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Abstract

Assemblies are large populations of neurons believed to imprint memories, concepts, words
and other cognitive information. We identify a repertoire of operations on assemblies. These
operations correspond to properties of assemblies observed in experiments, and can be shown,
analytically and through simulations, to be realizable by generic, randomly connected popu-
lations of neurons with Hebbian plasticity and inhibition. Operations on assemblies include:
projection (duplicating an assembly by creating a new assembly in a downstream brain area);
reciprocal projection (a variant of projection also entailing synaptic connectivity from the newly
created assembly to the original one); association (increasing the overlap of two assemblies in
the same brain area to reflect cooccurrence or similarity of the corresponding concepts); merge
(creating a new assembly with ample synaptic connectivity to and from two existing ones); and
pattern-completion (firing of an assembly, with some probability, in response to the firing of
some but not all of its neurons). Our analytical results establishing the plausibility of these
operations are proved in a simplified mathematical model of cortex: a finite set of brain areas
each containing n excitatory neurons, with random connectivity that is both recurrent (within
an area) and afferent (between areas). Within one area and at any time, only k of the n neurons
fire — an assumption that models inhibition and serves to define both assemblies and areas —
while synaptic weights are modified by Hebbian plasticity, as well as homeostasis. Importantly,
all neural apparatus needed for the functionality of the assembly operations is created on the fly
through the randomness of the synaptic network, the selection of the k neurons with the highest
synaptic input, and Hebbian plasticity, without any special neural circuits assumed to be in
place. Assemblies and their operations constitute a computational model of the brain which we
call the Assembly Calculus, occupying a level of detail intermediate between the level of spiking
neurons and synapses, and that of the whole brain. As with high-level programming languages,
a computation in the Assembly Calculus (that is, a coherent sequence of assembly operations
accomplishing a task) can ultimately be reduced — “compiled down” — to computation by
neurons and synapses; however, it would be far more cumbersome and opaque to represent the
same computation that way. The resulting computational system can be shown, under assump-
tions, to be in principle capable of carrying out arbitrary computations. We hypothesize that
something like it may underlie higher human cognitive functions such as reasoning, planning,
and language. In particular, we propose a plausible brain architecture based on assemblies for
implementing the syntactic processing of language in cortex, which is consistent with recent
experimental results.
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1 Introduction

How does the brain beget the mind? How do molecules, cells, and synapses effect cognition, behav-
ior, intelligence, reasoning, language? The remarkable and accelerating progress in neuroscience,
both experimental and theoretical-computational, does not seem to bring us closer to an answer:
the gap is formidable, and seems to necessitate the development of new conceptual frameworks. As
Richard Axel recently put it [1] “we do not have a logic for the transformation of neural activity
into thought and action. I view discerning [this] logic as the most important future direction of
neuroscience”.

What kind of formal system, embodying and abstracting the realities of neural activity, would
qualify as the sought “logic”?

We propose a formal computational model of the brain based on assemblies of neurons; we
call this system the Assembly Calculus. In terms of detail and granularity, the Assembly Calculus
occupies a position intermediate between the level of individual neurons and synapses, and the level
of the whole brain models useful in cognitive science, e.g. [30, 31].

The basic elementary object of our system is the assembly of excitatory neurons. The idea
of assemblies is, of course, not new. They were first hypothesized seven decades ago by Donald
O. Hebb [20] to be densely interconnected sets of neurons whose loosely synchronized firing in a
pattern is coterminous with the subject thinking of a particular concept or idea. Assembly-like
formations have been sought by researchers during the decades following Hebb’s prediction, see for
example [2], until they were clearly identified more than a decade ago through calcium imaging
[17, 5]. More recently, assemblies (sometimes called ensembles) and their dynamic behavior have
been studied extensively in the animal brain, see for example [27].

Our calculus outfits assemblies with certain operations that create new assemblies and/or modify
existing ones: project, reciprocal-project, associate, merge, and a few others. These operations
reflect known properties of assemblies observed in experiments, and they can be shown, either
analytically or through simulations (more often both), to result from the activity of neurons and
synapses. In other words, the high-level operations of this system can be “compiled down” to the
world of neurons and synapses — a fact reminiscent of the way in which high-level programming
languages are translated into machine code.

Model. Our mathematical results, as well as most of our simulation results, employ a simplified
and analytically tractable yet plausible model of neurons and synapses. We assume a finite num-
ber of brain areas denoted A,B,C, etc., intended to stand for an anatomically and functionally
meaningful partition of the cortex (see Figure 2). Each area contains a population of n excitatory
neurons1 with random recurrent connections. By this we mean that each ordered pair of neurons in
an area has the same small probability p of being connected by a synapse, independently of what
happens to other pairs — this is a well studied framework usually referred to as Erdős–Renyi graph
or Gn,p [11]. In addition, for certain ordered pairs of areas, say (A,B), there are random afferent
synaptic interconnections from A to B; that is, for every neuron in A and every neuron in B there
is a chance p that they are connected by a synapse.2

We use this model to fathom quantitatively the creation and manipulation of assemblies of

1Our assumption that all areas contain the same number of neurons is one of expository, not mathematical,
convenience, and provides the basic numerical parameter n of our analysis. A slightly more complex version would
have parameters nA, and kA for each area A.

