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Abstract

Mechanical cell competition is important during tissue development, cancer invasion, and tis-

sue ageing. Heterogeneity plays a key role in practical applications since cancer cells can have

different cell stiffness and different proliferation rates than normal cells. To study this phe-

nomenon, we propose a one-dimensional mechanical model of heterogeneous epithelial tissue

dynamics that includes cell-length-dependent proliferation and death mechanisms. Proliferation

and death are incorporated into the discrete model stochastically and arise as source/sink terms

in the corresponding continuum model that we derive. Using the discrete model and the new

continuum description, we explore several applications including the evolution of homogeneous

tissues experiencing proliferation and death, and competition in a heterogeneous setting with a

cancerous tissue competing for space with an adjacent normal tissue. This framework allows us

to postulate new mechanisms that explain the ability of cancer cells to outcompete healthy cells

through mechanical differences rather than by having some intrinsic proliferative advantage.

Key words: discrete, individual-based, cell-based, continuum-limit, coarse-graining, cell migration,

cell proliferation, cell death.

1 Introduction

In cell biology, epithelial tissues are continuously experiencing forces and replacing cells, through

cell proliferation and death, to maintain homeostasis. These tissues can be naturally heterogeneous

or heterogeneous due to to cancer development and progression [14, 36]. This heterogeneity is ob-

served at multiple scales, from sub-cellular to cellular to the tissue scale [44], and can result in cell

competition. Cell competition can act as a quality control mechanism in tissue development or as a

defence against precancerous cells, and harnessing cell competition has been suggested as a possible

approach to enhance both cell-based cancer and regenerative therapies [37]. Therefore, gaining a

greater understanding of the mechanisms underlying cell competition is very desirable. In mathe-

matical models of cell competition the classical hypothesis is that cells compete due to differences

in their intrinsic proliferation rates. However, this may not be true and mathematical models have

began to explore different mechanisms [19, 48]. We will explore mechanical cell competition.
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In the emerging field of mechanical cell competition, winner cells compress neighbouring cells

promoting tissue crowding and regions of higher density, which leads to cell death [5, 21, 47], while

cell proliferation occurs in regions of lower density [13]. In this work, we focus on mechanical cell

competition arising from the coupling of a cell-based model of epithelial tissue mechanics with cell-

length-dependent proliferation and death mechanisms. We consider mechanical forces to be driven by

cell stiffness which is important for cancer progression [41], cancer detection [36], morphogenesis [10],

and wound healing [9]. A grand challenge in cell biology is to understand how tissue-level outcomes

are related to cell-based mechanisms, especially when experiments are performed by focusing on a

single scale, and many cellular processes occur over multiple overlapping timescales [6, 48]. Therefore,

we apply mathematical modelling with in silico simulations to develop a framework to quantitatively

connect cell-level mechanisms with tissue-level outcomes.

Many mathematical modelling frameworks, including both discrete models and continuum mod-

els, have been used to study cell migration and cell proliferation. In discrete models individual cell

properties and inter-cellular interactions can be prescribed [33, 34]. However, discrete models often

lack macroscopic intuition and can be computationally intensive, especially with proliferation and

death included, which are commonly stochastic and require many realizations to understand the av-

erage behaviour. Continuum models commonly include proliferation and death through source/sink

terms and may require constitutive equations to close the system [3, 21, 25, 39, 43]. In general,

continuum models do not make the underlying cell-level processes clear [12]. However, continuum

models can be less computationally expensive than discrete models and can be analysed with well-

established mathematical techniques such as stability analysis [1] and phase plane analysis [18].

We are most interested in models that connect the discrete and continuum scales [4, 11, 26, 32,

35, 46, 49] because this allows us to switch between the two spatial scales and take advantage of both.

To do so, we focus on a mechanical model and extend the works of Murray et al. [28, 29, 30, 31],

Lorenzi et al. [23], Baker et al. [2], and Murphy et al. [27] to a new model for fully heterogeneous

populations which experience both proliferation and death. This framework allows us to explore

mechanical cell competition, which was not previously possible.

This work is structured as follows. In Section 2, we present a new discrete mechanical model that

includes cell-length-dependent proliferation and death mechanisms. We then derive the correspond-

ing novel continuum model that takes the form of a system of coupled nonlinear partial differential

equations with both hyperbolic and parabolic properties. In Section 3.1, we explore our novel model

by considering the evolution of a homogeneous tissue where cells are undergoing both proliferation

and death. In Section 3.2, we explore mechanical cell competition in the context of cancer invasion

by heterogeneous tissue composed of both cancerous and normal cells that compete for space. Using

the model we explore whether cancer cells will eventually replace all of the healthy cells or can the

cancer cells coexist with the healthy cells?
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2 Model formulation

In this section, we focus on how we stochastically implement cell proliferation and death for heteroge-

neous cell populations within the discrete mechanical framework and the derivation of the continuum

description.

