
 1 

Region-specific and dose-specific effects of chronic haloperidol 
exposure on [3H]Flumazenil and [3H]Ro15-4513 GABAA receptor 
binding sites in the rat brain 
 
Alba Peris-Yague1,5, MSc; Amanda Kiemes2, MSc; Diana Cash1, PhD; Marie-Caroline 
Cotel3 , PhD; Nisha Singh1,6, PhD; Anthony C. Vernon*3, 4 , PhD and Gemma 
Modinos*1, 2, 4, PhD. 
 
1Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, 
King’s College London, De Crespigny Park, London SE5 8AF, United Kingdom 
2Department of Psychosis Studies, Institute of Psychiatry, Psychology and 
Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, United 
Kingdom 
3Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology 
and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience 
Institute, 5 Cutcombe Road, London SE5 9RT, United Kingdom 
4MRC Centre for Neurodevelopmental Disorders, King’s College London, London, 
United Kingdom 
5Current address: Laboratory for Clinical Neuroscience, CTB, Universidad Politécnica 
de Madrid, Madrid, Spain 
6Current address: Department of Psychiatry, University of Oxford, Warneford Hospital, 
Oxford OX3 7JX 
*Joint senior authors 
 
Correspondence should be addressed to either: 
 
Dr Gemma Modinos 
Department of Psychosis Studies 
Institute of Psychiatry, Psychology and Neuroscience,  
King’s College London 
16 De Crespigny Park 
London SE5 8AF 
United Kingdom 
Tel: +44(0)2078480927 
Email: gemma.modinos@kcl.ac.uk 
 
Dr Anthony C. Vernon 
Department of Basic and Clinical Neuroscience,  
Institute of Psychiatry, Psychology and Neuroscience,  
King’s College London 
Maurice Wohl Clinical Neuroscience Institute 
5 Cutcombe Road 
London SE5 9RT 
United Kingdom 
 
Tel: +44 (0) 207 848 5311 
Email: anthony.vernon@kcl.ac.uk 

 
 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 12, 2019. ; https://doi.org/10.1101/869941doi: bioRxiv preprint 

https://doi.org/10.1101/869941
http://creativecommons.org/licenses/by/4.0/


 2 

Abstract  
 
Data from post-mortem studies suggest that schizophrenia is associated with abnormal 

expression of GABAA receptor (GABAAR) a subunits including a5GABAA. Positron 

emission tomography (PET) measures of GABAAR binding in schizophrenic patients, 

however, have not revealed consistent alterations in vivo. Animal studies using the 

GABAAR agonist [3H]muscimol have provided evidence that antipsychotic drugs used in 

schizophrenia can influence GABAAR binding, in a region-specific manner, complicating 

the interpretation of the PET GABA signal in medicated patients. No binding data, 

however, are available for more subunit-selective ligands. To address this, we combined 

a rodent model of clinically relevant antipsychotic drug exposure with quantitative 

receptor autoradiography. Haloperidol (0.5 and 2 mg/kg/day) or vehicle were 

continuously administered to adult male Sprague-Dawley rats via osmotic pumps to 

maintain a clinically relevant, steady-state levels of drug exposure for 28 days. 

Quantitative receptor autoradiography was then performed post-mortem using the 

GABAA selective radioligand [3H]Ro15-4513 and the non-subunit selective radioligand 

[3H]flumazenil.  Chronic haloperidol exposure increased [3H]Ro15-4513 binding in the 

CA1 sub-field of the dorsal hippocampus (p<0.01; q<0.01). [3H]flumazenil binding was 

also increased in most of the explored regions (p<0.05), independently of the dose of 

haloperidol used. This is the first study to demonstrate a region/dose-specific effect of 

haloperidol on [3H]Ro15-4513 binding. Although caution needs to be exerted when 

extrapolating results from animals to patients, collectively these data confirm previous 

findings that antipsychotic treatment contributes to the heterogeneity observed in PET 

studies of GABAAR in schizophrenic patients, specifically at the a1/5GABAAR.  
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Introduction  

γ-Amino-butyric acid (GABA) is the major inhibitory neurotransmitter in the central 

nervous system (CNS). The GABAA receptor (GABAAR) is a pentameric GABA-gated 

chloride ion channel composed of several classes of subunits (α1–6, β1–3, γ1–3, δ, θ, ρ, 

and ɛ) [1]. Of these, the diversity of the a-subunit is thought to be responsible for shaping 

the functional properties and ligand selectivity of the GABAA benzodiazepine binding 

site (GABAA-BZR)  [2–5]. Benzodiazepines act at the α/γ interface for the α subunits 1, 

3, 5  [6]. In the CNS, GABAA-BZR mediate pyramidal cell activity via tonic and phasic 

inhibition  [7–9].  