2Several experimental results [37, 16] suggest deviations of the synaptic connectivity of the animal brain from the
uniformity of Gn,p. We discuss how such deviations affect — mostly support — our framework in the discussion
section.
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neurons. Since the model is probabilistic (by virtue of the random synaptic connectivity), our
analytical results postulating the effectiveness of the various operations must contain the clause
“with high probability,” where the event space is implicitly the underlying random graph. We
assume that all cells in an assembly x belong to the same brain area, denoted area(x).

Our model also encompasses simplified forms of plasticity and inhibition. We assume multi-
plicative Hebbian plasticity: if at a time step neuron i fires and at the next time step neuron j
fires, and there is a synapse from i to j, the weight of this synapse is multiplied by (1 + β), where
β > 0 is the final parameter of our model (along with n, p, and k). Larger values of the plasticity
coefficient β result in the operations converging faster, and render many of our proofs simpler.
Finally, we model inhibition and excitatory–inhibitory balance by postulating that neurons fire in
discrete time steps, and at any time only a fixed number k of the n excitatory neurons in any area
fire; in particular, those neurons which receive the k highest excitatory inputs.

The four basic parameters of our model are these: n (the number of excitatory neurons in an
area, and the basic parameter of our model); p (the probability of recurrent and afferent synaptic
connectivity); k (the maximum number of firing neurons in any area); and the plasticity coefficient
β. Typical values of these parameters in our simulations are n = 107, p = 10−3, k = 104, β = 0.1.
We sometimes assume that k is (a small multiple of) the square root of n; this extra assumption
seems compatible with experimental data, and yields certain interesting further insights.

Our model, as described so far, would result, through plasticity, in gigantic synaptic weights
after a long time of operation. We further assume that synaptic weights are renormalized, at a
slower time scale, so that the sum of presynaptic weights at each neuron stays relatively stable.
This process of homeostasis through renormalization is orthogonal to the phenomena we describe
here, and it interferes minimally with our arguments and simulations.

We emphasize that our model is generic in the sense that it is not assumed that circuits specific
to various tasks are already in place. Its functionality — the needed apparatus for each task such
as implementing an assembly operation — emerges from the randomness of the network and the
selection of the k neurons with highest synaptic input as an almost certain consequence of certain
simple events — such as the repeated firing of an assembly.

Assembly projection. How do assemblies in the association cortex come about? It has been
hypothesized (see e.g. [34]) that an assembly imprinting, for example, a familiar face in a subject’s
medial temporal lobe (MTL) is created by the projection of a neuronal population, perhaps in the
inferotemporal cortex (IT), encoding this face as a whole object. By projection of an assembly x
we mean the creation of an assembly y in a downstream area that can be thought of as a “copy”
of x, and such that y will henceforth fire every time x fires.

How is the new assembly y formed in a downstream area B by the repeated firing of x in area
A? The process was vividly predicted in the discussion section of [14], for the case in which A is
the olfactory bulb and B the piriform cortex. Once x has fired once, synaptic connectivity from
area A to area B excites many neurons in area B. Inhibition will soon limit the firing in area B
to a smaller set of neurons, let us call it y1, consisting in our framework of k neurons (see Figure
1A). Next, the simultaneous firing of x and y1 creates a stronger excitation in area B (one extra
reason for this is plasticity, which has already strengthened the connections from x to y1), and as
a result a new set of k neurons from area B will be selected to fire, call it y2. One would expect
y2 to overlap substantially with y1 — this overlap can be calculated in our mathematical model to
be roughly 50% for a broad range of parameters. If x continues firing, a sequence {yt} of sets of
neurons of size k in area B will be created. For a large range of parameters and for high enough
plasticity, this process can be proved to converge exponentially fast, with high probability, to create
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an assembly y, the result of the projection.
We denote the projection process described above as project(x,B, y). Assembly projection has

been demonstrated both analytically [24, 29] and through detailed simulations [33, 26]; simulation
results in our model, as well as improved analysis, are presented in Section 2, Figure 1.B4. Once
the project(x,B, y) operation has taken place, we write B = area(y) and x = parent(y).

Dense intraconnection of assemblies. Hebb [20] hypothesized that assemblies are densely
intraconnected — that is, the chance that two neurons have a synaptic connection is significantly
larger when they belong to the same assembly than when they do not — and our analysis and
simulations verify this hypothesis (see Figure 1C). From the point of view of computation this is
rather surprising, because the problem of finding a dense subgraph of a certain size in a sparse
graph is a known difficult problem in computer science [12], and thus the very existence of an
assembly may seem surprising. How can the brain deal with this difficult computational problem?
The creation of an assembly through projection as outlined in the previous paragraphs provides
an explanation: Since the elements of assembly y were selected to have strong synaptic input from
the union of x and y, one intuitively expects the synaptic recurrent connectivity of y to be higher
than random. In addition, the weights of these synapses should be higher than average because of
plasticity.

