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ABSTRACT Sexual selection and divergent selection are among the major driving forces of reproductive isolation, which
could eventually result in speciation. A magic trait is defined such that a single trait is subject to both divergent selection
and sexual selection through phenotype-based assortative mating. We are here interested in the evolutionary behavior
of alleles in a genetic locus responsible for a magic trait. We assume that, in a pair of homogeneous subpopulations, a
mutant allele arises at the magic trait locus, and theoretically obtain the probability that the new allele establishes in
the population. We also consider the trajectory of allele frequency along the establishment. Divergent selection simply
favors the new allele to fix where it is beneficial, whereas assortative mating works against rare alleles. It is theoretically
demonstrated that the fate of the new allele is determined by the relative contributions of the two selective forces,
divergent selection and assortative mating, when the allele is rare so that the two selective forces counteract. We also
show that random genetic drift also plays an important role. The theoretical results would contribute to improve our
understanding of how natural selection initiates speciation.
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8Speciation occurs when reproductive isolation establishes between different populations. Sexual 9

selection is one of the major forces driving reproductive isolation (Coyne and Orr 2004). Specia- 10

tion driven by sexual selection could occur when phenotypic difference is involved in mate choice. 11

Several theoretical models indicated that sexual selection alone can lead speciation even in the face 12

of gene flow (Wu 1985; Turner and Burrows 1995; Higashi et al. 1999; Takimoto et al. 2000), but these 13

results largely rely on their assumptions such as ample genetic variation, symmetric distribution 14

of female preference or strong female choice (Arnegard and Kondrashov 2004; Gavrilets 2004), and 15

empirically not well supported yet as reviewed in Ritchie (2007). At the moment, it is considered 16

that speciation by sexual selection alone is difficult to occur (Gavrilets 2004). This is largely because 17

diversity in female preference is difficult to maintain, rather disappears by genetic drift as female 18

preference is not directly subject to selection (i.e., selection works through male phenotype). Ritchie 19

(2007) pointed out that sexual selection should work efficiently together with niche specialization or 20

local adaptation. 21

Synergy between local adaptation and assortative mating can be a powerful driver of speciation 22

(Gavrilets 2004). Establishment of a locally adaptive mutation could lead stable genetic divergence 23

between local populations in different environments, even in the face of gene flow between them. 24

If there is another locus that is involved in sexual selection, it also reduces gene flow between 25

populations. This effect is particularly strong when the locus is genetically linked to the target 26

locus of local adaptation and an extreme case is that a single locus is pleiotropically subject to 27

both divergent selection and sexual selection. Models that handle sexual selection at a locus under 28
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divergent selection are called "magic trait" models (Gavrilets 2004; Servedio et al. 2011). Previous1

theoretical studies revealed that the magic trait models are one of the easiest scenarios of speciation2

with gene flow (see Gavrilets 2004; Kopp et al. 2018, for reviews). There are many potential examples3

of a magic trait in nature (Maan and Seehausen 2011; Servedio et al. 2011), suggesting importance4

of the establishment process of a magic trait for speciation. In the present article, we specifically5

focus on a case of a single magic trait locus, which produces a phenotype difference and undergoes6

similarity-based mating (i.e., females prefer males with similar phenotypes).7

Many theoretical models have considered a magic trait that is subject to both natural selection8

and similarity-based assortative mating (Dieckmann and Doebeli 1999; Matessi et al. 2001; Doebeli9

and Dieckmann 2003; Kirkpatrick and Nuismer 2004; Bürger and Schneider 2006; Otto et al. 2008;10

Pennings et al. 2008; Thibert-Plante and Gavrilets 2013; Rettelbach et al. 2013; Servedio and Bürger11

2015; Cotto and Servedio 2017) (see Kirkpatrick and Ravigné 2002; Gavrilets 2004; Weissing et al. 2011;12

Servedio and Boughman 2017; Kopp et al. 2018, for review). However, these models often consider13

too complicated scenarios that, for example, a magic trait contributes to speciation in interaction with14

other traits or other selective forces, making it difficult to understand the relative contribution of the15

magic trait.16

So far, theoretical arguments on the evolutionary dynamics of a magic trait have been only based17

on limited studies in an infinite population (Slatkin 1982; Kisdi and Priklopil 2011). Slatkin (1982)18

considered a haploid infinite-size island population connected to a stable continent population,19

between which migration is allowed. The model involves a single magic trait locus, at which two20

alternative alleles are considered: One allele is preferred in the island subpopulation, and the other21

allele is fixed in the continent subpopulation. In addition, assortative mating is incorporated by22

assuming that mating pairs of haploid individuals with different alleles produce fewer offsprings23

than pairs with the same alleles. Although this mode of selection is categorized into fecundity24

selection, it is mathematically identical to assortative mating, where females dislike to mate with25

males having different alleles. Slatkin (1982) analytically showed that successful invasion of a new26

allele requires a larger selection coefficient of adaptive selection than the sum of the migration27

rate and strength of assortative mating, both of which have an effect against the invasion of new28

alleles. Additionally, the author derived the critical migration rate, over which polymorphic state29

is unstable so that new alleles likely become extinct. Recently, Kisdi and Priklopil (2011) explored30

the evolutionary branching of a magic trait in an infinite population, although this model is not31

very relevant to our interest because the magic trait is quantitative determined by multiple genes.32