2.1 Discrete model

We start by describing the mechanical model and then include proliferation and death. We represent

the epithelial tissue as a one-dimensional chain of cells, connected at cell boundaries, in a fixed domain

of length L. The cells experience cell-cell interaction forces at their cell boundaries, for example cell-

cell adhesion [17] or compressive stresses [24]. For a system of N cells, cell i has left and right cell

boundaries at positions xNi (t), xNi+1(t), respectively. Fixed boundary conditions at x = 0 and x = L

are imposed xN1 (t) = 0 and xNN+1(t) = L. To allow for heterogeneous tissues, each cell i, which can

be thought of here as a mechanical spring, is prescribed with intrinsic cell properties including a cell

stiffness, kNi , and resting cell length, aNi (Figure 1a). Assuming cell motion occurs in an overdamped

environment, the evolution of cell boundary i in a system of N cells is

η
dxNi (t)

dt
= fNi (lNi (t))− fNi−1(lNi−1(t)), i = 2, . . . , N, (1)

where η > 0 is the viscosity coefficient and fNi (li(t)) is the cell-cell interaction force [27]. This cell-

cell interaction force law may be given by, for example, a cubic, Hertz, Lennard-Jones, or Johnson-

Kendall-Roberts law [2, 23, 29]. However, for simplicity, we choose a Hookean force law,

fNi (lNi (t)) = kNi
[
lNi (t)− aNi

]
, (2)

where cell i has length lNi (t) = xNi+1(t)− xNi (t) > 0.

We include cell proliferation stochastically, by considering that cell i proliferates with probability

P (lNi (t))dt in the small time interval [t, t + dt), that depends on the current cell length, lNi (t), and

proliferation mechanism P (·) [2, 38]. When cell i proliferates we increase the number of cells by one

by introducing a new cell boundary, xN+1
i+1 , at the midpoint of the original cell, xN+1

i+1 = (xNi +xNi+1)/2,

and relabel indices accordingly (Figure 1a). Daughter cells take the same intrinsic cell properties

as the parent cell. Cell death is included similarly to cell proliferation with a cell-length-dependent

death mechanism, D(lNi (t)). In a system of N + 1 cells, when cell i dies, with cell boundaries xN+1
i

and xN+1
i+1 , the number of cells is reduced by one. The two cell boundaries are set to instantly

coalesce at the midpoint of the dying cell (Figure 1b). Cell death at the tissue boundaries needs to

be considered separately (Supplementary Material S1.2). In this work, we consider constant, linear,

and logistic models of proliferation and death (Table 1, Figure 2). We solve discrete Equations (1)

together with a stochastic implementation of proliferation and death numerically (Supplementary

Material S2.1).
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Figure 1: Discrete model schematic for a heterogeneous epithelial tissue with cell proliferation and

death. Cell i in a system of N cells has left and right cell boundaries xNi (t), xNi+1(t), with xNi (t) <

xNi+1(t), respectively, and is prescribed with a cell stiffness kNi > 0, and a resting cell length aNi ≥ 0.

(a) Cell proliferation. Cell i, coloured green, is selected to proliferate at time t. At time t+ dt, the

cell has proliferated with a new cell boundary introduced at the midpoint of the original cell. Cell

properties of the daughter cell are prescribed from the parent cell. (b) Cell death. Cell i, coloured

red, is selected to die at time t. At time t + dt, the cell is removed and the cell boundaries of cell

i at time have coalesced at midpoint of the original cell. For both proliferation and death cells are

re-indexed at time t + dt. (c) Special case with two adjacent tissues. The left tissue (tissue 1) is

coloured red and the right tissue (tissue 2) is coloured blue. The interface position between the left

and right tissues is x = s(t). Each cell in tissue i has cell stiffness Ki and resting cell length Ai.

Proliferation and death rates remain dependent on the length of each cell. This could also represent

a single tissue with internal heterogeneity.
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Table 1: Proliferation and death mechanisms written in terms of cell length, lNi , proliferation pa-

rameter, β, and death parameters, γ, ld.

