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Abstract: 

While synthetic biology has revolutionized our approaches to medicine, agriculture, and energy, 

the design of novel circuit components beyond nature-inspired templates can prove itself 

challenging without well-established design rules. Toehold switches — programmable nucleic 

acid sensors — face an analogous prediction and design bottleneck: our limited understanding of 

how sequence impacts functionality can require expensive, time-consuming screens for effective 

switches. Here, we introduce the Sequence-based Toehold Optimization and Redesign Model 

(STORM), a deep learning architecture that applies gradient ascent to re-engineer poorly-

performing toeholds. Based on a dataset of 91,534 toehold switches, we examined convolutional 

filters and saliency maps of sequences to interpret our sequence-to-function model, identifying 

hot spots where mutations change toehold effectiveness and features unique to high-performing 

switches. Our modeling platform provides frameworks for future toehold selection, augmenting 

our ability to construct potent synthetic circuit components and precision diagnostics, and 

enabling straightforward translation of this in silico workflow to other circuitries.  

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/870055doi: bioRxiv preprint 

https://doi.org/10.1101/870055
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3  

Main Text: 

Introduction 

 Advances in synthetic biology have shifted paradigms in biotechnology by drawing 

inspiration from nature. While researchers have successfully isolated, integrated, and adapted 

templates from naturally occurring circuit parts — such as inducible promoters, terminators, and 

riboswitches — forward-engineering of novel components remains challenging. The workflow to 

develop a single circuitry may require weeks of screening and fine-tuning of individual units in 

efforts to perform an intended function as designed1. As such, there is a strong need for in silico 

screening of circuit parts in order to overcome prediction and design bottlenecks and ease 

integration of novel and redesigned synthetic components into existing biological systems. 

In order to address the complexity of prediction and design of synthetic circuit parts, we 

focused on building computational tools to model nucleic acid sensors, such as riboswitches. 

Since the discovery of naturally occurring riboregulators — RNAs that alter their translation rate 

in the presence of small molecules and nucleic acids via changes in secondary structure2,3 — 

synthetic biologists have co-opted these circuit components for a variety of uses, from synthetic 

gene circuit construction4,5 to gene regulation6,7. The ability to engineer and control these 

molecules has broad applications spanning diverse areas, including medicine and agriculture2,3.  

The toehold switch, a particularly versatile engineered riboregulator, is able to detect and 

respond to the presence of RNA molecules via linear-linear hybridization interactions8. A typical 

toehold switch anatomy consists of an unstructured toehold strand followed by a hairpin 

sequestering the Shine-Dalgarno sequence such that a reporter protein is not translated when the 

switch is in the OFF state (Fig. 1A, Table S1). The switch can be flexibly programmed such that 

the toehold and ascending stem of the hairpin are complementary to an arbitrary trigger RNA 
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sequence, allowing the trigger RNA to hybridize to the toehold and subsequently melt the hairpin 

in the ON state, exposing the Shine-Dalgarno sequence to the ribosome and thereby initiating 

translation of a reporter gene. The inducible nature of toehold switches has led to their successful 

use as low-cost, freeze-dried, paper-based nucleic acid diagnostic tools9–11, as well as 

multiplexable components in complex genetic circuits with low crosstalk and high sensitivity12–

14. 

Although toehold switches have become an effective and modular component of the 

synthetic biology toolkit, broad understanding of switch design has been limited by the small 

number of available toehold switches and lack of effective design rules for optimal performance. 

Sequence-based computational tools, which take into account thermodynamic equilibria and 

hybridization energies, have been developed to predict RNA sequence secondary structure prior 

to experimental validation15–18. However, when applied to multi-state toehold switches, these 

tools can lack predictive power and require time-intensive experimental screening, with 

correlations as low as 0.22 between predicted and measured efficacy18. An analysis of 

biophysical features conducted by Green et al.8 found only a few thermodynamic parameters that 

correlate to switch performance with an R2 value greater than 0.50, which are helpful heuristics 

but are not predictive of switch performance as standalone metrics. An improved prediction 

framework based on RNA sequence alone, customized for toehold switches and without reliance 

on biophysical parameters, would expand accessibility to efficiently tailor the design of these 

riboregulators for novel biological applications. 