Deficits in GABA neurotransmission, resulting in disruptions to normal patterns of neural 

oscillatory activity are implicated in the pathophysiology of schizophrenia  [10–13]. In 

support of this, quantitative receptor autoradiography studies using [3H]muscimol, an 

orthosteric agonist at the GABA binding site on GABAA-BZR, provide consistent 

evidence for increased binding density in frontal and temporal cortices and the caudate 

nucleus in post-mortem brain tissue from patients with schizophrenia  [14–19].  

In contrast, post-mortem studies focusing specifically on mRNA expression of GABAA 

a-subunits report decreased expression of a1  [20,21], increased expression of a2  

[21,22], but inconsistent results for the a5-subunit [21,23,24]. A systematic review of 

positron emission tomography (PET) studies in schizophrenia patients using selective 

radiotracers for the BZ-site of the GABAA-BZR however found no consistent evidence 

for altered GABAA-BZR availability in schizophrenia [25].  

These post-mortem data come from patients with a long duration of illness and exposure 

to antipsychotic medication. Similarly in most of the PET studies, the patients were also 

receiving antipsychotic medication [25], and it has been shown that different 
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antipsychotics can directly alter the binding of ligands to GABAA-BZR, presumably by 

altering the expression and availability of the receptors  [26,27]. Hence, distinguishing 

effect(s) of illness from antipsychotic exposure is challenging and medication may 

represent a significant source of heterogeneity in these data.  

In support of this view, pre-clinical studies in naïve adult rats show that chronic exposure 

to antipsychotic haloperidol directly influences binding of both [3H]muscimol (indexing 

GABAAR binding) and [3H]flunitrazepam (indexing BZ-site binding) in a duration of 

exposure and region-dependent manner [28–35]. These studies however have not been 

able to fully unravel this complex issue completely. While exposure of adolescent rats to 

antipsychotic drugs has recently been reported to increase [3H]muscimol binding in the 

striatum and nucleus accumbens [36] a 12-day exposure to haloperidol is reported to 

decrease [3H]flumazenil binding in several regions of the naïve rat brain  [34]. 

Collectively, these data strongly suggest that exposure to antipsychotic medication 

influences GABAA-BZR availability in vivo, but the direction of this effect remains 

ambiguous. Notably, these studies investigating effects of D2 dopaminergic receptor 

(D2R)-based antipsychotics on GABAA-BZR involved routes of administration that 

result in inappropriate pharmacokinetics that does not match a clinically comparable 

exposure [23].  

The binding sites to the GABAA-BZR allosteric ligand, [3H]flumazenil, in the rodent and 

human brain have been shown to comprise both the “zolpidem-sensitive” and “zolpidem-

insensitive sites”, with the latter suggested to correspond to GABAARs that contain the 

α5 subunit  [38]. In a recent study, 12 days of systemic haloperidol exposure resulted in 

a significant reduction in zolpidem-sensitive binding sites (α1,2,3GABAAR [39]), with 

no effect on the insensitive-binding sites, suggesting a lack of effect on α5GABAARs  
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[34]. No studies however, have examined the potential impact of antipsychotic drug 

exposure using radioligands with greater selectivity for GABAA-BZR containing a1/a5 

subunits, such as Ro15-4513  [40,41]. This is relevant, since convergent lines of evidence 

from animal models strongly suggest that a5GABAAR have potential as a target for 

novel, non-dopaminergic antipsychotic compounds, by balancing hippocampal excitation 

via tonic inhibition of pyramidal neurons  [42–49]. Notably, the efficacy of the compound 

SH-053-2'F-R-CH3, an a5GABAAR positive allosteric modulator (PAM), in the 

methylazoxymethanol acetate (MAM) neurodevelopmental disruption model of 

schizophrenia is compromised following prior exposure to the D2R antagonist 

haloperidol [41].  