Constant Linear Logistic

P (lNi ) β β lNi β

D(lNi ) γ

γ
(
ld − lNi

)
, 0 ≤ lNi ≤ ld

0, ld < lNi

γ

lNi

0.75
0.00

0.05

0.10
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0.00 0.25 0.50 1.00
li 

N

(a) Constant (b) Linear (c) Logistic
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Figure 2: Proliferation and death mechanisms considered in this work. Proliferation rates, P (lNi )

(dashed), and death rates, D(lNi ) (solid), shown as a function of cell length, lNi . Parameters used in

this work: (a) β = 0.01, γ = 0.01, (b) β = 0.07, γ = 0.35, ld = 0.3, (c) β = 0.01, γ = 0.0025.
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2.2 Derivation of continuum model

To understand the mean behaviour of the discrete model we must average over many identically

prepared stochastic realizations. However, this can be computationally intensive, especially for

large N . The corresponding continuum model, which we first present and then derive, represents

the average behaviour and unlike the discrete model the computational time required to solve the

continuum model is independent of N .

The continuum model for the evolution of the cell density, q(x, t), in terms of the continuous

cell-cell interaction force, f(x, t), proliferation rate, P (1/q(x, t)), and death rate, D(1/q(x, t)), is

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2︸ ︷︷ ︸
mechanical relaxation

+ q(x, t)P

(
1

q(x, t)

)
︸ ︷︷ ︸

proliferation

− q(x, t)D
(

1

q(x, t)

)
︸ ︷︷ ︸

death

,
(3)

where the continuous cell-cell interaction force which corresponds to Equation (2) is given by

f(x, t) = k(x, t)

(
1

q(x, t)
− a(x, t)

)
, (4)

with cell stiffness, k(x, t), and the resting cell length, a(x, t), also being described by continuous

fields. These intrinsic mechanical cell properties are constant for each cell and transported by the

motion of cells. The proliferation and death functions, P (·) and D(·), respectively, (Table 1) are

evaluated at 1/q(x, t). Depending on the choice of proliferation and death mechanisms we may have

additional intrinsic cellular properties, β(x, t), γ(x, t), and ld(x, t). All intrinsic cellular properties

which are constant are governed by transport equations of the form

∂χ(x, t)

∂t
+ u(x, t)

∂χ(x, t)

∂x
= 0, χ = k, a, β, γ, ld, (5)

where u(x, t) is the cell velocity, related to the cell density and gradient of the cell-cell interaction

force through

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
. (6)

From Equation (6), the cell density flux, j(x, t) = q(x, t)u(x, t), is equal to the spatial gradient of

the cell-cell interaction force, (1/η)∂f/∂x. We solve the system of Equations (3)-(6) together with

initial conditions and boundary conditions numerically (Supplementary Material S2.2).

We now systematically derive Equation (3). We take care to explicitly state and make clear

all approximations made in this derivation. We incorporate proliferation and then death into the

modelling framework, under the assumption that the two processes are independent. The previously

derived mechanical relaxation term and transport of cellular property equations (5) are briefly dis-

cussed [27]. For clarity, the derivation is shown for one spring per cell. However, this analysis can

be extended to m > 1 springs per cell which, for sufficiently small N , is a more appropriate method

to define the continuous field functions [27] (Supplementary Material S1.1).
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2.2.1 Proliferation

As cell proliferation is included stochastically (Sections 2.1, S2.1), we consider an infinitesimal time

interval [t, t + dt) and condition on the possible proliferation events that could occur and influence

the position of cell boundary i in a system of N cells. Choosing dt sufficiently small so that at most

one proliferation event can occur in [t, t+ dt), there are four possibilities: i) there is no proliferation,

in which case the cell boundary position xNi only changes by mechanical relaxation; ii) there is

proliferation to the right of cell i−1; iii) there is proliferation to the left of cell i−1; and iv) cell i−1

proliferates. This leads to the following infinitesimal evolution law for the position of cell boundary

xNi , accounting for cell relabelling when a new cell is added:

xNi (t+ dt) =

[
xNi (t) +

dt

η

{
fN
(
lNi
)
− fN

(
lNi−1

)}]
× 1 {no proliferation}

+

[
xN−1i (t) +

dt

η

{
fN−1

(
lN−1i

)
− fN−1

(
lN−1i−1

)}]
× 1 {proliferation right of cell i− 1}

+

[
xN−1i−1 (t) +

dt

η

{
fN−1

(
lN−1i−1

)
− fN

(
lN−1i−2

)}]
× 1 {proliferation left of cell i− 1}

+

[
xN−1i (t) + xN−1i−1 (t)

2
+

dt

2η

{
fN−1

(
lN−1i

)
− fN

(
lN−1i−2

)}]
× 1 {proliferation of cell i− 1} .

(7)

Each term in square brackets is the resulting force from neighbouring cells due to mechanical re-

laxation, given by Equations (1), for each potential event. In addition, we include Boolean random

variables expressed as indicator functions, 1 {·}, defined as

1{event} =

1, if event occurs in [t, t+ dt),

0, otherwise,

(8)

whose expectations in the context of Equation (7) can be interpreted as proliferation probabilities.