The RP&C primitive. It can be said that assembly operations, as described here, are powered
exclusively by two forces known to be crucial for life more generally: randomness and selection
(in addition to plasticity). No special-purpose neural circuits are required to be in place; all that
is needed is random synaptic connectivity between, and recurrently within, areas; and selection,
through inhibition in each area, of the k out of n cells currently receiving highest synaptic input.
All assembly computation described here consists of applications of this operator, which we call
random projection and cap (RC&P). We believe that RP&C is an important primitive of neural
computation, and computational learning more generally, and can be shown to have a number of
potentially useful properties. For example, we establish analytically and through simulations that
RP&C preserves overlap of assemblies remarkably well (as first noticed empirically in [7]). Finally,
we used RP&C in experiments as the nonlinearity in each layer of a deep neural network, in the
place of the sigmoid or the ReLU, and we found that it seems to perform at a level competitive
with these.

Association and pattern completion. In a recent experiment [21], electrocorticography
(eCoG) recordings of human subjects revealed that a neuron in a subject’s MTL consistently
responding to the image of a particular familiar place — such as the Pyramids — starts to also
respond to the image of a particular familiar person — say, the subject’s sibling — once a com-
bined image has been shown of this person in that place. A compelling parsimonious explanation
of this and many similar results is that two assemblies imprinting two different entities adapt to
the cooccurrence, or other observed affinity, of the entities they imprint by increasing their overlap,
with cells from each migrating to the other while other cells leave the assemblies to maintain its
size to k; we say that the two assemblies are associating with one another. The association of
two assemblies x and y in the same brain area is denoted associate(x, y), with the common area
area(x) = area(y) implicit. We can show analytically and through simulations that the simultane-
ous sustained firing of the two parents of x and y does effect such increase in overlap, while similar
results have been obtained by simulations of networks of spiking neurons through STDP [33].

Assemblies are large and in many ways random sets of neurons, and as a result any two of
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them, if in the same area, may overlap a little by chance. If the assembly size k is about the
square root of n, as we often assume in our simulations and quantitative analysis, this random
overlap should be at most a very small number of neurons. In contrast, overlap resulting from
the operation associate(x, y) is quite substantial: the results of [21] suggest an overlap between
associated assemblies in the MTL of about 8 − 10% of the size of an assembly. The association
between assemblies evokes a conception of a brain area as the arena of complex association patterns
between the area’s assemblies; for a discussion of certain mathematical aspects of this view see [3].

One important and well studied phenomenon involving assemblies is pattern completion: the
firing of the whole assembly x in response to the firing of a small subset of its cells [27]; presumably,
such completion happens with a certain a priori probability depending on the particular subset
firing. In our experiments pattern completion happens in a rather striking way, with small parts of
the assembly being able to complete very accurately the whole assembly (see Figure 1.F1 and F2).

We believe that association and pattern completion open up fascinating possibilities for a genre
of probabilistic computation through assemblies, a research direction which should be further pur-
sued.

Merge. The most sophisticated and complex operation in the repertoire of the Assembly Calculus
is merge. Denoted merge(x, y,A, z), this operation starts with two assemblies x and y, in different
brain areas, and creates a new assembly z, in a third area A, such that there is ample synaptic
connectivity from x and y to z, and also vice versa, from z to both x and y.

Linguists had long predicted that the human brain is capable of combining, in a particularly
strong sense, two separate entities to create a new entity representing this specific combination
[4, 19], and that this ability is recursive in that the combined entity can in turn be combined with
others. This is a crucial step in the creation of the hierarchies (trees of entities) that seem necessary
for the syntactic processing of language, but also for hierarchical thinking more generally (e.g.,
deduction, discourse, planning, story-telling, etc.). Recent fMRI experiments [40] have indicated
that, indeed, the completion of phrases and sentences (the completion of auditory stimuli such as
“hill top” and “ship sunk”) activates parts of Broca’s area — in particular, the pars opercularis
BA 44 for phrases, and the pars triangularis BA 45 for sentences. In contrast, unstructured word
sequences such as “hill ship” do not seem to activate Broca’s area. Recall that Broca’s area has
long been believed to be implicated in the syntactic processing of language.

A parsimonious explanation of these findings is that phrases and sentences are represented by
assemblies in Broca’s area that are the results of the merge of assemblies representing their con-
stituents (that is, assemblies for words such as “ship” and “sunk”); presumably the word assemblies
reside in Wernicke’s area implicated in word selection in language. As these hierarchies need to be
traversed both in the upward and in the downward direction (e.g., in the processes of language pars-
ing and language generation, respectively), it is natural to assume that merge must have two-way
connections between the new assembly and the constituent assemblies.

Our algorithm for implementing merge, explained in Section 2, is by far the most complex
in this work, as it involves the coordination of five different brain areas with ample reciprocal
connectivity between them, and requires stronger plasticity than other operations; our simulation
results are reported in Section 2, see also Figure 1.G1 –G2.