While the analysis assuming an infinite population gives a great deal of insight, it is also important33

to consider this process in a finite population with the stochasticity of random genetic drift. To our34

best knowledge, there has been no research which explored analytically the establishment process35

of a magic trait in stochastic two-population models, while some theoretical results are available in36

one-population models (Yamamichi and Sasaki 2013; Newberry et al. 2016).37

To understand the effect of random genetic drift, we here consider a two-population model with38

bidirectional migration and derive the establishment probability of an allele which is pleiotropically39

subject to both divergent selection and assortative mating. Our model can arbitrarily set the sizes of40

the two populations, so that Slatkin (1982)’s situation (with the assumption of infinite population41

size) can be a special case of our model. We consider haploid and diploid models, and obtain42

theoretical expressions of the establishment probability and the trajectory of allele frequency along43

the establishment. Our derivation of the establishment probability largely relies on the approximation44

method developed by Yeaman and Otto (2011). Yeaman and Otto (2011) considered divergent45

selection alone in a two-population model and derived an approximate formula for the establishment46

probability of a locally adaptive allele (for theoretical works on this model of selection, see also Pollak47
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1966; Barton 1987; Tomasini and Peischl 2018; Sakamoto and Innan 2019). The authors developed a 1

heuristic method, which essentially focuses on the process in the adaptive subpopulation, rather than 2

considering the dual process in the adaptive and maladaptive subpopulations. This is because the 3

establishment probability is largely determined by how the focal allele increases in frequency when 4

it invades into the adaptive population, and the process in the maladaptive subpopulation does not 5

play a crucial role. The authors showed that Kimura’s formula (Kimura 1962) well approximates the 6

establishment probability when an adaptive allele arises in the adapted subpopulation if the selection 7

coefficient is replaced by the leading eigenvalue of transition matrix of deterministic dynamics. In 8

this work, following the idea of Yeaman and Otto (2011), we successfully derive the establishment 9

probability in haploid and diploid models, not only when an adaptive allele arises in the adapted 10

subpopulation but also when an adaptive allele arises in the maladapted subpopulation. 11

MODEL 12

We use a discrete-generation two-population model, between which bidirectional migration is 13

allowed, and we consider both haploid and diploid cases. The assumptions and model settings 14

shared by the haploid and diploid models are described here. The sizes of subpopulations I and II 15

are assumed to be N1 and N2, respectively. On average, N1m1 = N2m2 individuals are exchanged 16

per generation where m1 and m2 are backward migration rate of subpopulation I and II, respectively. 17

There are two alleles, A and a, on which selection works. Allele A is favored in subpopulation I, and 18

disfavored in subpopulation II. Assuming no recurrent mutation between alleles A and a, we focus 19

on the behavior of allele frequencies to obtain the establishment probability of allele A forward in 20

time. Life cycle is assumed to be in the order of selection, mating and migration in each generation. 21

The major difference between the haploid and diploid models is in how selection works. We assume 22

that the fitness of allele a is 1, and the fitness of allele A is given depending on the model, as will be 23

explained below. 24

Haploid Model 25

In the haploid model, we simply assume that the fitness of allele A is 1 + s1 > 1 in subpopulation I, 26

but 1 + s2 < 1 in subpopulation II. Let pi be the allele frequency of allele A in subpopulation i. Then, 27

the expected frequency of allele A after the selection event is 28

p′i =
(1 + si)pi

1 + si pi
. (1)

In the mating event, reproductive opportunity of a female is independent of her genotype. Assor- 29

tative mating occurs such that a female avoids mating with male who has a different allele from hers 30

with probability α. Then, the expected frequency of allele A after the mating event is given by 31

p′′i = p′i
p′i

1− α(1− p′i)
+

p′i
2
(1− α)(1− p′i)
1− α(1− p′i)

+
1− p′i

2
(1− α)p′i
1− αp′i

. (2)

We assume that individuals that constitute the next generation are randomly produced by binomial 32

sampling with p′′i . After this mating event, N1m1 = N2m2 individuals are exchanged between 33

subpopulations in the migration event. 34

Diploid Model 35

In the diploid model, we consider the dominance effect on the phenotype, based on which assortative 36

mating works. We assume allele A has a dominance coefficient, h, which means that if genotype AA 37
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and genotype aa have trait values PAA and Paa, respectively, the trait value of genotype Aa is given1

by hPAA + (1− h)Paa. We put pi, qi and ri as the genotype frequency of AA, Aa and aa, respectively,2

in subpopulation i.3

In the selection event, we assume the fitness of genotype AA, Aa and aa are 1 + s1, 1 + hs1 and4