For a system of N cells, where dt is sufficiently small, these proliferation probabilities are given by

P (no proliferation in [t, t+ dt)) = 1− dt
N∑
j=1

P
(
lNj
)
, (9a)

P (proliferation to the right of cell i− 1 in [t, t+ dt)) = dt
N∑
j=i

P
(
lNj
)
, (9b)

P (proliferation to the left of cell i− 1 in [t, t+ dt)) = dt

i−2∑
j=1

P
(
lNj
)
, (9c)

P (proliferation of cell i− 1 in [t, t+ dt)) = dt P
(
lNi−1

)
. (9d)

Taking a statistical expectation, denoted 〈·〉, of Equation (7), 〈xNi (t)〉 now represents the expected

position of cell boundary i at time t in a system of N cells. We use the proliferation probabilities
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with the following simplifying assumptions: i)
〈
xNi (t) 1 {event}

〉
=
〈
xNi (t)

〉
〈1 {event}〉, namely

independence of the position of the cell boundary in space and proliferation propensity, and a mean-

field approximation as proliferation propensities depend on cell length; ii)
〈
f(lNi (t)) 1 {event}

〉
=〈

f(lNi (t))
〉
〈1 {event}〉, namely independence of the force and the propensity to proliferate, and a

mean-field approximation as force depends on cell length; iii) a statistical mean-field approximation

for force, 〈fN (lNj )〉 = fN
(
〈lNj 〉

)
, and proliferation propensities, 〈P (lNj )〉 = P

(
〈lNj 〉

)
. For simplicity

we now drop the 〈·〉 notation. Then,

xNi (t+ dt)− xNi (t)

dt
=

1

η

[
fN
(
lNi
)
− fN

(
lNi−1

)]
− xNi (t)

N∑
j=1

P
(
lNj
)

+ xN−1i (t)
N−1∑
j=i

P
(
lN−1j

)
+ xN−1i−1 (t)

i−2∑
j=1

P
(
lN−1j

)
+

(
xN−1i (t) + xN−1i−1 (t)

2

)
P
(
lN−1i−1

)
+O (dt) .

(10)

We also assume: iv) the total propensity to proliferate is not significantly changed due to single

a proliferation event,
∑N−1

j=1 P
(
lN−1j

)
dt =

∑N
j=1 P

(
lNj
)

dt + O(dt2, N−1); v) a single proliferation

event does not significantly alter the position of a cell boundary, xN−1i = xNi +O(dt) (Figure 1). As

we will show, assumptions iv) and v) are good approximations for large N and allow us to combine

summations. Then, assuming vi) 〈xNi (t)〉 is a continuous function of time, we rearrange and take

the limit dt→ 0. For the proliferation terms we replace the cell length with the discrete cell density

qNi = 1/lNi to obtain

dxNi
dt

=
1

η

[
fN
(
lNi
)
− fN

(
lNi−1

)]
−
(

1

qNi (t)

)i−2∑
j=1

P

(
1

qNj+1(t)

)
+

1

2
P

(
1

qNi (t)

) . (11)

Equation (11) is only valid for the time interval [t, t+ dt) under the assumptions iv) and v) above.

Thus far, we have extended the discrete model with mechanical relaxation to include the effects of

cell proliferation. However, the statistically averaged model still retains information about discrete

cell entities. We thus average over space to define a continuum cell density. Following Murphy et al.

[27], we introduce the microscopic density of cells,

q̂(x, t) =
N∑
i=1

δ
(
x− xNi (t)

)
, (12)

where δ is the Dirac delta function [8, 22]. We define a local spatial average over a length scale δx,

denoted 〈·〉δx, such that ai � δx� L, which is sufficiently large to capture local heterogeneities for

cellular properties that are constant during cell motion, including k and a, but sufficiently small to

define continuous properties across L. The continuous cell density function, q(x, t), is thus defined

as

q(x, t) = 〈q̂(x, t)〉δx =
1

2δx

∫ x+δx

x−δx
q̂(y, t) dy. (13)
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Differentiating Equation (13) with respect to time gives

∂q(x, t)

∂t
= − ∂

∂x

〈
N∑
i=1

δ
(
x− xNi (t)

) dxNi
dt

〉
δx

, (14)

where we use properties of the Dirac delta distribution [22] and interchange the derivative with

the spatial average as δx is small. Consistent with assumptions iv)-v) above, the sum over the

microscopic densities can be considered to be fixed over N cells in Equation (14) within the small

time interval [t, t+ dt).