Finally, a simpler operation with similar yet milder complexity is reciprocal.project(x,A, y):
It is an extension of project(x,A, y), with the additional functionality that the resulting y has
strong backward synaptic connectivity to x. Reciprocal projection has been hypothesized to be
instrumental for implementing variable binding in the Brain — such as designating “cats” as the
subject of the sentence “cats chase mice,” see [26]. The plausibility of reciprocal.project has
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been experimentally verified through detailed simulations of networks of spiking neurons with STDP
[26], as well as in our simplified model.

Readout and control operations. The purpose of the Assembly Calculus is to provide a formal
system within which high level cognitive behavior can be expressed. Ultimately, we want to be able
to write meaningful programs — in fact, parallel programs — in this system, for example containing
segments such as:

if read(A) is null then project(x,A, y).

With this goal in mind, we next introduce certain additional low-level control operations, sensing
and affecting the state of the system.

First, a simple read operation. In an influential review paper on assemblies, Buzsáki [5] proposes
that, for assemblies to be functionally useful, readout mechanisms must exist that sense the current
state of the assembly system and trigger appropriate further action. Accordingly, the Assembly
Calculus contains an operation read(A) that identifies the assembly which has just fired in area A,
and returns null othewise.

Finally, the Assembly Calculus contains two simple control operations. We assume that an
assembly x in an area A can be explicitly caused to fire by the operation fire(x). That is to
say, at the time an assembly x is created, a mechanism is set in place for igniting it; in view
of the phenomenon of pattern completion discussed above, in which firing a tiny fragment of an
assembly leads to the whole assembly firing, this does not seem implausible. We also assume that by
default the excitatory cells in an area A are inhibited, unless explicitly disinhibited by the operation
disinhibit(A) for a limited period of time, whose end is marked by the operation inhibit(A);
the plausibility of the disinhibition–inhibition primitives is argued in [25] in terms of VIP cells [18].

Example: For a simple example of a program in the assembly calculus, the command project(x,B, y)
where area(x) = A, is equivalent to the following:

disinhibit(B)
repeat T times: fire(x)
inhibit(B)

Simulations show that, with typical parameters, a stable assembly is formed after about T = 10
steps. An alternative version of this program, relying on the function read, is the following:

disinhibit(B)
repeat fire(x) until read(B) is not null

inhibit(B)

For another simple example, the command associate(x, y) whose effect is to increase the
overlap of two assemblies in the same area A is tantamount to this:

disinhibit(A)
repeat T times: do in parallel {fire(parent((x)), fire(parent(y))}
inhibit(A)

A far more elaborate program in the Assembly Calculus, for a proposed implementation of the
creation of syntax trees in the generation of natural language, is described in the discussion section.

Computational power. It can be proved that the Assembly Calculus as defined above is capable
of implementing, under appropriate assumptions, arbitrary computations on O(nk ) bits of memory.
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Given the intended values of n and k, this is a rather remarkable computational capability, suggest-
ing — in view of the well established equivalence between parallel computation and space-bounded
computation [28] — that any parallel computation with several hundred parallel steps, and on
several hundred registers, can in principle be carried out by the Assembly Calculus.

The assembly hypothesis. The Assembly Calculus is a formal system with a repertoire of rather
sophisticated operations, where each of these operations can be ultimately reduced to the firing
of randomly connected populations of excitatory neurons with inhibition and Hebbian plasticity.
The ensuing computational power of the Assembly Calculus may embolden one to hypothesize that
such a computational system — or rather a neural system far less structured and precise, which
however can be usefully abstracted this way — underlies advanced cognitive functions, especially
in the human brain, such as reasoning, planning, and language.

Related work. Assemblies of excitatory neurons are, of course, not new: They have been hy-
pothesized [20, 2], identified in vivo [17, 5], studied experimentally [27] and discussed extensively
[10] over the past decades — even, occasionally, in connection to computation, see [35]. However,
we are not aware of previous work in which assemblies, with a suite of operations, are proposed as
the basis of a computational system intended to explain cognitive phenomena.

Assemblies and their operations as treated here bear a certain resemblance to the research tra-
dition of hyperdimensional computing, see [32, 22, 23], systems of high-dimensional sparse vectors
equipped with algebraic operations, typically component-wise addition, component-wise multipli-
cation, and permutation of dimensions. Indeed, an assembly can be thought as a high-dimensional
vector, namely the characteristic vector of its support; but this is where the similarity ends. While
assembly operations as introduced here are meant to model and predict cognitive function in the
Brain, hyperdimensional computing is a machine learning framework — inspired of course by the
Brain, like many other such frameworks — and used successfully, for example, for learning seman-
tics in natural language [23]. In sparse vector systems there is no underlying synaptic connectivity
between the dimensions, or partition of the dimensions into Brain areas. Finally, the operations
of the Assembly calculus (project, associate, merge) are very different in nature, style, detail, and
intent from the operations in sparse vector systems (add, multiply, permute).

