi), the covariance (5) is negative and, thereby, may impede coexistence for
species experiencing buffered population growth.

To illustrate these analytical results, Fig. 3 numerically computed the realized per-capita growth
rates rj with fluctuations in fecundity i.e. f(C,E) = exp(E)/(1 + C) + s. In Fig. 3A, the species
only exhibit differences in their mean environmental response and have negatively correlated environ-
mental responses. With small differences in the mean environmental response, sufficiently negative
autocorrelations result in bistability, intermediate autocorrelations result in the species with larger
mean environmental response excluding the other species, and sufficiently positive autocorrelations
mediate coexistence. When the difference in mean environmental response is large, sufficiently pos-
itive autocorrelations mediate coexistence, otherwise the species with the lower mean environmental
response is excluded. In Fig. 3B, one species has a higher mean environmental response (e1 > e2), but
also experiences greater variability in its environmental response (σ1 > σ2). When the difference in
variation is sufficiently low, species 1 excludes species 2 unless temporal autocorrelation is sufficiently
high. In contrast, when the difference in variation is sufficiently high, species 2 excludes species 1
unless temporal autocorrelation is sufficiently high. This reversal in fates stems from the reduction of
r2 due to the concavity of the log fitness function and the higher variation of species 2’s environmental
response i.e. nonlinear averaging.

Discussion

Hutchinson [1961] wrote “the diversity of the plankton was explicable primarily by a permanent fail-
ure to achieve equilibrium as the relevant external factors changes.” It wasn’t until thirty years later
that Peter Chesson developed a theoretical framework for precisely identifying fluctuation-dependent
mechanisms for coexistence [see, e.g., Chesson and Warner, 1981, Chesson, 1983, 1988, 1994] including
the storage effect. The storage effect stabilizes coexistence, when (i) there is a positive correlation
between the environmental response of each species and the competition experienced by that species,
(ii) there are species-specific environmental responses, and (iii) buffered population growth in which
species are less sensitive to competition in years of poor environmental conditions. In serially uncorre-
lated environments which is an underlying assumption of the theory [Chesson, 1994], the first condition
requires that there is a direct and immediate impact of the environmental response on the strength
of competition. This occurs, for example, in annual populations with year to year variation in ger-
mination rates: when more seeds germinate, more plants compete for limiting resources. This direct
and immediate impact, however, does not occur when maximal yield or adult survival varies, as in the
models considered here. However, when the temporal fluctuations in these demographic rates are auto-
correlated, the analysis presented here reveals that the environmental-competition covariance can still
occur in these fundamental demographic parameters. Furthermore, these autocorrelated fluctuations
highlight how another, under-appreciated stabilizing mechanisms arises when conditions (i) and (iii)
simultaneously do not hold.
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Hutchinson [1961] hinted at temporal autocorrelations as a stabilizing mechanism when he wrote:
“equilibrium would never be expected in nature whenever complete competitive replacement of one
species by another occurred in a time (tc), of the same order, as the time (te) taken for a signifi-
cant seasonal change in the environment.” As competitive exclusion typically takes several generations,
Hutchinson’s quote implies that coexistence requires the shifts in environmental conditions favoring dif-
fering species should take several generations. Thus, the environmental conditions must be positively
autocorrelated over several generations. Consistent with this suggestion, I show that when there is pop-
ulation buffering (i.e. log fitness is subadditive) and there are species-specific environmental responses,
positively autocorrelated fluctuations in environmental conditions yield a storage effect. Namely, con-
dition (ii) is satisfied as better years for one species tend to be preceded by better years for this species
and, therefore, tends to lead to higher densities (greater competition) in the focal year. This finding
is consistent with two prior studies [Jiang and Morin, 2007, Schreiber et al., 2019]. Jiang and Morin
[2007] manipulated temporal fluctuations experienced by two species of ciliated protists competing
for bacterial resources. These temperature fluctuations had large effects on the intrinsic growth rates
of the two species, consistent with the fluctuating fecundity model considered here. When the tem-
perature fluctuations were temporally uncorrelated, their experimental results suggested that resource
partitioning and temperature-dependent competitive effects lead to coexistence, not a storage effect.
In contrast, when temperature fluctuations were positively autocorrelated, their experimental results
suggested that resource partitioning and the storage effect lead to coexistence. Alternatively, using a
symmetric version of the fluctuating fecundity model considered here, Schreiber et al. [2019] demon-
strated numerically that the realized per-capita growth rates rj increase with positive autocorrelations.
However, they did not analyze this numerical trend.