On the right hand side of Equation (11), the first two terms involving f correspond to a mechanical

contribution. This contribution is unchanged compared to Murphy et al. [27] and, when substituted

into Equation (14), it gives rise to the mechanical relaxation term in the right hand side of continuum

model Equation (3) (Supplementary Material S1.4). We now focus only on the contribution due to

proliferation determined by substituting the proliferation terms of Equation (11) into Equation (14),

giving a contribution which we denote ∂q(x, t)/∂t|P ,

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

〈
N∑
i=1

δ
(
x− xNi (t)

) 1

qNi−1(t)

i−2∑
j=1

P

(
1

qNj (t)

)
+

1

2
P

(
1

qNi (t)

)〉
δx

. (15)

Now, assuming vii) that the spatial average interval is sufficiently far from the tissue boundary, i.e.

i� 1, we make the following approximation:

i−2∑
j=1

P

(
1

qNj

)
+

1

2
P

(
1

qNi

)
≈

i−1∑
j=1

P

(
1

qNj

)
. (16)

To switch the dependence on the cell index to cell position, we multiply each term indexed by j in

the sum on the right hand side of Equation (16) by 1 = ljqj . Then, relating the discrete cell density

to the continuous density through qNj = q(xNj (t), t), gives

i−1∑
j=1

q(xNj (t), t)P

(
1

q(xNj (t), t)

)
lj . (17)

We discretise the spatial domain x1 ≤ x ≤ xi−1 with a uniform mesh with nodes ys, s = 1, 2, . . . , S,

where y1 = x1, yS = xi−1, and ys − ys−1 = ∆y � lj . Then, evaluating the continuous density at

each node position, ys, we interpret Equation (17) as the following Riemann sum

S∑
s=1

q(ys, t)P

(
1

q(ys, t)

)
∆y =

∫ xN
i

0

q (y, t)P

(
1

q(y, t)

)
dy, (18)

where the integral on the right hand side is obtained by taking the limit ∆y → 0. Substituting

Equation (18) into Equation (15) gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

〈
N∑
i=1

δ
(
x− xNi (t)

)( 1

qNi−1

)[∫ xN
i

0

q (y, t)P

(
1

q(y, t)

)
dy

]〉
δx

. (19)

Calculating the spatial average, which only includes contributions from within the spatial average

interval due to the Dirac delta functions, gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

(( n

2δx

) 1

n

n∑
r=1

(
1

qNr−1

)[∫ xN
r

0

q (y, t)P

(
1

q(y, t)

)
dy

])
, (20)
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where the index r labels the n cell boundaries contained within the spatial average interval (x −

δx, x+ δx). Since ai � δx� L and n� 1 we have qNr = q(xNr (t), t) ≈ q(x, t) for all r, which is now

independent of r. Similarly, xNr ≈ x for all r, where x is the centre of the spatial average interval.

This gives

∂q(x, t)

∂t

∣∣∣∣
P

=
∂

∂x

(( n

2δx

) 1

q(x, t)

∫ x

0

q (y, t)P

(
1

q(y, t)

)
dy

)
. (21)

As n/(2δx) = q(x, t) in this spatial average interval, Equation (21) simplifies to

∂q(x, t)

∂t

∣∣∣∣
P

= q (x, t)P

(
1

q(x, t)

)
. (22)

At this point, we see that all explicit references to the total number of cells, N(t), vanish. This

allows the validity of the derivation, initially restricted to the time interval [t, t+ dt), to be extended

to arbitrary times. As N(t) =
∫ L

0
q(x, t) dx, the change in the total cell number with time due

to proliferation is accounted for through the source term written in Equation (22). We also stated

assumption vii) that held true when sufficiently far from the tissue boundary but we find that this

works at the boundary also (Sections 3.1, 3.2). Equation (22) shows proliferation arises as a single

source term consistent with usual continuum-based formulations of proliferation whereas in Baker

et al. [2] proliferation arises as this term with an additional contribution.

2.2.2 Death

The derivation of the cell death sink term follows similarly to that of the cell proliferation source

term. We again consider an infinitesimally small time interval [t, t + dt), so that at most one cell

death event can occur in [t, t + dt), and condition on cell death events to understand all possible

events that occur and influence cell boundary i at t+ dt. This gives

xNi (t+ dt) =

[
xNi (t) +

dt

η

{
fN
(
lNi
)
− fN

(
lNi−1

)}]
× 1 {no proliferation}

+

[
xN+1
i (t) +

dt

η

{
fN+1

(
lN+1
i

)
− fN+1

(
lN+1
i−1

)}]
× 1 {death right of cell i}

+

[
xN+1
i+1 (t) +

dt

η

{
fN+1

(
lN+1
i+1

)
− fN+1

(
lN+1
i

)}]
× 1 {death left of cell i}

+

[
xN+1
i (t) + xN+1

i+1 (t)

2
+

dt

2η

{
fN+1

(
lN+1
i+1

)
− fN+1

(
lN+1
i−1

)}]
× 1 {death of cell i} .