In the present study we therefore aimed to determine the impact of chronic exposure to 

haloperidol on GABAAR binding using post-mortem quantitative receptor 

autoradiography with [3H]Ro15-4513 to assess a1/a5GABAAR and [3H]flumazenil to 

assess BZ-sensitive a1-3;5GABAAR using a validated rat model of clinically comparable 

drug exposure  [37,50]. Based on the results of McLeod and colleagues (2008) who 

observed decreases in zolpidem-sensitive binding sites and no change in zolpidem-

insensitive sites after haloperidol exposure, we hypothesized that chronic haloperidol 

exposure would decrease [3H]flumazenil binding, with no effect on [3H]Ro15-4513 

binding.  

Methods  
 

Animals and treatment protocol 

Male Sprague-Dawley rats (N=36, Charles River, UK; ~ 10 weeks of age) were 

administered haloperidol (0.5 or 2 mg/kg/day; haloperidol; n=12/group: Sigma-Aldrich, 
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Gillingham, Dorset, UK) or vehicle  (β-hydroxypropylcyclodextrin, 20% w/v, acidified 

to pH 6 using ascorbic acid; n=12/group) using osmotic minipumps for 28 days [31]. 

Dyskinetic behavior, i.e., vacuous chewing movements, was assessed once at 26 days 

after the start of haloperidol exposure. This involved a simple measurement of 

purposeless chewing jaw movements in a 2-minute period, outside the home cage as 

described previously  [50]. All experimental procedures were performed in accordance 

with the relevant guidelines and regulations, specifically, the Home Office (Scientific 

Procedures) Act 1986, United Kingdom and European Union (EU) directive 2010/63/EU 

and the approval of the local Animal Welfare and Ethical Review Body (AWERB) panels 

at King’s College London (for full details, see supplementary material). 

Quantitative receptor autoradiography with [3H]Ro15-4513 and [3H]flumazenil 

On completion of treatment, rats were terminally anesthetized and perfused. A plasma 

sample was collected for estimation of drug levels. Coronal 20 µm-thick sections were 

cut using a cryostat (Leica CM1950), mounted onto glass slides (SuperfrostTM) and stored 

at -80ºC until used for autoradiography (for further details, see supplementary material). 

[3H]Ro15-4513 (Perkin Elmer, NET925250UC) was used to quantify a1/5GABAAR 

density. While this ligand has a high specificity (60-70%) [51] to α5GABAAR, a smaller 

proportion of the binding has affinity to α1GABAAR [52]. Non-specific binding was 

determined by bretazenil (Sigma, B6434-25MG) due to its affinity to bind to a variety of 

GABAAR subtypes (α1-3;5) [53]. Sections were pre-incubated at room temperature in 

Tris buffer (50 mM) for 20 minutes followed by incubation in either 2 nM [3H]Ro15-

4513 for specific binding, or 2 nM of [3H]Ro15-4513 and 10 μM of bretazenil for non-

specific binding at room temperature for 60 minutes. Slides were then washed in Tris 

buffer (2 x 2 min) at room temperature, dipped in distilled water (dH20) and left to dry 
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overnight. Dry slides were placed into light-tight cassettes with a radioactive [3H] 

standards slide, (ART-123A American Radiolabelled Chemicals Inc., USA) and 

hyperfilm (Amersham 8x10 in Hyperfilm Scientific Laboratory Supplies, UK). Films 

were exposed for 8 weeks before being developed in a Protex Ecomax film developer 

(Protec GmbH & Co, Germany). Identical procedures were used for [3H]flumazenil 

(Perkin Elmer, NET757001MC), with the exception that the slides were incubated and 

washed in buffer at 4ºC with 1nM [3H]flumazenil, and 10 μM flunitrazepam (Sigma 

Aldrich, F-907 1ML) and 1nM [3H]flumazenil, for specific and non-specific binding, 

respectively, and exposed for 4 weeks before development.  