Autocorrelated fluctuations also can lead to an alternative stabilizing mechanism when (i’) there is a
negative covariance between environment and competition, (ii) there are species-specific environmental
responses, and (iii’) species are less sensitive to competition in years of good environmental conditions.
Condition (iii’) arises when adult survival fluctuates. Condition (i’) occurs when fluctuations in survival
are negatively auto-correlated as populations densities are higher in years following higher survival, but
survival in the following year tend to be lower. Negatively autocorrelated environments can arise in a
variety of ways [Metcalf and Koons, 2007]. For example, approximately 5% of sites analyzed by [Sun
et al., 2018] exhibit negatively autocorrelated rainfall. Interestingly, Adler and Levine [2007] found
that species richness in central North American grasslands increased most in wet years that followed
dry years. Alternatively, models and empirical studies show that overcompensatory or delayed density-
dependent feedbacks can generate negatively autocorrelated fluctuations in densities [May, 1976, Tilman
and Wedin, 1991, Crone and Taylor, 1996, Gilg et al., 2003]. If these fluctuations in densities occur in
an herbivore, pathogen, or predator, then they can generate negatively autocorrelated fluctuations in
survival of competing plants, hosts, or prey. Finally, competing species that exhibit multiple generations
per year may experience negative autocorrelations in seasonal environments [Metcalf and Koons, 2007].

Autocorrelated fluctuations in survival or fecundity can generate alternative stable states and drive
complex shifts in ecological outcomes. Alternative stable states arise as a stochastic priority effect:
either species has a non-zero probability of being excluded, but the species at initially lower frequencies
are more likely to be excluded. For small differences in mean fitness, stochastic induced alternative
states arise whenever buffered populations experience a negative environment-competition covariance or
whenever unbuffered populations experience a positive environment-competition covariance. Chesson
[1988] highlights this possibility for annual plants with fluctuating seed survival, but his observation
appears to be under-appreciated in the priority effects literature [Fukami, 2015, Fukami et al., 2016].
Shifts in temporal autocorrelations also generate complex shifts in ecological outcomes when one species
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has an inherent competitive advantage over the other, such as a higher mean environmental response
or less variability in their environmental response. Under these circumstances, shifts from negative to
positive temporal autocorrelations can result in shifts from a stochastic priority effect to competitive
exclusion to coexistence (Fig. 3).

In conclusion, temporally autocorrelated environmental fluctuations indirectly generate a covariance
between environmental conditions and the strength of competition. When this covariance is positive
and there is population buffering this leads to a storage effect [Chesson, 1988, 1994]. As positive
autocorrelations are seen in many climatic variables, accounting for these autocorrelations in data-
driven models [Chu and Adler, 2015, Ellner et al., 2016, 2018] likely will lead to more empirically
based examples of the storage effect. In contrast, when there is a negative environment-competition
covariance, an alternative stabilizing mechanism to the storage effect arises provided species are less
sensitive to competition in years where environmental conditions are favorable. As there are simple,
ecologically plausible conditions that generate this alternative stabilizing mechanism, it will be exciting
to see whether or not empirically based demonstrations will be found.
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Appendix

In this appendix, I provide the mathematical details of the analysis of the deterministic and stochastic
versions of the model (1) from the main text. Define the new coordinate system xi = aini in which (1)
from the main text becomes