1 in subpopulation I, and 1 + s2, 1 + hs2 and 1 in subpopulation II (s1 > 0 and s2 < 0). Then, the5

expectation of frequencies of AA, Aa after the selection event are given by6

p′i =
(1 + si)pi

1 + si(pi + hqi)

q′i =
(1 + hsi)qi

1 + si(pi + hqi)
,

(3)

respectively, and the expected frequency of aa is given by r′i = 1− p′i − q′i.7

In the mating event, a female avoids mating with a male who has a different trait from hers. To8

incorporate the effect of dominance, we assume that a female avoids mating proportional to the trait9

difference, and that genotype AA avoids mating with genotype aa with probability α. Then, the10

expected frequencies of genotype AA and aa after the mating event are11

p′′i = p′i
p′i

1− (1− h)αq′i − αr′i
+

p′i
2

(1− (1− h)α)q′i
1− (1− h)αq′i − αr′i

+
q′i
2

(1− (1− h)α)p′i
1− (1− h)αp′i − hαr′i

+
q′i
4

q′i
1− (1− h)αp′i − hαr′i

r′′i = r′i
r′i

1− αp′i − hαq′i
+

r′i
2

(1− hα)q′i
1− αp′i − hαq′i

+
q′i
2

(1− hα)r′i
1− (1− h)αp′i − hαr′i

+
q′i
4

q′i
1− (1− h)αp′i − hαr′i

,

(4)

respectively, and the expected frequency of Aa are given by q′′i = 1− p′′i − r′′i . According to these12

probabilities p′′i and q′′i , individuals for the next generation is produced by multinomial sampling.13

After that, N1m1 = N2m2 individuals are exchanged between subpopulations (migration event).14

RESULT15

Establishment Probability in the Haploid Model16

The initial state is that all individuals have allele a in both subpopulations. First, we derive the17

establishment probability of allele A which arises in subpopulation I with initial frequency 1
N1

. We18

assume mi � |si|, α to ensure the stable maintenance of divergence (see below). By assuming that19

|si|, α, mi � 1 and ignoring the second order of these parameters, the expected changes in allele20

frequency in one generation are given by21

Mp1 = (s1 −
α

2
+ αp1)p1(1− p1) + m1(p2 − p1)

Mp2 = (s2 −
α

2
+ αp2)p2(1− p2) + m2(p1 − p2).

(5)

The change of allele frequencies, p1 and p2, can be well described by a two-dimensional diffusion22

equation, which is unfortunately very difficult to solve. Alternatively, we use the heuristic approach23

4
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developed by Yeaman and Otto (2011), which stemmed from their demonstration that the establish- 1

ment probability of an allele which arises in the adapted subpopulation can be approximated by the 2

establishment probability of an allele under directional selection if the selection intensity is replaced 3

by the leading eigenvalue of transition matrix of deterministic process. This means that the leading 4

eigenvalue is considered to represent the ‘effective’ strength of natural selection on allele A which 5

arises in subpopulation I. 6

The deterministic process considering divergent selection and migration (but not assortative 7

mating) is described as 8

d
dt

p1

p2

 =

s1 −m1 m1

m2 s2 −m2

p1

p2

 . (6)

The leading eigenvalue of the transition matrix in Equation 6, λ, is given by 9

λ =
1
2

[
(s1 + s2 −m1 −m2) +

√
(s1 − s2 −m1 + m2)2 + 4m1m2

]
. (7)

Following Yeaman and Otto (2011), the expected change in allele frequency in one generation is 10

approximated in the one-population system: 11

Mp = (λ− α

2
+ αp)p(1− p). (8)

Then, the establishment probability of allele A which newly arises in subpopulation I, u1, is given 12

along Kimura’s formula (Kimura 1962) as 13

u1 =

∫ 1/N1
0 G(x)dx∫ 1

0 G(x)dx
, (9)

where G(x) = e−2N1(λ− α
2 )x−N1αx2

. 14

Next, we derive the establishment probability of allele A that newly arises in subpopulation II 15

with initial frequency 1
N2

. Because allele A is maladaptive in subpopulation II, we can assume that 16

the frequency of allele A in subpopulation II should be kept low due to divergent selection, so 17

that the process should be described by the branching process. The selection coefficient against 18

allele A is s2 − α
2 in subpopulation II. Then, the establishment probability of allele A which arises in 19

subpopulation II is approximated by 20

u2 ≈ u1
c

1− b
−

u2
1

2
c2

(1− b)3 , (10)

where b = (1 + s2− α
2 )(1−m2), c = (1 + s2− α

2 )m2. For the details of the derivation, see APPENDIX 21

A. 22

The accuracy of our derivation was checked by simulations (Figure 1). Forward simulations 23

were carried out under the haploid model to obtain u1 and u2, with initial frequency of allele A 24