Assembly computation is closer in spirit to Valiant’s model of neuroids and items [38], which
was an important source of inspiration for this work. One difference is that whereas in Valiant’s
model the neuron (called neuroid there) has considerable local computational power — for example,
to set its pre-synaptic weights to arbitrary values —, in our formalism computational power comes
from a minimalistic model of inhibition and plasticity; both models assume random connectivity.
Another important difference is that, in contrast to an item in Valiant’s theory, an assembly is
densely intraconnected, while the mechanism for its creation is described explicitly.

2 Results and Methods

Projection. The operation project(x,B, y) entails activating repeatedly assembly x while B is
disinhibited. Such repeated activation creates in the disinhibited area B a sequence of sets of k
cells, let us call them y1, y2, ..., yt, ... The mathematical details are quite involved, but the intuition
is the following: Cells in B can be thought of as competing for synaptic input. At the first step, only
x provides synaptic input, and thus y1 consists of the k cells in B which happen to have the highest
sum of synaptic weights originating in x — note that these weights are subsequently increased by
a factor of (1 + β) due to plasticity. At the second step, neurons both in x and y1 spike, and as
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a result a new set y2 of “winners” from among cells of B is selected; for typical parameters, y2
overlaps heavily with y1. This continues as long as x keeps firing, with certain cells in yt replaced
by either “new winners” — cells that never participated in a yt′ with t′ < t — or by “old winners,”
cells that did participate in some yt′ with t′ < t. We say that the process has converged when
when there are no new winners. Upon further firing of x, yt may evolve further slowly, or cycle
periodically, with past winners coming in and out of yt; in fact, this mode of assembly firing (cells
of the assembly alternating in firing) is very much in accordance with how assemblies have been
observed to fire in Ca+ imaging experiments in mice, see for example [6]. It is theoretically possible
that a new winner cell may come up after convergence; but it can be proved that this is a highly
unlikely event, and we have never noticed it in our simulations. The number of steps required
for convergence depends on the parameters, but most crucially on the plasticity coefficient β; this
dependence is fathomed analytically and through simulations in Figure 1.B4).

Density. It was postulated by Hebb [20] that assemblies are densely interconnected — presum-
ably such density was thought to cause their synchronized firing. Since assemblies are created by
projection, increased density is intuitively expected: cells in yt are selected to be highly connected
to yt−1, which is increasingly closer to yt as t increases. It is also observed in our simulations (see
Figure 1C) and predicted analytically in our model.

Association and pattern completion. Our simulations (Figure 1E), as well as analytical re-
sults, show that the overlap of two assemblies x, y in the same area increases substantially in
response of simultaneous firing of the two parent assemblies parent(x) and parent(y) (assumed to
be in two different areas). The amount of post-association overlap observed in our simulations is
compatible with the estimates in the literature [36, 8], and increases with the extent of co-occurrence
(the number of consecutive simultaneous activations of the two parents.

Since association between assemblies is thought to capture affinity of various sorts, the question
arises: If two associated assemblies x and y are both projected in another area, will the size of their
overlap be preserved? Our results, both analytical and through simulations, strongly suggest that
assembly overlap is indeed conserved reasonably well under projection (see Section 2 and Figure
1,). This is important, because it means that the signal of affinity between two assemblies is not
lost when the two assemblies are further projected in a new brain area.

Pattern completion involves the firing, with some probability, of an assembly x following the
firing of a few of its neurons [27, 6]. Simulations in our model (Figure 1.F2) show that, indeed, if
the creation of an assembly is completed with a sufficient number of activations of its parent, then
by firing fewer than half of the neurons of the assembly will result in most, or essentially all, of the
assembly firing.

Reciprocal projection and Merge. Reciprocal projection, denoted reciprocal.project(x,B, y),
is a more elaborate version of projection. It involves parent(x) firing, which causes x in area A to
fire, which in turn causes, as with ordinary projection, a set y1 in B to fire. The difference is that
now there is synaptic connectivity from area B to area A (in addition to connectivity from A to
B), which causes in the next step x to move slightly to a new assembly x1, while y1 has become y2.
This continuing interaction between the xt’s and the yt±1’s eventually converges, albeit slower than
with ordinary projection, and under conditions of ampler synaptic connectivity and plasticity. The
resulting assembly y has strong synaptic connectivity both to and from x (instead of only from x
to y, as is the case with ordinary projection). That reciprocal projection works as described above
has been shown both analytically and through simulations in our model, as well as in simulations
in a more realistic neural model with explicit inhibitory neurons and STDP in [25].
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The operation merge(x, y,A, z) is essentially a double reciprocal projection. It involves the
simultaneous repeated firing, in different areas, of the parents of both x and y, which causes the
simultaneous repeated firing, also in two different areas B and C, of x and y. In the presence of
enabled afferent two-way connectivity between A and B, and also between A and C, this initiates a
process whereby a new assembly z is eventually formed in area A, which through its firing modifies
the original assemblies x and y. In the resulting assemblies there is strong two-way synaptic
connectivity between x and z, as well as between y and z. Analytical and simulation results are
similar to those for reciprocal projection (see Figure 1.G1).