Quantification of receptor binding  

Films were developed and images were manually captured using a Nikon SLR camera 

and preprocessed (see supplementary material). Optical density (OD) measurements were 

obtained using MCID software (Imaging Research Inc., 2003) from a priori defined 

regions of interest (ROIs; Fig. 1). These were chosen based on the known distribution of 

a1/a5GABAAR in the rat brain, data from prior studies reporting an effect of haloperidol 

on [3H]muscimol or [3H]flunitrazepam binding [31–34], and a defined role in the 

pathophysiology of schizophrenia  [31,48,54–58]. Specific binding in nCi/mg was 

quantified using standard curves constructed from OD measurements of standards for 

each film, using the robust linear regression interpolation method in GraphPad (version 

8.00, GraphPad Software, La Jolla California USA www.graphpad.com).  
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Figure 1. Representative [3H]Ro15-4513 autoradiographs showing the placement of 
ROIs that were analyzed in this study. The same ROIs were used for the analysis of 
[3H]flumazenil. A) dorsal hippocampal layers CA1 (dCA1), CA2 (dCA2), CA3 
(dCA3), dentate gyrus (DG) and amygdala (amy). B) ventral hippocampal layers CA1 
(vCA1), CA3 (vCA3). C) Medial Prefrontal Cortex (upper (1-3) and deeper (4-6) 
mPFC), Anterior Cingulate Cortex (upper (1-3) and deeper (4-6) ACC), differentiation 
of upper (1-3) vs deeper (4-6) layers was due to differential density of receptors across 
layers, specifically with α5 being more predominantly present in layer V and VI [59]. 
D) Caudate-Putamen (CPu), Nucleus Accumbens (NAc).  

 

Statistical Analyses  

All statistical analyses were performed in Prism software (v8.0.0 for Macintosh, 

GraphPad Software, La Jolla California USA, www.graphpad.com). The data were 

initially checked for significant outliers using Grubbs’ test (a=0.05) with any significant 

outliers excluded from the final analysis. The data were then checked for Gaussian 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 12, 2019. ; https://doi.org/10.1101/869941doi: bioRxiv preprint 

https://doi.org/10.1101/869941
http://creativecommons.org/licenses/by/4.0/


 9 

distribution using the Shapiro-Wilk normality test. Autoradiographic data were normally 

distributed (Shapiro-Wilk, p>0.05), but vacuous chewing movements scores were not 

(Shapiro-Wilk, p<0.01). Group-level differences in ligand binding were assessed using 

mixed-effects model, with ROI as within-subject factor and treatment (vehicle, 

haloperidol 0.5 or 2 mg/kg/day) as between-subject factor, using the specific binding 

(nCi/mg) of either [3H]Ro15-4513 or [3H]flumazenil as the dependent variable. Vacuous 

chewing movements scores were analyzed using non-parametric Kruskal-Wallis test 

(p<0.001). Post-hoc tests were performed where appropriate and corrected for multiple 

comparisons using the 2-stage set-up method of Benjamini, Krieger and Yekutieli, with 

the false discovery rate set at 5% (q<0.05)  [60]. Relationships between vacuous chewing 

movements and ligand binding were modeled using non-parametric Spearman’s Rho 

correlation (2-tailed). 

Results  
 
Haloperidol plasma levels and vacuous chewing movement behavior  
 
Administration of haloperidol by osmotic pump achieved plasma levels (mean ± s.d.) of 

2.96 ± 0.52 ng/mL and 12.2 ± 1.96 ng/mL, for dose haloperidol 0.5 and 2 mg/kg/day, 

respectively. Stereotypical vacuous chewing movement behaviors were significantly 

different across treatment group (Kruskal-Wallis statistic = 9.98; p<0.001; Fig. S1). Post-

hoc testing revealed a significant increase in vacuous chewing movements in those 

animals exposed to 2 mg/kg/day haloperidol after 26 days exposure, as compared to 

vehicle (p<0.01; q<0.05). There were no statistically significant differences between the 

haloperidol-exposed groups (p>0.05; q>0.05). Vacuous chewing movements were not 

related to the binding of either [3H]Ro15-4513 (Table S1) or [3H]flumazenil across any 

ROI (Table S2). Haloperidol plasma levels did not significantly correlate with binding of 

either of the ligands used (Table S3).  
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Dose-specific changes in [3H]Ro15-4513 binding after haloperidol exposure measured 

with quantitative autoradiography 

 
Mixed-effects model ANOVA revealed a statistically significant main effect of ROI 

(F(4,96)=106.2; p<0.0001) and a significant treatment*ROI interaction (F(24, 294)=1.71; 

p=0.02), but no statistically significant main effect of treatment (F(2, 28)=1.27; p=0.30). 