(p1, p2) = (1/N1, 0) and (0, 1/N2), respectively. For each parameter set, we ran≥100,000 replications 25

and counted the number of replications in which A establishes in the simulated population. The 26

“establishment" is defined such that the new introduced mutation is still present after 5N1 generations 27

passed. It should be noted that, according to our definition, the established replications include two 28

cases; case C where alleles A and a coexist, namely, allele A is nearly fixed in subpopulation I while 29

5
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allele a is nearly fixed in subpopulation II, typical to strong divergent selection, and case F where1

allele A is fixed in both subpopulations. Let Pc be the relative proportion of case C in established2

replications. In Figure 1, a gray region is placed such that Pc > 0.9 in the left, while Pc < 0.1 in the3

right. According to our derivation, u1 and u2 from Equations 9 and 10 evaluate the sum of these two4

cases, so that they are comparable to the result of our simulations, although our interest is in case C5

where strong divergent selection is maintaining the two alleles (i.e., left of the gray region).6

Figure 1 show the establishment probability derived from Equations 9 and 10 as a function of7

migration rate, together with the simulation results. We fix s1 = 0.02 and s2 = −0.01, and the strength8

of assortative mating is changed (α = 0.01, 0.02, 0.03, 0.04, 0.05). In Figure 1, three pairs of N1 and N29

were considered; (A): N1 = N2 = 2000; (B): N1 = 2000, N2 = 10000; (C): N1 = 10000, N2 = 2000. It is10

found that Equations 9 and 10 generally agree well with the simulation result when the selection11

intensity is on the order of 1
N � si, α� 1.12

When the effect of assortative mating is very weak (i.e., α = 0.01, the top left panel in Figures 1A,13

B, C), our results are overall similar to our previous work (Sakamoto and Innan 2019): when the14

migration rate is very low, the two subpopulations can be treated independently, so that u1 ∼ 2λ15

where λ = s1 if we ignore assortative mating, while u2 ∼ 0. As the migration rate increases, u116

decreases and u2 increases, and they become similar to each other for a large migration rate. Because17

allele A is advantageous only in subpopulation I, this beneficial effect would be reduced with18

increasing the migration rate, and vise versa for allele a. When the migration rate is very large19

(m ∼ 0.5), the two subpopulations can be considered as a single random-mating population, and the20

fixation probability of a single mutation is mainly determined by the average selection coefficient,21

u1 = u2 =

∫ 1/NT
0 G(x)dx∫ 1

0 G(x)dx
, (11)

where G(x) = e−2NT(s̄− α
2 )x−NTαx2

, s̄ = N1s1+N2s2
NT

and NT = N1 + N2 (presented by a triangle in22

Figure 1). The gray region for 0.1 ≤ Pc ≤ 0.9 is placed in a narrow window of the migration rate,23

indicating that a fairly small difference in the migration rate around the gray region could change the24

typical outcome dramatically. In the right of the gray region, the established probability essentially25

means that allele A is fixed in both subpopulations, whereas in the left, the two alleles are nearly26

fixed in each subpopulation (i.e., divergent selection is maintaining them).27

In the following, the effect of α on ui is explained along with the symmetric case (N1 = N2 = 2000)28

shown in Figure 1A. Allele A is favored in subpopulation I through divergent selection, which29

is a positive force for its establishment, although this positive effect is weakened by migration.30

Mathematically, λ in Equation 7 can be considered as the effective intensity of divergent selection,31

where migration is taken into account. In contrast, assortative mating is a negative force when allele32

A is rare, which works to make allele A difficult to increase in frequency. This is because allele33

A has to mate with allele a in most cases (i.e., reproduction is less successful). Thus, the relative34

contributions of divergent selection and assortative mating largely determines the fate of allele A.35

Let us first assume a very small migration rate (see the left end at m1 = 5× 10 −5 in each panel36

in Figure 1A). If we ignore migration, λ is simply given by si and the total strength of selection37

(divergent selection and assortative mating) on allele A is roughly given by si − α
2 in subpopulation38

i. As expected, the established probability u1 and u2 decrease with increasing α. When assortative39

mating is weak (α = 0.01 ∼ 0.03 in Figure 1A), u1 could be roughly approximated by u1 = 2s1 − α.40