Simulations. We gain insights into the workings of our model, and validate our analytical results,
through simulations. In a typical simulation task, we need to simulate a number of discrete time
steps in two or three areas, in a random graph with ∼ n2p nodes (where the notation ∼ f means ”a
small constant multiple of f). Creating this graph requires ∼ n2p computation. Next, simulating
each firing step entails selecting, in each area, the k out of n cells that receive that largest synaptic
input. This takes ∼ knp computation per step. Since the number of steps needed for convergence
are typically much smaller than the ratio n

k , the n2p computation for the creation of the graph
dominates the computational requirements of the whole simulation (recall that n >> k).

In our simulator we employ a maneuver which reduces this requirement to ∼ knp, enabling
simulations of the required scale on a laptop. The trick is this: We do not generate all ∼ n2p
edges of the random graph a priori, but generate them “on demand” as the simulation proceeds.
Once we know which cells fired at the previous step, we generate the k cells in the area of interest
that receive the most synaptic input, as well as their incoming synapses from the firing cells, by
sampling from the tail of the appropriate Bernoulli distribution; we then compare with previously
generated cells in the same area to select the k cells that will fire next.

3 Discussion

We have defined a formal system intended to model the computations underlying cognitive func-
tions. Its elementary object is an assembly, a set of excitatory neurons all belonging to the same
brain area, and capable of near-simultaneous firing. The operations of this system enable an assem-
bly to create a “copy” of itself in a new brain area through projection; two assemblies to increase
their overlap in order to reflect observed co-occurrence in the world or other similarity; and, fur-
thermore, two assemblies to create a new assembly with ample connectivity to and from the two
original ones. These operations do not rely on pre-existing neural circuits; instead, their apparatus
is generated on-the-fly, with high probability, through plasticity and randomness of synaptic con-
nectivity. The resulting formal system, equipped with certain simple control operations, is fraught
with considerable computational power. Central to our work is the speculation that something akin
to this formal system may underly cognitive functions, especially in the human brain.

What is an assembly, exactly? The precise definition is a conundrum. In our narrative so far,
assembly is simply a set of k excitatory neurons in a brain area capable of synchronous firing.
According to Hebb’s prediction [20] as well as current observations [27] and neurorealistic simu-
lations [33], the neurons of an assembly are not all activated simultaneously, but instead fire in
a“pattern” with different neurons firing at different times3. In our formalism, and in our analytical
proofs and our experiments, the assumption of discrete time steps suppresses to a large extent this
sequential behavior. But even in our model, once the projection project(x,B, y) has stabilized
(no new neurons in area B fire that had never fired before), a small number of neurons often keep

3In musical metaphor, an assembly is thought to be not an octave but a cord sequence.
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coming in and out of the spiking set yt. One possible principled definition of an assembly is this:
an assembly in an area B is a sparse distribution on the neurons of area B, whose support (the set
of neurons with non-zero probability) is not much larger than k.

One novel aspect of our assembly operations is the crucial role of plasticity. While plasticity
is well studied as an important aspect of the way the brain works and learning happens, we are
not aware of many models in which plasticity takes place at the sub-second time scale, as it is
hypothesized to do in assembly operations. Our use of assemblies as the basis of a computational
system also departs from the usual discourse on assemblies, typically considered, implicitly, as fairly
stable representations. In contrast, here we conjecture that assemblies can be formed and modified
by the human brain at 4 Hz, the frequency of syllables in language (see the discussion on language
below).

Our results and simulations assume uniformly random synaptic connectivity; however, exper-
imental measurements [37, 16] suggest a departure from uniformity (but not from randomness).
Our analytical results can be extended routinely to non-uniform random synaptic connectivity of
this kind. In fact, our conclusions regarding the density and stability of assemblies can be further
strengthened in such regimes. For example, suppose that, conditioned on the existence of two
directed edges (a, b) and (a, c), the presence of edge (b, c) is much more likely, as concluded in
[37]. Depending on the precise values of the parameters n, k, p, this would likely trigger a “birth-
day paradox” phenomenon (existence of two assembly cells b, c with synaptic connections from the
same cell a of the parent assembly) that would further enhance the synaptic density, and hence the
stability, of assemblies.

The basic operations of the Assembly Calculus as presented here — projection, association,
reciprocal projection, and merge — correspond to neural population events which (1) are plausible,
in the sense that they can be reproduced in simulations and predicted by mathematical analysis, and
(2) provide parsimonious explanations of experimental results (for the merge and reciprocal project
operations see the discussion of language below). In contrast, the read and control operations
— read, fire, disinhibit —, however simple and elementary, lack in such justification, and were
added for the purpose of rendering the Assembly Calculus a programmable computational system.
Replacing them with more biologically plausible control operations leading to the same effect would
be very interesting.

Assemblies and Language. We hypothesized that assemblies and their operations may be
involved in mediating higher cognitive functions in humans. In ending, we speculate below on how
assemblies may be implicated in language.