(23)
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The cell death probabilities for Equation (23) for a system of N cells are given by

P (no death in [t, t+ dt)) = 1− dt
N∑
j=1

D
(
lNj
)
, (24a)

P (death to the right of cell i in [t, t+ dt)) = dt
N∑
j=i

D
(
lNj
)
, (24b)

P (death to the left of cell i in [t, t+ dt)) = dt
i−2∑
j=1

D
(
lNj
)
, (24c)

P (death of cell i in [t, t+ dt)) = dt D
(
lNi
)
. (24d)

Proceeding similarly to the proliferation derivation, we obtain

xNi (t+ dt)− xNi (t)

dt
=

1

η

[
fN
(
lNi
)
− fN

(
lNi−1

)]
− xNi (t)

N∑
j=1

D
(
lNj
)

+ xN+1
i (t)

N+1∑
j=i+1

D
(
lN+1
j

)
+ xN+1

i+1 (t)
i−1∑
j=1

D
(
lN+1
j

)
+

(
xN+1
i (t) + xN+1

i+1 (t)

2

)
D
(
lN+1
i

)
+O (dt) .

(25)

Then, following the same approach as the proliferation derivation, we arrive at the sink term in

Equation (3) for cell death, −q(x, t)D(1/q(x, t)).

2.2.3 Cell properties

Each cell is prescribed with intrinsic mechanical, proliferation, and death properties which are taken

to be constant for each cell throughout the simulation. For mechanical cell properties, which include

cell stiffness and resting cell length, we have the relationships χ(xNi (t), t) = χi for χ = k, a. Similar

relationships can be defined for the proliferation and death cell properties, β, γ, ld. Differentiating

these equations with respect to time we obtain Equations (5) [27].
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3 Numerical results

In this section, we first explore the evolution of a homogeneous tissue with different proliferation

and death mechanisms and then explore mechanical cell competition for a heterogeneous tissue.

3.1 A homogeneous tissue

The simplest case to consider first is a homogeneous tissue composed of a population of identical

cells. We explore three different proliferation and death mechanisms: constant, linear, and logistic

(Table 1, Figure 2). For each mechanism we explore proliferation only, death only, and proliferation

with death. Cell proliferation and death parameters (Figure 2) are chosen to observe homeostasis

where the total cell number remains stable at approximately N(t) = 40 for t > 0.

In all simulations we set L = 10, use a Gaussian initial density centred at x = L/2 with variance

three and scaled to have N(0) = 40. We set k = 10, so that mechanical relaxation is fast in compar-

ison to the proliferation and death [2]. For individual realizations this results in uniform densities

except for short-time transient behaviour following a cell proliferation or death event (Figures 3.1a-c,

3.1a-c, S3.2a-c). For simplicity and to represent that cells in an epithelial tissue are understood to

be in extension [48], we set a = 0 throughout this work.

For individual discrete realizations, cell proliferation causes a localised force imbalance followed by

fast mechanical relaxation towards mechanical equilibrium and an overall increase in density (Figures

3.1a, 3.1a, S3.2a). Similarly, cell death results in a decrease in density followed by fast mechanical

relaxation and an overall decrease in density (Figures 3.1b, 3.1b, S3.2b). With proliferation and

death, cell boundaries are repeatedly introduced and removed, and the overall density remains, on

average, constant (Figures 3.1c, 3.1c, S3.2c).

We observe excellent agreement when we compare the mean of many identically prepared discrete

realizations and the corresponding solutions of the continuum model for both density snapshots and

total cell number (Figures 3.1d-o, 3.1d-o, S3.2d-o).

We note that the continuum model does not always provide a good match with an individual

realization of the discrete model. For example, for constant proliferation and constant death with

equal rates, every discrete realization will eventually become extinct (Supplementary Material S3.1)

as proliferation and death are independent of mechanical relaxation. This is expected as the total

cell number is a linear birth-death process [40]. As a consequence, the standard deviation of the

total cell number increases with time (Figures 3.1o). When cell proliferation and death are cell-

length-dependent there is closer agreement between the continuum model and single realizations of

the discrete model as extinction is extremely unlikely and the standard deviation of averaged discrete

realizations is smaller (Figures 3.1o, S3.2o).
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Figure 3: Homogeneous population with constant proliferation and death mechanisms. Prolifer-

ation only, death only, and proliferation with death shown in the left, middle and right columns,

respectively. (a)-(c) Single realizations of cell boundary characteristics for 0 ≤ t ≤ 100. (d)-(f),

(g)-(i), (j)-(l) Density snapshots at times t = 0, 25, 75, respectively. (m)-(o) Total cell number.