When α = 0.04, we have 2s1− α = 0, where the two selective forces should roughly cancel each other,41

but it seems that u1 exceeds the neutral expectation (1/N1) because the negative effect of assortative42

mating is relaxed when p1 increases. The establishment probability u1 is very low for α > 0.04, where43
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selection in total works against allele A due to strong assortative mating. It should be interesting to 1

point out that, even with strong assortative mating, allele A can establish if A happens to increase in 2

frequency by random genetic drift. Once allele A becomes common, the negative effect of assortative 3

mating is somehow reduced, and it could successfully go to the establishment by the positive effect 4

of divergent selection. 5

As the migration rate increases, the intensity of divergent selection is effectively weaken, so that 6

u1 decreases. At the limit of free migration, we have u1 = u2 is given by Equation 11 as mentioned 7

above. The location of the gray region is quite constant over the range of α. This robustness to 8

α should be because the eventual fate of A (i.e., cases C or F) is mainly determined by divergent 9

selection because assortative mating works efficiently only when allele A is rare, namely, shortly 10

after it arises in the population. Once allele A increases and exceed a certain frequency, allele A may 11

not be so deleterious because there are many allele A to mate with no reproductive reduction. 12

Focusing on u1, Figure 2 explores a wider parametric space for s1 and α while the other parameters 13

are fixed (m1 = m2 = 0.005 and s2 = −0.02). To demonstrate the effect of the population size, three 14

population sizes are considered assuming the same population sizes in the two subpopulations 15

(N = N1 = N2 = 2000, 6000, 20000). In each panel, analytical and simulation results are shown: 16

Analytical results from Equation 2 are presented by the color of the background, while colors inside 17

the circles represent simulation results. 18

Again, the overall agreement of colors in the circle and those in the background suggest excellent 19

performance of Equation 9 for a wide range of the parameter set. It seems that our analytical result 20

slightly overestimates the establishment probability when si and α are so large that the establishment 21

probability is sensitive to the second order of si, α, which were ignored in our derivation. The blue 22

dashed line represents 2λ = α, where the two selective forces roughly cancel each other so that it 23

can be theoretically considered as a threshold of establishment in an infinite population. When the 24

population size is very large, u1 drops quickly above the line, whereas allele A may establish even 25

above the line when the population size is small, because of random genetic drift. 26

Establishment Probability in the Diploid Model 27

The initial state is that all individuals are aa homozygotes in both subpopulations. We first consider 28

the establishment probability of allele A which newly arises in subpopulation I with initial frequency 29

1
2N1

. As well as our derivation for the haploid model, we approximate the two-population process by 30

a one-population system by focusing the establishment process in subpopulation I alone (Yeaman 31

and Otto 2011). To do so, the fitnesses of genotypes AA, Aa and aa are given by 1 + λ, 1 + hλ and 1, 32

respectively, where λ is the effective strength of natural selection as defined above. Allele A can be 33

considered dominant over allele a when h = 1, and recessive when h = 0. Following Yeaman and 34

Otto (2011), we assume that the leading eigenvalue of transition matrix approximates the growth 35

rate of allele A in a virtual one-population system (when allele A is rare). Then, λ is given by 36

hλ =
1
2

[
(hs1 + hs2 −m1 −m2) +

√
(hs1 − hs2 −m1 + m2)2 + 4m1m2

]
, (12)

where we assume fairly strong selection, say hsi is as large as on the order of 1
Ni

. 37

Given Equation 12, Mp and Mq, the expected changes in the genotype frequencies of AA and Aa 38

in one generation, are obtained by assuming that λ, α� 1 and ignoring the second order of these, 39

and the Kolmogorov’s forward equation is given by 40

∂φ

∂t
= −

∂[Mpφ]

∂p
−

∂[Mqφ]

∂q
+

1
2

∂2[Vpφ]

∂p2 +
∂2[Vpqφ]

∂p∂q
+

1
2

∂2[Vqφ]

∂q2 , (13)
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Figure 1 Establishment probability of a magic trait allele in the haploid model, plotted against the migration rate.
s1 = 0.02 and s2 = −0.01 are fixed, and three pairs of the population sizes are assumed: (A) N1 = N2 = 2000, (B)
N1 = 2000 and N2 = 10000, (C) N1 = 10000 and N2 = 2000. For each pair of population sizes, the strength of
assortative mating is changed from α = 0.01 to 0.05. In each panel, a gray region is presented such that the proportion
of the replications where two alleles (A and a) coexisted (Pc) > 0.9 in the left, while Pc < 0.1 in the right. The yellow
triangle on the right vertical axis indicates the establishment probability assuming a very large migration rate.
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Figure 2 Establishment probability of a magic trait allele in the haploid model with different population sizes (N1 =
N2 = 2000, 6000, 20000). m1 = m2 = 0.005 and s2 = −0.02 are fixed. The background color presents the theoretical
approximation (Equation 9) while circle’s color presents the simulation result. The blue dashed line presents the
invasion criteria assuming an infinite population (see text for details).
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where Vp = p(1−p)
N1

, Vpq = − pq
N1

, Vq = q(1−q)
N1

and φ is an arbitrary transition density. By changing1

the variables, Equation 13 is rewritten as a function of allele frequency of A, x, and frequency of2

heterozygote q as3

∂φ

∂t
= −∂[Mx(x, q)φ]