Post-hoc testing on the ROI*treatment interaction revealed a statistically significant 

increase in [3H]Ro15-4513 specific binding in the dCA1 of rats exposed to 0.5 mg/kg/day 

haloperidol, as compared to rats exposed to vehicle (p<0.01; q<0.01; Cohen’s d=1.3) or 

2 mg/kg/day haloperidol (p<0.05; q<0.01; Cohen’s d=-1.2) (Table 1; Figure 2). There 

were no statistically significant differences between 2 mg/kg/day haloperidol exposed 

rats vs. vehicle (p=0.94; q>0.05). In addition, in the NAc, exposure to 2mg/kg/day 

haloperidol decreased [3H]Ro15-4513 binding relative to 0.5mg/kg/day haloperidol-

exposed rats (p<0.001; q<0.001), although this did not reach statistical significance with 

respect to vehicle controls (vehicle vs 0.5mg/kg/day: p=0.07; q=0.049; vehicle vs. 

2mg/kg/day: p=0.06, q=0.049) (Table 1; Figure 2). All other ROIs showed no statistically 

significant changes in [3H]Ro15-4513 binding after 28 days exposure to haloperidol, 

irrespective of the dose.  
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Table 1. Regional binding (nCi/mg) of [3H]RO15-4513 across the ROIs explored, data 
show mean (SD, N). Prefrontal Cortex (PFC), Anterior Cingulate Cortex (ACC), upper 
layer (1-3) and deeper layer (4-6); Caudate-Putamen (CPu), Nucleus Accumbens 
(Nac); dorsal hippocampal layers CA1 (dCA1), CA2 (dCA2), CA3 (dCA3), dentate 
gyrus (DG); ventral hippocampal layers CA1 (vCA1), CA3 (vCA3); amygdala (Amy).  
*Vehicle vs. Haloperidol 0.5 mg/kg/day (q<0.01), # Haloperidol 0.5 mg/kg/day vs. 
Haloperidol 2 mg/kg/day (q<0.01), ## (q<0.001) 

 

 
Figure 2. Chronic haloperidol exposure results in dose-specific changes in [3H]RO15-
4513 specific binding relative to vehicle controls in the nucleus accumbens (Nac) and 
dorsal Cornu Ammonis 1 (dCA1). Data points represent the specific binding values per 
individual animal (nCi/mg), horizontal line indicates group mean, bars indicate SEM.  
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General increase in [3H]flumazenil binding after haloperidol exposure measured with  

quantitative autoradiography 

Mixed-effects model ANOVA revealed a significant main effect of ROI (F=(4, 

114)=124.2; p<0.0001) (Table S4, Figure S2) and treatment (F(2, 28)=3.86; p=0.03), but 

no ROI*treatment interaction (F (24, 304)=1.22; p=0.23). Across ROIs, the effect of 

haloperidol exposure was generally to increase [3H]flumazenil-specific binding (see 

Table 2 and Figure 3). 

 

 
Table 2. Regional binding (nCi/mg) of [3H]flumazenil across the ROIs explored, 
data show mean (SD, N). Prefrontal Cortex (PFC), Anterior Cingulate Cortex 
(ACC), upper layer (1-3) and deeper layer (4-6); Caudate-Putamen (Cpu), Nucleus 
Accumbens (Nac); dorsal hippocampal layers CA1 (dCA1), CA2 (dCA2),CA3 
(dCA3), dentate gyrus (DG); ventral hippocampal layers CA1 (vCA1), CA3 (vCA3); 
amygdala (Amy). 
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Figure 3. Pseudocolored representative autoradiographs showing A) [3H]Ro15-4513 
binding patterns and B) [3H]flumazenil binding, by group: vehicle, haloperidol 0.5 
mg/kg/day (halo 0.5), and haloperidol 2 mg/kg/day (halo 2). 