To improve toehold switch design and prediction, we took inspiration from the field of 

machine learning and deep learning. Machine learning approaches have been applied 

successfully to synthetic biology1,19, as exemplified in a recent study by Yang et al.19 using a 
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‘white box’ approach to extract antibiotic mechanisms of action, and in motif finding and DNA 

sequence prediction tasks20–22. As typical deep learning approaches require large amounts of 

training examples, we used a dataset from Angenent-Mari et al. (2019)23 that experimentally 

characterized 91,534 toehold switches, in both active and repressed states. We fed these switch 

sequences as input to a multi-layer convolutional neural network that can predict the ON and 

OFF state performances simultaneously. Our analysis provides both a deployable model to 

predict performance of new switches based on sequence alone, as well as a set of actionable 

design rules for optimal toehold switches. To understand the predictions made by the neural 

network, we used previously established white-box tools to examine motifs or partial motifs 

detected by the convolutional filters24, as well as positional importance of nucleotides. We 

provide examples of utilizing our deep neural network to rationally re-engineer poorly-

performing toeholds using our Sequence-based Toehold Optimization and Redesign Model 

(STORM) framework, which employs gradient ascent to sample a sequence’s mutation space 

and customize toehold performance.  

Sequence-to-function frameworks such as the one proposed here enable researchers to 

rapidly cycle through many possible design choices and select circuitries with optimal 

performance, while elucidating the underlying design principles for riboregulators. Given 

similarly sized datasets of other synthetic biology classes, translation of these frameworks to 

other training data and training tasks is both direct and desirable, and intersecting the cutting-

edge features and techniques of both deep learning and synthetic biology holds profound 

implications for human health and biotechnology. 
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Results 

Nucleotide over-representation in top-performing toehold sequences 

A dataset of 244,000 toehold switches (Fig. 1A), including sequences tiled from viruses 

and the human genome as well as random sequences (see Methods), have been tested 

experimentally by Angenent-Mari et al23, with 91,534 switches meeting well-defined quality 

control criteria. Each toehold sequence is 59 nucleotides in length, with the first 30 nucleotides 

distinguishing the unique unstructured region followed by part of the hairpin; the remaining 29 

nucleotides can be inferred by hairpin complementarity as well as Shine-Dalgarno sequence and 

start codon conservation (Table S1). Sequences with experimental ON/OFF ratios in the top and 

bottom 5th percentile were characterized as high- and low-performing switches, respectively. To 

investigate nucleotide preference in high-performing switches, frequencies of triplets 

complementary to the trigger region were calculated with respect to the set of all sequences (Fig. 

1B, Fig. S1). Of note is the over-representation of triplets AUA, CUA, GUA, and UUA at 

positions 22-24 in the switch, the three-nucleotide bulge directly opposite from the AUG start 

codon, suggesting that high-performing sequences may have an NUA at this bulge to prevent 

hybridization to the start codon (Fig. S2). Furthermore, the under-representation of UCA, CUA, 

and UUA at positions 13, 16, and 19 corresponds to the reverse complement of all three stop 

codons; positions 13 through 21 are opposite to the region directly following the start codon. 

Consistent with previous toehold design tools18, this indicates that the N-terminus of the reporter 

protein cannot tolerate an in-frame stop codon, which would terminate translation of the reporter 

protein. 

To understand how changes to the coding part of the sequence (positions 51-59) affected 

toehold performance, we conducted a broader analysis of the in-frame amino acids at the N-
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terminus of the reporter gene (Fig. 1C, Fig. S3). In-frame stop codons were found less often at 

the N-terminus of high-performing sequences, in agreement with previous results. Additionally, 

though an unstructured linker region separates the switch from the reporter gene, we were 

nonetheless able to identify over- and under-representation of certain amino acids. Small 

hydrophobic amino acids such as valine, alanine, and glycine appear more often in the N-

terminus of high-performing sequences than low-performing ones; top sequences also appear to 

contain less proline at the N-terminus, suggesting a slight preference for amino acids lacking a 

secondary amine; finally, polar amino acids appear less differentially represented than other 

classes, with differences in frequencies close to zero. Given these observations, toehold 

sequences appear sensitive to changes to in-frame amino acids at the N-terminus of the protein: 

small aliphatic amino acids are well-tolerated, but bulky non-polar amino acids such as 

phenylalanine and leucine should be avoided, if possible. However, due to the nature of the 

study, it is difficult to disentangle whether the observed enrichments for certain amino acids are 

due to structural changes at the RNA level or protein level, or perhaps due to differences in 

tRNA abundance. 

Sequence logos based on positional probabilities of each nucleotide were calculated for 

all toeholds as well as for high-performing and low-performing toeholds separately to expand the 

nucleotide preference investigation to the entire 59-nucleotide switch sequence (Fig. 1D, E, F). 

Aside from the observed conservation of the Shine-Dalgarno (SD) and start codon sequences at 

positions 31-41 and 48-50, respectively, the sequence logo constructed from all 91,534 toeholds 

confirms that each of the four nucleotides are relatively evenly distributed at each position23. 