∂x
−

∂[Mq(x, q)φ]
∂q

+
1
2

∂2[Vx(x, q)φ]
∂x2 +

∂2[Vxq(x, q)φ]
∂x∂q

+
1
2

∂2[Vq(x, q)φ]
∂q2 . (14)

This forward equation with two variables, x and q, is still difficult to solve, so that we attempt to4

reduce the dimension with approximation, that is, the frequency of heterozygotes, q, is approximated5

by a function of x. If we ignore assortative mating so that the Hardy-Weinberg equilibrium holds, we6

can simply assume q(x) = 2x(1− x). Even with assortative mating, Yamamichi and Sasaki (2013)7

demonstrated that the assumption of the Hardy-Weinberg equilibrium (i.e., q(x) = 2x(1− x)) works8

fairly well. Recently, Newberry et al. (2016) proposed that q(x) can be given by the solution of the9

differential equation dq
dx =

Mq(x,q)
Mx(x,q) which satisfies the condition limx→0 q(x) = 0. We here employ10

the method of Newberry et al. (2016) and obtain q(x) ≈ 2x(1− x)− 4x2(1− x)2(x2 − 2hx + h)α by11

a perturbation approach (for details see APPENDIX B). With this approximation of q(x) and by12

ignoring the stochastic deviation of the frequency of heterozygote from q(x), Equation 14 can be13

reduced to a one-dimensional diffusion equation:14

∂φ

∂t
= −∂[Mx(x, q(x))φ]

∂x
+

1
2

∂2[Vx(x, q(x))φ]
∂x2 . (15)

Then, by using Kimura’s formula (Kimura 1962), the establishment probability of allele A that newly15

arises in subpopulation I, u1, is given by16

u1 =

∫ 1/2N1
0 G(x)dx∫ 1

0 G(x)dx
, (16)

where G(x) = exp
(
−
∫ 2Mx(x,q(x))

Vx(x,q(x)) dx
)

.17

Next, we derive the establishment probability of allele A that newly arises in subpopulation II.18

Following the haploid case, the establishment probability u2 is given by19

u2 ≈ u1
c

1− b
−

u2
1

2
c2

(1− b)3 , (17)

where b =
(
1 + h(s2 − α

2 )
)
(1−m2), c =

(
1 + h(s2 − α

2 )
)
m2.20

The establishment probability derived from Equations 16 and 17 is compared with simulation in21

Figure 3. Simulations were performed by assuming N = N1 = N2 = 1000, s1 = 0.02, s2 = −0.01 and22

α was changed from 0.01 to 0.05. Three different degrees of dominance were considered; complete23

dominance (h = 1), additive (h = 0.5), and nearly recessive (h = 0.05). Overall, our analytical results24

again agree well with the simulation result when 1
N � hsi, hα� 1. We obtain almost the same result25

as the haploid model when h = 1 (Figure 3A), and u1 and u2 decrease as h decreases (Figures 3B26

and C). This trend can be explained if we consider how selection works on allele A in the very early27

phases, namely, when the frequency is very low. When h = 1, a newly arisen allele A exhibit a full28

phenotype difference, which is immediately subject to selection. This is a similar situation to the29

haploid model. For h < 1, the phenotypic effect of allele A could be reduced to some extent (i.e., by a30

factor of h), therefore the selective pressure could be relaxed. Thus, the selective pressure on allele A31

in the diploid model can be summarized by hsi and hα in the early phases. As expected, if we plot u132

for different h where the horizontal and vertical axises are adjusted by hsi and hα, respectively, the33

distribution of the establishment probability are very similar (Figure 4).34
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Figure 3 Establishment probability of a magic trait allele in the diploid model, plotted against the migration rate.
s1 = 0.02, s2 = −0.01 and N1 = N2 = 1000 are fixed, and three dominance coefficients are assumed: (A) h = 1.0, (B)
h = 0.5, (C) h = 0.05. For each dominance coefficient, the strength of assortative mating is changed from α = 0.01 to
0.05. In each panel, a gray region is presented such that the proportion of the replications where two alleles (A and a)
coexisted (Pc) > 0.9 in the left, while Pc < 0.1 in the right. The yellow triangle on the right vertical axis indicates the
establishment probability assuming a very large migration rate.
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Figure 4 Establishment probability of a magic trait allele in the diploid model in different level of dominance (h =
1.0, 0.75, 0.5, 0.25). hs2 = −0.02 is fixed. The background color presents the theoretical approximation (Equation 16)
while circle’s color presents the simulation result. The blue dashed line presents the invasion criteria assuming an
infinite population (see text for details). The results are plotted such that the horizontal and vertical axises are scaled
by hs1 and hα, respectively, therefore the blue dashed lines show up at the same position in each panel.