Linguists have long argued that the language faculty is unique to humans, and that the human
brain’s capability for syntax (i.e., for mastering the rules that govern the structure of sentences
in a language) lies at the core of this ability [19, 4]. In particular, the linguistic primitive Merge
has been proposed as a minimalistic basis of syntax. Merge combines two syntactic units to form
one new syntactic unit; recursive applications of Merge can create a syntax tree, which captures
the structure of a sentence (see Figure 3(a)). If this theory is correct, then which are the brain
correlates of syntax and Merge? Recent experiments provide some clues — see [15] for an extremely
comprehensive and informative recent treatment of the subject.

• Two different brain areas of the left superior temporal gyrus (which contains Wernicke’s area,
known since the 19th century to be implicated in the use of words in language) seem to
respond to the subject vs the object of a presented sentence [13];

• The completion of phrases and sentences presented is marked by activity in Broca’s area in
the left hemisphere [39], known to be implicated in syntax;
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• A sequence of sentences consisting of four monosyllabic words (such as “bad cats eat fish”)
presented at the rate of four words per second (the natural frequency of articulated syllables)
elicit a pattern of brain responses, with energy peaks at one, two, and four Hz, consistent
with the hypothesis that syntax trees for the sentences are being constructed during the
presentation [9].

If one accepts the hypothesis that indeed something akin to syntax trees is constructed in our
brain during the parsing — and presumably also during the generation — of sentences, one must
next ask: how is this accomplished? According to [15] Chapter 4, these and a plethora of other
experimental results point to a functional cortical network for lexical and syntactic processing, in-
volving the MTL, Broca’s areas BA 44 an BA 45, and Wernicke’s area in the superior temporal
gyrus, as well as axon fibers connecting these four areas, all in the left hemisphere. Syntactic
processing of language seems to entail a complex sequence of activations of these areas and trans-
mission through these fibers. How is this orchestrated sequence of events carried out? Does it
involve the generation and processing, on-the-fly, of representations of the constituents of language
(words, phrases, sentences)? Angela Friederici [15] proposes in page 134 that “for language there
are what I call mirror neural ensembles through which two distinct brain regions communicate with
each other.” Could it be that assemblies and their operations play this role?

We propose a dynamic brain architecture for the generation of a simple sentence, powered by
assemblies and the operations reciprocal.project and merge, and consistent with the experi-
mental results and their interpretations outlined above (see Figure 3). In particular, we propose
that the construction of the syntax tree of a simple sentence being generated by a subject can be
implemented by the following program of the Assembly Calculus:

do in parallel: find-verb(Im,MTL, x), find-subj(Im,MTL, y), find-obj(Im,MTL, z);
do in parallel: reciprocal.project(x,WVb, x′),

reciprocal.project(y,WSubj, y′), reciprocal.project(x,WObj, z′);
merge(x′, z′,Broca44, p);
merge(y′, p,Broca45, s)

The generation of a sentence such as “the boy kicks the ball” starts with a desire by the subject to
assemble — and possibly articulate — a particular fact. The raw fact to be put together is denoted
here by Im — an image, sensed or mental. In the first line, the subject’s lexicon, presumably a
collection of tens of thousands of assemblies in the medial temporal lobe (MTL), is searched in
order to identify the verb (the action in the fact relayed in Im); the subject (the agent of the
fact); and the object (the patient of the fact). We assume that the corresponding brain functions
find-verb etc. are already in place. For the example “the boy kicks the ball”, the three assemblies
x, y, and z are identified, encoding the words “kick”, “boy”, and “ball”, respectively. In the second
line, these three assemblies are projected to the three sub-areas of Wernicke’s area specializing in
the verb, subject, and object of sentences, respectively. In fact, instead of ordinary projection, the
reciprocal.project operation is used, as first proposed in [25], for reasons that will become clear
soon. Next, an assembly p is formed in the pars opercularis of Broca’s area (BA 44) representing
the verb phrase “kicks the ball” through the merge operation applied to the two assemblies x′

and z′ encoding the constituent words of the phrase in Wernicke’s area. Finally, an assembly s
corresponding to the whole sentence is formed in the pars triangularis of Broca’s area (BA 45)
via the merge of assemblies p and y′, completing the construction of the syntax tree of the whole
sentence.

The Assembly Calculus program above accounts only for the first phase of sentence production,
during which the syntax tree of the sentence is constructed. Next the sentence formed may be
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articulated, and we can speculate on how this process is carried out: Assembly s is activated,
and this eventually causes the assemblies x′, y′, z′ — the leaves of the syntax tree — to fire. The
activation of these three assemblies is done in the order specific to the speaker’s language learned at
infancy (for example, in English subject-verb-object); note that the first phase of building the syntax
tree was largely language independent. Eventually, the lexicon assemblies will be activated in the
correct order (this activation was the purpose of utilizing the reciprocal.project operation), and
these in turn will activate the appropriate motor functions which will ultimately translate the word
sequence into sounds.