However, stratification into high- and low-performing sequences shows differential nucleotide 

composition immediately surrounding the SD sequence and following the start codon, with 
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51.75% of top-performing sequences containing uracil in the position immediately before the SD 

sequence and the same percentage of sequences containing adenine in the position immediately 

following the SD sequence. As we observed previously (Fig. 1B), the enrichment for NUA in 

positions 22-24 is highlighted in the top-performing logo with 16.1% of sequences containing the 

NUA motif: interestingly, 44.8% of sequences contain a U in position 22 and 44.7% of 

sequences contain an A in position 23, implying that single nucleotides belonging to the NUA 

motif are more prevalent than the complete motif. The sequence logo of poorly performing 

toehold suggests a corresponding NAU motif in positions 22-24, contributing evidence for a 

model that poorly functioning switches will hybridize successfully with the start codon, possibly 

preventing the hairpin from melting (Fig. S2).  

 

Top-performing switches are not adequately predicted by biophysical properties 

The large size of the dataset allowed us to conduct an unbiased evaluation of toeholds’ 

biophysical properties suggested by other studies15,18. As previous reports have suggested that 

GC content is important for the strength of the ON and OFF state stabilities8, we compared the 

GC content distributions for top-performing sequences to that of all sequences (Fig. 1G), with a 

narrowing of the distribution and statistically significant shift to the left. These results suggest 

that successful toeholds may have a range of acceptable GC content between 20% and 60%. 

Very few top-performing sequences have more than 60% GC content, implying a necessity for 

A-U base pairing in the switch. 

Multiple secondary structure prediction tools rely on thermodynamic modeling15–18; for 

example, the NUPACK software package calculates the equilibrium Gibbs free energy values for 

many possible secondary structures based on a provided RNA sequence, and reports to the user 
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the most likely structure based on a minimum free energy (MFE) determination15. Because MFE 

has been quantified as an important predictive tool8,15,17,18, we investigated differences in 

predicted MFEs of toehold switches in our dataset by assessing the distribution in top-

performing sequences. High-performing sequences had a statistically significantly higher MFE 

distribution than the set of all sequences (Fig. 1H), possibly due to extremely favorable MFE 

values indicating stability of the OFF state such that the hairpin will not melt in the presence of 

the trigger. As such, sequences with highly favorable free energy values should not be expected 

to perform better than sequences with less negative MFE values. Although top sequences exhibit 

statistically significant shifts in both GC content and MFE distributions, both properties lack 

predictive power due to their broad range of acceptable values. 

 

Multi-layer convolutional neural network to predict and classify toehold performance 

As no single toehold property was found to be solely predictive of switch performance, a 

deep learning model was built to predict ON and OFF states based on switch sequence alone. 

Given the recent advancements in both accuracy and accessibility of deep learning1,25, a 

convolutional neural network (CNN)26 was constructed to take RNA sequences as input, 

employing two convolutional layers to identify motifs and partial motifs in the input sequences 

and their interactions24 (Fig. 2A). Following the convolutional layers, the model employs a 

multi-layer perceptron with three fully-connected layers, where every node in a given layer is 

connected to every node in the previous layer, to synthesize the features from the convolutions to 

output an ON and OFF prediction for each toehold sequence. As a comparison, neural networks 

with zero and one convolutional layers were built, and the performance of each model in a 

classification task — splitting sequences into the bottom 90% and top 10% of toehold switches 
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— was compared via both a receiver operating characteristic (ROC) curve and a precision-recall 

(PR) curve in a 10-fold cross-validation setting (Fig. 2B, Fig. S4).  The two-layer CNN ON 

classifier had an area-under-ROC curve (auROC) of 0.907, while the OFF classifier had an 

auROC of 0.868. To ensure that the 90% threshold was not arbitrarily effective for sequence 

classification, we tested an additional classifier built to stratify the top 50% and bottom 50% of 

sequences, which performed similarly (Fig. S5), with an auROC of 0.907 and 0.855 for the ON 

and OFF classifiers, respectively. The high auROC values suggest a high sensitivity for the 

classifier, while the high average precision of 0.979 to 0.989 for all models indicates that the 

number of false positives is low, both desirable traits for a classifier. 

To expand the utility of the model, performance was also evaluated in a regression task to 

predict both ON (Fig. 2C) and OFF (Table S2) values directly. We evaluated all models on their 

R2 value, Pearson correlation coefficient, Spearman correlation coefficient (SCC), mean squared 

error (MSE), and mean absolute error (MAE). The best Pearson correlations achieved for ON 

and OFF, respectively, were 0.832 and 0.731, suggesting competent predictive ability of our 

model. Across all architectures, OFF predictions showed worse correlative metrics but better 

MAE and MSE metrics; for example, the two-layer CNN has an SCC of 0.828 for ON values, 

considerably outperforming the OFF SCC of 0.693. These results suggest that the models are 

able to learn features distinguishing a high ON value more easily than they can learn features 

distinguishing OFF states, possibly resulting from skewedness in the OFF data or from variance 

in the OFF state due to autofluorescence not being subtracted out8. 