(A1)
xi(t+ 1) =xi(t)f(x1(t) + x2(t), ei + ∆ei(t))

∆ei(t+ 1) =ρ∆ei(t) +
√

1− ρ2ξi(t+ 1)

where ξi(1), ξi(2), . . . are a sequence of i.i.d. random variables with mean 0, variance σ2
i and cross-

correlation τ . Throughout this analysis, I assume that f is a continuous, positive function, C 7→ f(C, e)
is a decreasing function for all e, e 7→ f(C, e) is an increasing function for all C, and C 7→ Cf(C, e) is
an increasing, bounded function. The first two assumptions ensure that fitness depends continuously
on competition and environment, decreases with competition, and increases with the environmental
variable. The third assumption corresponds to compensating density dependence and populations
remaining bounded. A classic example of such a fitness function is the Beverton-Holt function with
survival i.e f(C, e) = λ/(1+C)+s where either the maximal fitness λ of survivorship s are functions of
e. Finally, I assume that ξi(t) take values in a compact set and |ρ| < 1. Collectively, these assumptions
imply that the dynamics of (A1) are dissipative i.e. there is a compact set in K ⊂ [0,∞)2 × R2 such
that non-negative solutions of (A1) eventually enter and remain in K for sufficiently large t.

Below, I first analyze the deterministic dynamics of (A1) i.e. when ∆ei(t) = 0 for all t. This
analysis shows that there are three possible competitive outcomes: species 1 excludes species 2, species
2 excludes species 1, or neutral coexistence in which the dynamics converge to a line of equilibria.
Next, I analyze the stochastic dynamics of (A1) in three steps. First, using results from Benäım and
Schreiber [2009], I provide a condition that ensures each species can persist in isolation. When this

condition holds, each species’ dynamics converges to a unique stationary distribution (x̂i, ∆̂ei). When
this condition doesn’t hold, the species asymptotically converges to extinction with probability one. For
the remainder of the stochastic analysis, I assume that the condition for each species persisting holds.
Under this assumption, I use results from Benäım and Schreiber [2019] to characterize coexistence and
exclusion using the realized per-capita growth rates rj. Finally, I use a diffusion type of approximation
to derive the approximations for the realized per-capita growth rates rj presented in the main text.

Deterministic Analysis. The model assumptions imply that (A1) is a strictly monotone, planar map
with respect to the competitive ordering [see, e.g., Smith, 1998]. Each species persists individually if
f(0, ei) > 1 for i = 1, 2. Assume this condition holds for each species. Then, there are three cases
to consider. First, assume that e1 > e2. Define λ = max(x1,x2)∈K f(x1 + x2, e2)/f(x1 + x2, e1) which
is strictly less than 1 as e1 > e2, e 7→ f(C, e) is a strictly increasing, continuous function, and K is
compact. Given any solution (x1(t), x2(t)) to (A1) with x1(0) > 0, we get x2(t)/x1(t) ≤ λt(x2(0)/x1(0)).
As x1(t) is uniformly bounded i.e. (x1(t), x2(t)) ∈ K, x2(t) converges to 0 as t→∞. Similarly, if e2 >
e1, species 2 excludes species 1. Finally, consider the case that e1 = e2. Then x1(t)/x2(t) = x1(0)/x2(0)
for all time whenever x2(0) > 0. Namely, the relative frequency of either species doesn’t change over
time. Moreover, as y(t) = x1(t) + x2(t) satisfies y(t + 1) = y(t)f(y(t), e1) which a strictly monotone
map with a unique positive equilibrium y∗ > 0, x1(t) + x2(t) converges to the y∗ as t → ∞. Hence,
xi(t) converges to xi(0)y∗/(x1(0) + x2(0)) as t→∞ for i = 1, 2. Thus, there is a globally stable line of
equilibria given by {(y∗p, y∗(1− p)) : 0 ≤ p ≤ 1}.