The average and standard deviation (blue error bars) of 2000 discrete simulations are compared to

solution of continuum model (green). 13
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Figure 4: Homogeneous population with linear proliferation and death mechanisms. Proliferation

only, death only, and proliferation with death shown in the left, middle and right columns, respec-

tively. (a)-(c) Single realizations of cell boundary characteristics for 0 ≤ t ≤ 100. (d)-(f), (g)-(i),

(j)-(l) Density snapshots at times t = 0, 25, 75, respectively. (m)-(o) Total cell number. The average

and standard deviation (blue error bars) of 2000 discrete simulations are compared to solution of

continuum model (green). 14
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3.2 Mechanical cell competition

How tissues compete with each other for space is of great interest with many open biological questions

being pursued in the experimental cell biology literature [5, 21, 45]. For example, in cancer invasion

in an epithelial tissue a key question is whether cancer cells will eventually replace the entire healthy

tissue or can the cancer cells coexist with the healthy cells? We consider this question by simulating

a heterogeneous tissue composed of two populations, cancer cells adjacent to healthy cells (Figure

1c). Biologically, it is a hallmark of cancer cells that they are more proliferative and resistant to

death than healthy cells [15]. In existing models the standard procedure would be to include these

hallmarks as modelling assumptions and not consider the role of mechanical relaxation. However, we

will now show this assumption is not necessary. We find that mechanical differences are sufficient for

these hallmarks to arise and for cancer cells to outcompete healthy cells. We prescribe cancer and

healthy cells the same proliferation and death mechanisms and parameters. We ask a further key

question, how does mechanical relaxation alone compare to mechanical relaxation with proliferation,

and to mechanical relaxation with proliferation and death?

In all scenarios, the left tissue (tissue 1) is coloured red to represent cancer cells and the right

tissue (tissue 2) is coloured blue to represent healthy cells (Figure 1c). Each tissue starts with 20

cells. We assume cancer cells have lower stiffness than healthy cells [20] so we set cells in tissue 1

and 2 with cell stiffnesses K1 = 10 and K2 = 20, respectively. Again, we set a = 0.

With only mechanical relaxation the interface position, s(t), relaxes to the long-time interface

position, S = limt→∞ s(t) = 6.66 [27]. In this scenario, the cancer and healthy cells coexist. How-

ever, the assumption of mechanical relaxation alone is only realistic over a short timescale where

proliferation and death are negligible. When we include proliferation and death below, we use this

long-time solution as the initial condition. As the mechanical relaxation rate is faster than the

proliferation and death rates, using this initial condition only neglects initial short-time transient

behaviour and does not significantly impact the long-time solution.

For mechanical relaxation with proliferation (Figure 3.2), we prescribe the linear proliferation

mechanism for both the cancer and healthy cells with the same parameters.As cancer cells have

lower cell stiffness than healthy cells, the cancer cells are always longer than the healthy cells (Sup-

plementary Material S4.1) except for the short transients after proliferation events where the cells

have yet to mechanically relax. Initially, the cancer cells, with length 1/3, are double the length of

healthy cells. Referring to Figure 2b we see that the difference in cell lengths corresponds to cancer

cells being more likely to proliferate than the healthy cells. Therefore, the cancer cells proliferate

more than the healthy cells not because they were set to have advantageous intrinsic proliferation

or death properties through a modelling assumption, but simply due to the coupling of mechanical

relaxation with the length-dependent proliferation mechanism. With each proliferation event all cells

become smaller, with the healthy cells remaining smaller than the cancer cells. Here we have coexis-

tence but all cells will eventually become unrealistically small and this happens first for healthy cells.
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In the absence of cell death, changing the proliferation mechanism will still result in coexistence.

For mechanical relaxation with proliferation and death (Figure 3.2) a cell is more likely to die

when it is smaller (Figure 2b). As we have observed for mechanical relaxation with proliferation, the

healthy cells are smaller first, due to their higher relative stiffness, and therefore are more likely to

die first. Once all of the healthy cells have died we have a homogeneous population of cancerous cells

(Section 3.1). Importantly, we find that the cancerous cells, despite having identical proliferation

and death mechanisms, are the winner cells of mechanical cell competition; they outcompete the

healthy cells and take over the domain purely as a result of having lower cell stiffness.