 
 
Discussion 

To our knowledge, this is the first study to investigate the effects of chronic exposure to 

haloperidol using clinically comparable dosing on GABAAR binding in a receptor 

subtype-specific manner using quantitative autoradiography. The main findings are that 

chronic haloperidol exposure results in a dose-specific increase in [3H]Ro15-4513 

binding in the dCA1 of the hippocampus. Precisely, [3H]Ro15-4513 binding is increased 
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in rats exposed to haloperidol 0.5 mg/kg/day compared to rats exposed to vehicle with no 

effect of 2 mg/kg/day haloperidol. In contrast, chronic exposure to haloperidol generally 

increased [3H]flumazenil binding in most ROIs irrespective of the dose administered. We 

found no relationship between these changes in ligand binding and vacuous chewing 

movements, a proxy measure for haloperidol-induced tardive dyskinesia, or drug plasma 

levels. These data suggest that chronic exposure to haloperidol has distinct, dose- and 

region-specific effects on the availability of GABAAR with specific sub-unit 

compositions. The present findings confirm that the dose and duration of exposure to 

haloperidol (and perhaps other antipsychotics) should be considered when measuring and 

interpreting GABAAR binding availability from schizophrenia patients. 

Previous autoradiography studies have reported mixed findings regarding the effects of 

haloperidol exposure on GABAA-BZR binding sites.  McLeod and Colleagues (2008) 

reported an overall decrease in [3H]flumazenil binding across cortical and subcortical 

regions after a 12-day exposure to 1 mg/kg of haloperidol administered once daily via an 

intraperitoneal injection [34]. In contrast, using a more clinically relevant mode of 

administration and longer duration of exposure (28 vs. 12 days), our data suggest chronic 

haloperidol exposure results in a generalized increase in [3H]flumazenil binding across 

several brain ROIs. The present findings are in concordance with previous research 

suggesting that chronic haloperidol exposure is associated with increased GABAA-BZR 

density in cortical areas using [3H]flunitrazepam  [32,33]. The discrepancies between our 

findings and those in McLeod and colleagues (2008) could simply reflect methodological 

differences, due to the differing modes of drug administration  [34]. Notably, 

intraperitoneal administration of haloperidol does not result in clinic-like steady-state 

plasma levels or pharmacokinetics  [37]. Alternatively, there could be bi-phasic, time-

dependent effects of haloperidol exposure on GABAAR availability. McLeod and 
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colleagues (2008) also reported no effect of 12-day haloperidol exposure on zolpidem-

insensitive [3H]flumazenil binding, which is suggested to reflect a5GABAA binding sites  

[34,38]. Hence, it may be speculated that [3H]Ro15-4513 binding might be affected 

differently following shorter or longer exposure to haloperidol which should be explored 

by studying clinically-relevant dosages of antipsychotic medication at different time 

points.  

 

The use of quantitative autoradiography in the present study provides proof-of-concept 

evidence that exposure to haloperidol affects GABAA-BZR as well as α5GABAAR 

specifically. This technique in pre-clinical research is highly advantageous as it provides 

better spatial resolution than PET studies and sets a translational framework for 

conducting clinical research with homologue ligands, which other techniques such as 

histology do not allow. Collectively, our findings and those of others suggest that 

haloperidol, a D2R antagonist, likely impacts on GABA neurotransmission within the 

hippocampal-midbrain loop circuitry, which is critically involved in emotion salience and 

memory and is dysregulated in schizophrenia [61].  Precisely how these drug-induced 

changes in GABAAR binding relate to central GABA neurotransmission however remains 

unclear. Quantitative autoradiography reflects changes in binding of the ligands to 

available receptor sites, which may relate to either upregulation or downregulation of 

neurotransmitter release. For example, an increase in receptor binding could indicate a 

compensatory effect in the form of a reduction in neurotransmitter levels.  An increase in 

GABA levels does nonetheless also enhance affinity of GABAAR for BZ-ligands such as 

flumazenil via a conformational change [62–64]. This is not the case, for BZR inverse 

agonists such as Ro15-4513, in which increased GABA levels appear to decrease the 

affinity of GABAAR  for this ligand [65]. Hence, increases in [3H]flumazenil binding 
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could reflect either increased or decreased GABA levels, whilst decreases in [3H]Ro15-

4513 binding likely reflect increases in GABA levels and vice versa. Taken together, our 

observations of increased [3H]Ro15-4513 binding in the dCA1 following exposure to 0.5 

mg/kg/day haloperidol may be interpreted as evidence for increases in membrane a1/5-

GABAAR in response to decreased GABA levels [60]. In the higher-dose haloperidol 

group, we observed vacuous chewing movements, which in rats, it is an analogue measure 

to tardive dyskinesia observed in humans and can be an indicator of almost complete D2R 

blocking occupancy  [66], that may be causing differential effects on a1/5GABAAR than 

the lower-exposure dosages.  