General Stochastic Analysis. Define g(x, e) = log f(x, e) and assume |ρ| < 1. As the dynamics
of ∆ei are given by a multivariate autoregressive process where the linear term is contracting (i.e.
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|ρ| < 1) and ξ(t) are uniformly bounded, ∆ei(t) converge to a unique stationary distribution ∆̂ei [see,
e.g., Schreiber and Moore, 2018]. For each species i in isolation of the other species, their realized

per-capita growth rate at low densities is E[g(0, ei + ∆̂ei)] > 0. When this realized per-capita growth
rate is positive and xi(0) > 0, Theorem 1 in [Benäım and Schreiber, 2009] implies that solutions
(xi(t),∆e1(t),∆e2(t)) for the species i subsystem with xi(0) > 0 converges to a unique stationary

distribution (x̂i, ∆̂e1, ∆̂e2). In contrast, if E[g(0, ei+∆̂ei)] < 0, Proposition 1 in [Benäım and Schreiber,
2009] implies that xi(t) converges to 0 with probability one. From the rest of the stochastic analysis,

assume that E[g(0, ei + ∆̂ei)] > 0 for both species i = 1, 2.
The realized per-capita growth rate of species j 6= i when species i is at its stationary distribution

equals

rj = E[g(x̂i, ej + ∆̂ej)].

Theorem 1 from [Benäım and Schreiber, 2019] implies that the two species coexist (in the sense of
stochastic persistence) whenever r1 > 0 and r2 > 0. In contrast, if rj < 0, then Theorem 3 from
[Benäım and Schreiber, 2019] implies that species j goes extinct with high probability whenever its
initial density is sufficiently low. Under suitable accessibility assumptions (see Benäım and Schreiber
[2019] for definitions), stronger conclusions hold when rj < 0. In particular, if r1 > 0 > r2 (respectively,
r2 > 0 > r1), then species 1 excludes species 2 with probability one (respectively, species 2 excludes
species 1) whenever x1(0) > 0 (respectively, x2(0) > 0). Alternatively, if r1 < 0 and r2 < 0, then either
species, with complementary positive probabilities, goes extinct whenever both are initially present i.e.
a stochastic priority effect.

Diffusion scaling to approximate rj. For any ε > 0, assume that (i) ξi(t) = εηi(t) where ηi(t)
are i.i.d. with mean zero, variance vi, and E[η1(t)η2(t)] = τ , and (ii) ei = e + ε2ai. To ensure each
species persists in the absence of the other, assume that the low-density per-capita growth rate g(0, e)
is positive. Then there exists x∗ > 0 be such that g(x∗, e) = 0. x∗ corresponds to the single species,
equilibrium density in the absence of fitness differences and environmental fluctuations. Assume that
g(x, e) is three times continuously differentiable and let gx, ge, gxe, etc. denote the partial derivatives
∂g
∂x

(x∗, e), ∂g
∂e

(x∗, e), ∂2g
∂x∂e

(x∗, e), etc. evaluated at (x∗, e).
Consider species i as the common or resident species and j 6= i as the rare or invading species.

Proposition 1(iii) from [Benäım and Schreiber, 2019] implies that the realized per-capita growth of i,

E[g(x̂i, ei + ∆̂ei)], at its stationary distribution equals zero. Thus, taking a Taylor’s expansion and

defining ∆̂xi = x̂i − x∗ yields

(A2)

0 =E[g(x̂i, ei + ∆̂ei)]

=g(x∗, e) + gxE[∆̂xi] + geE[ε2ai + ∆̂ei] +
gxx
2
E[(∆̂xi)

2] +
gee
2
E[(ε2ai + ∆̂ei)

2]

+ gxeE[(∆̂xi)(ε
2ai + ∆̂ei)] + O(ε3)

=gxE[∆̂xi] + ε2
(
geai +

gee
2
vi

)
+
gxx
2
E[(∆̂xi)