Similar results regarding cancer invasion are found when considering the logistic mechanisms with

both proliferation and death (Supplementary Material S4.2). In contrast, for the constant prolifera-

tion and death mechanisms, where the proliferation and death mechanisms are both independent of

the cell length and therefore independent of mechanical relaxation, to observe cancer cells invading

the full domain we would have to prescribe the cancer cells to be more proliferative and resistant to

death than the healthy cells.
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Figure 5: Results for cancer invasion with adjacent populations using linear proliferation and death

mechanisms with proliferation only. (a),(b) A single realization of cell boundary characteristics

for 0 ≤ t ≤ 200. Colouring in (a),(b) represents cell density and cell stiffness, respectively. (c)-(d),

(e)-(f), (g)-(h) Density and cell stiffness snapshots, left and right, respectively, at times t = 0, 25, 200,

respectively. (i) Total cell number, N(t) > 0, for cancer (red/magenta) and healthy cells (blue/cyan)

for the discrete/continuum solutions. (j) Interface position, s(t), where the dotted line shows the

edge of the domain. The average and standard deviation (blue error bar) of 2000 discrete simulations

are compared to the solution of the continuum model (green).
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Figure 6: Results for cancer invasion with adjacent populations using linear proliferation and death

mechanisms with proliferation and death. First row shows a single realization of cell boundary

characteristics for 0 ≤ t ≤ 200. Colouring in (a),(b) represent cell density and cell stiffness, re-

spectively. (c)-(d), (e)-(f), (g)-(h) Density and cell stiffness snapshots, left and right, respectively,
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healthy cells (blue/cyan) for the discrete/continuum solutions. (j) Interface position, s(t), where the

dotted line shows the edge of the domain. The average and standard deviation (blue error bar) of

2000 discrete simulations are compared to the solution of the continuum model (green).
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4 Conclusion

In this work, we present a new one-dimensional cell-based model of heterogeneous epithelial tissue

mechanics that includes cell proliferation and death. The main focus is to determine the correspond-

ing continuum model which is a novel coupled system of nonlinear partial differential equations. The

cell density equation is a parabolic partial differential equation while the cell property equations are

hyperbolic partial differential equations. In deriving the continuum model, the discrete mechanisms

and assumptions that underpin the continuum model have been made explicit by presenting the

details of the coarse-graining derivation. Assumptions that relate to mean-field approximations and

statistical independence of quantities are normally implicitly assumed in continuum models. By

specifying the details of the derivation, and all assumptions required, our work provides insight into

situations when these assumptions hold, as well as giving insight into when these assumptions fail

to hold, such as when the number of cells, N(t), is not sufficiently large or when cell properties

vary rapidly in space. Under these conditions we recommend that the discrete description is more

appropriate than the approximate continuum description.

By coupling mechanics with proliferation and death we are able to explore biological scenarios

that could not be described in previous modelling frameworks. Specifically we can focus on me-

chanical cell competition driven by variations in cell stiffness and resting cell length. By choosing

mechanical relaxation rates sufficiently fast relative to proliferation rates we observe good agreement

between the average of many identically prepared stochastic realizations of the discrete model and

the corresponding solutions of the continuum model. This holds even when our simulations only

consider 40 cells which is extremely small in comparison to the number of cells in an epithelial tis-

sue. A continuum model is beneficial as we now have a tissue-level understanding of the mechanisms

encoded in the discrete model and the time to solve the continuum model is independent of N(t).

We explore mechanical cell competition applied to cancer invasion by considering cancer cells

adjacent to healthy cells which compete for space. Interestingly, when we only allow cancer cells

and healthy cells to differ in their cell stiffnesses, as a result of mechanical coupling, we observe that

the cancer cells have more opportunities to proliferate and are less likely to die than healthy cells.

We can then identify the cancer cells, as a result of the property of lower cell stiffness, as being the

winner cells which invade the full domain. The influence of cell stiffness and cell size may therefore

be an important factor to include when interpreting proliferation and death rates in experimental

data. This analysis would not be possible using other existing models.

In all simulations we set a = 0 to model cells being in extension [48]. Setting a > 0 gives

qualitatively very similar results for homogeneous populations and also for heterogeneous populations

when cells remain in extension throughout the simulation. This modelling framework is well-suited

to be extended to cases where cells may also become compressed, for example in a tumour spheroid

[7].

Many interesting extensions to this work are possible. Mathematically, the extent to which the
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continuum-limit holds with a free boundary is not yet clear. A free boundary also allows us to consider

tissue growth [42] and shrinkage in mechanically less constrained environments, such as in develop-

mental biology. Further, explicitly incorporating additional biological mechanisms that regulate cell

size [16, 50, 51] and the evolution of intrinsic cell properties [14] would be both mathematically in-

teresting and biologically relevant. The theoretical foundations presented here for building a discrete

model and constructing the continuum limit of that discrete model could be used to describe these

additional mechanisms in future analyses.
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