Establishment Trajectory of Allele Frequency1

When allele A establishes, it rapidly spreads in the subpopulation I and is stably maintained at2

frequencies around the migration-selection balance, p∗1 . We consider the frequency trajectory of allele3

A under the condition that it establishes. In practice, we obtain the mean sojourn time of allele A4

until it reaches frequency p∗1 for the first time under the condition where allele A reaches frequency5

p∗1 .6

In the haploid model, assuming a low migration rate and strong selection, p∗1 is given by p∗1 ≈7

1− m1
s1+

α
2

. Following Ewens (1973), we can derive the conditional mean sojourn time at frequency x,8

T∗(x) as9

T∗(x) =
2

VxG(x)

∫ p∗

x G(p)dp∫ p∗
0 G(p)dp

∫ x

0
G(p)dp, (18)

where Vx = x(1−x)
N1

, G(x) = e−2N1(λ− α
2 )x−N1αx2

. We then obtain the time required for a newly arisen10

allele A to reach allele frequency x:11

t(x) =
∫ x

0
T∗(p)dp, (19)

so that t(p∗1) provides the establishment time. Note that although this argument holds for a new allele12

arisen in subpopulation I, it can be applied to an allele arisen in subpopulation II after it migrated13

into subpopulation I.14

In the diploid model, we can approximate p∗1 = 1−
√

m1
(s+ α

2 )
for h ∼ 1 and p∗1 = 1− m1

(1−h)(s+ α
2 )

15

for other cases h is relatively smaller than 1. We then obtain the conditional mean sojourn time at16

12
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Figure 5 Trajectory of the frequency of allele A in the haploid model. s1 = 0.02, s2 = −0.01, m1 = m2 = 0.0005 and
N1 = N2 = 2000 are assumed. (A) with strong assortative mating α = 0.04 and (B) with no assortative mating α = 0.
The black lines shows 10 independent paths from simulations and the red line is the theoretical prediction.

frequency x by using Equation 18 by replacing Vx = Vx(x, q(x)) and G(x) = exp(−
∫ Mx(x,q(x))

Vx(x,q(x)) dx). 1

Our derivation works well when h is not small. 2

The theoretical result is quite simple and there is no marked difference between the haploid and 3

diploid models. Therefore, we demonstrate the point by using the haploid model. Figure 5A shows 4

the theoretical trajectory of t(x) by the red line when strong assortative mating is working (α = 0.04), 5

compared with the case with no assortative mating (α = 0, Figure 5B). For each panel, we also show 6

ten independent established runs by black lines. The major difference is in that the allele frequency 7

likely stays long in low frequency with assortative mating (Figure 5A), in comparison with the 8

symmetric function in Figure 5B. This difference is easy to understand: As mentioned above, the 9

negative effect on the newly arisen allele is strong only when its allele frequency is low, and the effect 10

is relaxed once it increases. This pattern is globally observed both in the haploid and diploid models. 11

DISCUSSION 12

We are interested in how a newly arisen allele of a magic trait (allele A) behaves and contributes 13

to ecological speciation. A magic trait is defined such that a single trait is subject to both divergent 14

selection and assortative mating. Divergent selection simply favors the new allele to fix where it is 15

beneficial, thereby creating a genetic difference between subpopulations. Assortative mating works 16

in a more trick way: it also prefers difference between subpopulations but a new allele is not always 17

advantageous. This is because when allele A is still rare after it arises, allele A is disadvantageous 18

because allele A has to mate with allele a in most cases with a reduction in reproductive success. 19

Once allele A becomes common so that A and A can mate with no reduction in reproduction, allele A 20

is not very deleterious any more and would fix in the adapted subpopulation, thereby contributing 21

to genetic divergence between subpopulations. 22

In this work, we investigate the establishment probability of such a magic trait allele under the 23

haploid and diploid models. We successfully obtained the establishment probability by using the 24

approximation method of Yeaman and Otto (2011). We confirmed that our derivation agreed well 25

with our simulation results. Our theory mainly focuses on the early phases, that is, when allele A is 26

still rare so that divergent selection and assortative mating counteract. It is theoretically demonstrated 27

that the relative contributions of divergent selection and assortative mating largely determine the 28

fate of allele A. 29

In the haploid model, λ in Equation 7 explains the effective intensity of divergent selection 30

13
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with migration taken into account, and the intensity of assortative mating is parameterized by α.1

Theoretically, 2λ− α is the key quantity to determine the fate of allele A when its frequency (p1) is2

rare. If 2λ− α > 0, allele A is on average selected for, and selected against if 2λ− α < 0 in an infinite3

population. In a finite population, we show that allele A can establish even when 2λ− α < 0. This is4

especially true for a small population (Figures 2, S1-S3) because random genetic drift occasionally5

increase p1, and the negative effect of assortative mating is relaxed once allele A becomes common.6