2] + gxeE[∆̂xi∆̂ei] + O(ε3)

as g(x∗, e) = 0 due to the definition of x∗, E[∆̂ei] = 0, and E[
(

∆̂ei

)2
] = vi, and E[∆̂xiε

2ai] = O(ε3).
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Similarly, we get

(A3)

rj =E[g(x̂i, ej + ∆̂ej)]

=g(x∗, e) + gxE[∆̂xi] + geE[ε2aj + ∆̂ej] +
gxx
2
E[(∆̂xi)

2] +
gee
2
E[(ε2aj + ∆̂ej)

2]

+ gxeE[(∆̂xi)(ε
2aj + ∆̂ej)] + O(ε3)

=gxE[∆̂xi] + ε2
(
geaj +

gee
2
vj

)
+
gxx
2
E[(∆̂xi)

2] + gxeE[∆̂xi∆̂ej] + O(ε3).

Subtracting equation (A2) from equation (A3) yields

(A4) rj = ε2
(
ge(aj − ai) +

gee
2

(vj − vi)
)

+ gxeE[∆̂xi(∆̂ej − ∆̂ei)] + O(ε3).

To get an explicit expression for E[∆̂xi(∆̂ej − ∆̂ei)], one can approximate the dynamics of xi as
a first order autoregressive process by linearizing (A1) at (xi, e1, e2) = (x∗, e, e). To this end, define
F (x, e) = xf(x, e) and Fx, Fe as the partial derivatives ∂F

∂x
(x∗, e), ∂F

∂e
(x∗, e). Then, the first-order

autoregressive approximation of (A1) is

(A5)

∆xi(t+ 1) =Fx∆xi(t) + Fe(ε
2ai + ∆ei)

∆ei(t+ 1) =ρ∆ei(t) +
√

1− ρ2ξi(t)

∆ej(t+ 1) =ρ∆ej(t) +
√

1− ρ2ξj(t).

Equivalently, defining z = (∆xi,∆ei,∆ej)

z(t+ 1) =

Fx Fe 0
0 ρ 0
0 0 ρ


︸ ︷︷ ︸

=:A

z(t) +

 Feε
2ai√

1− ρ2ξi(t)√
1− ρ2ξj(t)


︸ ︷︷ ︸

=:b(t)

The covariance matrix of z(t), Cov[̂z], at stationarity [see, e.g., Schreiber and Moore, 2018] satisfies

vec(Cov[̂z]) = (Id− A⊗ A)−1vec(Cov[b(t)])

where vec(∗) is a column vector given by concatenating the columns of its argument ∗ and ⊗ denotes
the Kroenker product. Carrying out this calculation yields the approximations

E[∆̂xi∆̂ei] =
Feρσ

2
1

Fxρ3 − ρ2 − Fxρ+ 1
and E[∆̂xi∆̂ej] =

Feρτσ1σ2
Fxρ3 − ρ2 − Fxρ+ 1

.

To see that the denominator of these expressions is positive for |ρ| < 1, define h(y) = yρ(ρ2−1)−ρ2+1.
As Fx ∈ (0, 1) (i.e. the equilibrium is stable as the dynamics are compensatory), one needs to only
consider h(y) for y ∈ (0, 1). The minimum of h(y) occurs either at y = 1 or y = −1 or at 0 < y < 1
where h′(y) = 0. For |ρ| < 1, h′(y) = ρ(ρ2 − 1) = 0 only when ρ = 0 in which case h(y) = 1 > 0. As
h(0) = 1 − ρ2 > 0 for |ρ| < 1 and h(1) = ρ3 − ρ2 − ρ + 1 > 0 for |ρ| < 1, it follows that h(y) > 0 for
y ∈ (0, 1) whenever |ρ| < 1.

Define

C =
Fe

Fxρ3 − ρ2 − Fxρ+ 1
> 0.

Then,

(A6) rj = ge(ej − ei) +
gee
2

(σ2
j − σ2

i ) + Cgxeρ(τσj − σi)σi + O(ε3)
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as claimed in the main text.
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