 

The overall increased [3H]flumazenil binding could be suggestive of increased GABA 

release. Notably, in vitro slice electrophysiology suggests that D2R mediate GABA 

release onto pyramidal neurons in the PFC, whereby GABA release is decreased 

following dopamine administration [67]. D2R antagonists, such as haloperidol, would be 

predicted to increase GABA levels in the rodent frontal cortex, which could lead to 

elevated [3H]flumazenil binding. In support of this view, GABA-immunoreactivity is 

increased in the axosomatic terminals of neurons in layers II, III, V, and VI in the frontal 

cortex of rats exposed chronically to 0.5 mg/kg/day haloperidol over 4 months [68]. In 

contrast, a microdialysis study in rats reported a decrease of extracellular levels of GABA 

in the nucleus accumbens region following chronic haloperidol exposure [61], suggesting 

a compensatory upregulation of GABAAR in our sample of rats.   

 

Studies of bulk tissue GABA levels in the frontal cortex of schizophrenia patients using 

proton magnetic resonance spectroscopy (1H-MRS), however, report either no effect  

[70,71] or a normalisation of elevated GABA levels  [54] following antipsychotic 
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exposure.  The precise nature of the relationship between GABAAR binding and GABA 

levels following antipsychotic exposure therefore remains to be confirmed in future 

studies using corroborative methods, including microdialysis, 1H-MRS and 

immunohistochemistry to map the cellular localization of these receptor changes. Of 

particular interest would be further exploration of the subiculum and dCA1 areas of the 

hippocampus, based on the present findings and on their involvement in the 

pathophysiology of psychosis  [56,61,72].  

 

Limitations of our study should be noted. First, while [3H]Ro15-4513 binds 

predominantly to diazepam-sensitive GABAA sites, it also binds to a diazepam-

insensitive site in the cortex and hippocampus with lower affinity [73], which should be 

taken into consideration when comparing [3H]Ro15-4513’s binding patterns to those of 

the BZ-sensitive ligand [3H]flumazenil. Second, much of the binding was present within 

the lower-range of the commercially available standards, which limited the ability to 

detect a specific signal from regions with lower-binding values (likely reflecting lower 

receptor density). Hence, we may have underestimated or missed effects of haloperidol 

in such regions. Third, we only examined the effects of haloperidol; therefore, it is unclear 

whether the findings reported would generalize to other antipsychotic drugs such as 

olanzapine, aripiprazole and clozapine. In our previous studies concerning effects of 

haloperidol and olanzapine on brain volume and cellular markers, we found no clear 

differences between these compounds  [74,75]. Whilst we have no reason to believe that 

olanzapine for example, would not induce similar effects to haloperidol, this should be 

explicitly tested in future studies. Future studies should also address sex as a biological 

variable, since we only used male animals. Finally, it should be taken into consideration 

that the present data were collected in naïve animals, which do not recapitulate any 
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features relevant to the pathophysiology of schizophrenia. Hence, haloperidol may act 

differentially on the GABA system in an initially dysregulated, diseased system. Future 

studies should therefore investigate the effects of antipsychotics on GABAAR in animal 

models reflective of genetic, environmental or pharmacological risk factors for psychosis. 

In summary, our findings indicate that chronic treatment with haloperidol induces dose-

specific changes in α1/5GABAAR in the dCA1 and a generalized increase in BZ-

GABAAR in healthy rodents. These findings suggest that the mechanisms of action of 

antipsychotics may also involve the modulation of GABAAR in the midbrain-

hippocampal loop, predominantly implicating α1-3;5GABAAR.  These mechanisms may 

be led more specifically by α5 receptors, particularly in the dCA1 and in a dose-specific 

manner. The present results align with the notion that administration of antipsychotics 

can change the responsivity to novel GABA-targeting drugs  [76]. Importantly, the 

ligands used in this study to explore α5GABAAR (Ro15-4513) as well as BZ-sensitive 

GABAAR (flumazenil) offer promising approaches for translational research as they can 

be used in cross-species studies including PET in humans [77].  
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