The above narrative is only about the building of the basic syntactic structure — the “scaffold”
— of extremely simple sentences, and does not account for many other facets: how the three find-

tasks in the first line are implemented; how the noun phrases are adorned by determiners such
as “the” and how the verb is modified to reflect person or tense (“kicks” or “kicked”); and the
important inverse processes of parsing and comprehension, among a myriad of other aspects of
language that remain a mystery.
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Figure 1: Assembly operations. A RP&C: If an assembly x fires in area A, and there is
afferent connectivity to area B, the ensuing synaptic input will cause a set of k neurons in area B,
call it y, to fire. The set y contains the k neurons in area B that receive the highest synaptic input
from assembly x. This is an important primitive called random projection and cap (RP&C). B1 –
B3: If assembly x fires again, afferent synaptic input from area A will be combined with recurrent
synaptic input from y1 in area B to cause a new set of k neurons in area B, y2, to fire. Continued
firing of x will create a sequence of sets of firing neurons in B: y1, y2, y3, . . . In the presence of
Hebbian plasticity, this sequence converges exponentially fast to a set of neurons, an assembly y
which we call the projection of x to B. If subsequently x fires, y will follow suit. B4 Exponential
convergence of assembly projection: The horizontal axis is the number of times assembly x
fires; the vertical axis is the total number of neurons in area B that fired in the process. Different
color lines represent different values of the plasticity coefficient β; for higher levels of β, convergence
is faster. C: Synaptic density within the resulting assembly increases with higher values of β (blue
line), and is always higher than the baseline random synaptic connectivity p (dotted red line). D
Preservation of overlap: Assembly overlap is preserved under RC&P. The x axis represents the
overlap in two assemblies that are then projected to a new area once (RC&P); the y axis represents
the percentage overlap of the two resulting assemblies in B. E Association: If two assemblies in
two different areas have been independently projected in a third area to form assemblies x and y,
and subsequently the two parent assemblies fire simultaneously, then each of x, y will respond by
having some of its neurons migrate to the other assembly; this is called association of x and y.
Such overlap due to association may reach 8− 10% [21]. The figure shows results from simulation:
first, two separate, stable assemblies are created in two areas A and B. Then, the assemblies in A
and B are projected simultaneously into C for x time steps, represented by the x axis; the y axis
shows the resulting overlap in the projected assemblies of A and B after the simultaneous firing.
F1 Pattern completion: The firing of a few cells of an assembly results in the firing of the whole
assembly. F2: An assembly is created in an area A by repeated firing of its parent; the number
of times the parent fires is depicted in the horizontal axis. Next, 40% of neurons of the assembly
are selected at random and fire for a number of steps: the y axis shows the overlap of the resulting
assembly with the original assembly. With more reinforcement of the original assembly, the subset
recovers nearly all of the original assembly. G1 Merge: The most advanced, and demanding
in its implementation, operation of the Assembly Calculus involves five brain areas: areas B and
C contain the assemblies x, y to be merged, while areas B′ and C ′ contain the parents of these
assemblies. The simultaneous spiking of the parents induces the firing of x and y, which then
initiates a process whereby two-way afferent computation between B and A, as well as C and A,
results in the adjustment of both x and y and the creation of an assembly z in A having strong
synaptic connections to and from both x and y. G2: Speed of convergence depends critically on β.
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Figure 2

Figure 2: A mathematical model of the brain. Our analytical results, as well as most of
our simulations, use a novel formal model of the brain, intended to capture cognitive phenomena
in the association cortex. Our model encompasses a finite number of brain areas denoted A,B, ...
each containing n excitatory neurons. We assume that any pair of neurons in each area have a
recurrent synaptic connection independently with probability p; and that for certain pairs of areas
(A,B) there are also afferent connection from any neuron in A to any in B, also independently
and with probability p. We assume that firing of neurons proceeds in discrete steps, and at each
step k of the neurons in each area fire: namely, those k neurons which have the largest sum of
presynaptic inputs from neurons that fired in the previous step. Synaptic weights are modified in
a Hebbian fashion, in that synapses that fired (i.e., the presynaptic neuron fired and in the next
step the postsynaptic neuron did) have their weight multiplied by (1 + β), where β is a plasticity
constant. In our simulations we typically use n = 107, k = 104, p = 0.001, and β = 0.1.
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Figure 3

Figure 3: A proposed cortical architecture for syntax in language (see also [15]). In
order to generate a simple sentence such as “the boy kicks the ball,” the subject must first find
in the left MTL the representations of the verb, subject and object of the sentence. Next, these
three assemblies are reciprocal-projected to the corresponding subareas of Wernicke’s area. Next
the verb and the object are merged in BA 44 of Broca’s area to form a representation p of the verb
phrase “kicks the ball”, and finally p is merged with the subject to create a representation s of the
whole sentence in BA 45. This concludes the phase of building of the sentence’s syntax tree. Now
in order to articulate the sentence, s fires and this results in the firing of the constituents of the
tree, until eventually the three words in the MTL fire in the correct order for the subject’s language
— an order learned at infancy (in English, subject-verb-object). This latter activation of the three
words mobilizes the corresponding motor functions resulting in the production of sound.
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