Then, it is likely that allele A goes to establishment.7

The results for the diploid model is very similar to that for the haploid model. The major difference8

is that the dominance effect is involved in the diploid model. It is demonstrated that the establishment9

process can be well described if both si and α are scaled by h.10

We also explore how the allele frequency behaves along the establishment. We theoretically11

obtained the trajectory of allele frequency, which clearly demonstrated that the negative effect12

of assortative mating retards establishment while this effect is relaxed once the allele frequency13

increases.14

In summary, our theory well demonstrates the behavior of a magic trait allele that are subject to15

divergent selection and assortative mating. We also show the establishment of a magic trait allele is16

largely affected by the population size, because the fate of a newly arisen allele is mainly determined17

when it is rare, where random genetic drift plays a central role. The theoretical results will enhance18

our understanding of how natural selection initiates speciation.19
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APPENDIX1

APPENDIX A: Establishment probability of allele A that arises in subpopulation II2

We here derive the establishment probability of a single allele A which arises in the maladapted3

subpopulation II. First, we derive the probability distribution of the number of migrant alleles to4

subpopulation I which originate from a single allele A in subpopulation II by using the branching5

process. Then, by assuming that migrant alleles behave independently, we derive an approximate6

formula of the establishment probability. The derivation works for both haploid and diploid models.7

We put the probability variables Xt as the number of allele A in subpopulation II at generation8

t and Yt as the number of allele A which have migrated to subpopulation I until generation t.9

Because we consider the case where negative selection works on allele A in subpopulation II, we10

can assume that the frequency of allele A is kept low so that allele A mostly exist in heterozygotes11

in the diploid case. Therefore, Xt is almost same as the number of heterozygotes in the diploid12

model. We define a probability generating function at generation t as ft(x, y) = E[xXt yYt ]. We set13

the generating function of joint distribution of the number of allele A in subpopulation II and the14

number of allele A that have just migrated to subpopulation I which originates from one allele A15

at the previous generation as h(x, y). If we assume the number of offsprings follows the poisson16

distribution, h(x, y) = e−(1+s2− α
2 )(1−(1−m2)x−m2y) in the haploid case. Then, we have17

ft+1(x, y) = ft(h(x, y), y). (A1)

We put vt =
(

∂ ft(1,1)
∂x , ∂ ft(1,1)

∂y , ∂2 ft(1,1)
∂x2 , ∂2 ft(1,1)

∂x∂y , ∂2 ft(1,1)
∂y2

)T
. By using Equation A1, we obatin18

vt+1 = Qvt, (A2)

where

Q =



b 0 0 0 0

c 1 0 0 0

b2 0 b2 0 0

bc 0 bc b 0

c2 0 c2 2c 1


, b = (1 + s2 −

α

2
)(1−m2), c = (1 + s2 −

α

2
)m2.

When t goes to infinity, v∞ = (0, c
1−b , 0, 0, c2

(1−b)3 )
T.19

Then, the establishment probability of a single allele A that arises in the maladapted subpopulation20

II, u2, is approximately given by21

u2 ≈ 1− f∞(1, 1− u1)

≈ u1
c

1− b
−

u2
1

2
c2

(1− b)3 .
(A3)

For the diploid case, we should substitute s2 and α by hs2 and hα in the above equations.22

APPENDIX B: Approximation of the frequency of heterozygotes23

We derive an approximate formula which describes the frequency of heterozygotes in the diploid24

model. We assume that the strength of assortment mating, α, is small and the frequency of heterozy-25

gote q(x) can be expanded as26

q(x) = 2x(1− x) + q1(x)α +O(α2), (B1)

16
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where x is the frequency of allele A. Following Newberry et al. (2016), we assume that q(x) is the 1

solution of the differential equation, dq
dx =

Mq(x,q)
Mx(x,q) . By substituting Equation B1, we have 2

sq′1(x) = −4x2(1− x)2(x2 − 2hx + h) + q1(x)
(2h− 1)x3 + (−3h + 1)x2 + hx

(B2)

Because we assume s � 1, we can derive q1(x) ≈ −4x2(1− x)2(x2 − 2hx + h) by ignoring the left 3

side of Equation B2. 4
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Figure S1 Establishment probability of a magic trait allele in the complete dominant case (h = 1.0) for different
population size (N1 = N2 = 1000, 3000, 10000). m1 = m2 = 0.005 and s2 = −0.02 are assumed. The background color
presents the theoretical approximation (Equation 16) while circle’s color presents the simulation result.
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Figure S2 Establishment probability of a magic trait allele in the additive case (h = 0.5) for different population sizes
(N1 = N2 = 1000, 3000, 10000). Other parameters are the same as figure S1.
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Figure S3 Establishment probability of a magic trait allele in a nearly recessive case (h = 0.05) for different popula-
tion sizes (N1 = N2 = 1000, 3000, 10000). Other parameters are the same as figure S1.
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