Although the two-layer CNN was not the top-performing model across all tasks, being 

surpassed slightly by a simpler multi-layer perceptron with zero convolutional layers, its multiple 

convolutional layers offer a level of interpretability beyond the other models showcased here. 
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When CNNs are applied to images, consecutive convolutional layers learn additive features; for 

example, in facial analyses, edges and curves are learned in the first convolutional layer, 

followed by eyes, noses, and mouths, accumulating higher-order features through the layers26. As 

secondary structure is an important feature of toehold switches, we aimed to design a model such 

that the first convolutional layer learned motifs or partial motifs of the linear RNA sequence, and 

the second convolutional layer would learn additive or interactive features of such motifs, 

thereby improving the model accuracy through an implicit learning of secondary structure. 

Likewise, although the complete 59-nucleotide sequence contains some redundant information 

given complementarity in the hairpin, the 59-nucleotide sequence was used as input rather than 

the unique 30-nucleotide sequence so that the model could learn interactions within the linear 

switch sequence. 

The regression model was used to predict the ON value of the 168 toehold switches 

reported in Green et al.8 in order to evaluate the model’s performance on unseen external data 

(Table S3). While the R2 is relatively low at 0.14, the higher Spearman correlation coefficient of 

0.48 is an important characterization because a switch’s performance relative to another 

sequence can be more practically utilized than an arbitrary performance value. As an 

experimentalist may want to prioritize testing the best toehold out of a set of many, rank 

correlations may better inform decisions than precise ON/OFF ratios. Of note, no Green et al. 

switch sequences were included in our training data, suggesting that our models can be extended 

to unseen data without retraining the model or re-running the hyperparameter optimization, both 

computationally intensive and time-consuming steps.  

 

Improved interpretability of convolutional neural network predictions 
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Next, we harnessed a suite of white-box approaches to examine how our multi-layer 

CNN model was making its predictions. Given the vast number of weights and nonlinear 

functions that form the backbone of neural networks, it can be challenging to deduce why a 

model made the predictions it did25.  While recent work, such as soft explainable decision trees27, 

have enabled researchers to look inside this ‘black-box’ by using a neural network to train a 

decision tree, we chose to visualize weights and activations of our trained model directly28. To 

understand the model’s predictions on an individual sequence, we took 500 random switches and 

evaluated the importance of each position in the sequence towards predicting the ON value (Fig. 

2D); here, a higher saliency, computed by summing gradients across nucleotides at each position 

(see Methods), indicates that the nucleotide was considered to be more influential in the model’s 

ON prediction process. Our results show that swaths of unimportant regions mark the first twelve 

nucleotides in the sequence corresponding to the toehold region, as well as the constant ribosome 

binding site and the start codon, echoing results from codon and nucleotide representation in 

high-performing sequences (Fig. 1B, Fig. 2D). However, analogous to the sequence logos, the 

model interprets the area directly surrounding the Shine-Dalgarno sequence as being vital to 

toehold performance. Interestingly, position 30 appears more important than the nucleotide 

directly opposite it in the hairpin, position 42, indicating that the model does not need both 

positions to draw a conclusion about the ON value. To understand if the sequence saliency varies 

with the experimental values of the ON or OFF prediction, saliency maps for sets of high-, 

medium-, and poorly-performing toeholds were evaluated (Fig. S6). Poorly-performing toehold 

maps show similarly low activation in the first twelve nucleotides as their medium- and high-

performing counterparts, suggesting that the model is not drawing conclusions by paying 

attention to different regions of toeholds. Conversely, these results may suggest that nucleotides 
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in the ascending stem at positions 13-30 are important to characterize in all sequences regardless 

of performance. 

Taking inspiration from work in the field of image recognition and genomics26,29–31, we 

investigated the first convolutional layer to see which features our model deemed important by 

interpreting the filter weights learned from input sequences as sequence logos (Fig. 2E). 

Exploration of the filter weights allowed us to identify a motif resembling the UAA stop codon 

in filters 7 and 8, though the filter does not explicitly correspond to any one region of the toehold 

and the direction of the effect of this motif on toehold performance is inconclusive. Filter 9 

appears similar to the Pribnow box commonly found upstream of prokaryotic promoters, thereby 

indicating that significant information may be captured by some filters in our CNN. Further work 

is needed to explore the generalizability of these filters in the analyses of RNA sequences, and 

more definitive motif extraction could possibly be achieved by constructing an ensemble of 

convolutional networks and aggregating their convolutional filters for more statistical power. 

 

Rational redesign of toehold sequences by co-opting the pre-trained neural network 

Given limitations in current toehold design processes, we pursued building a deep 

learning framework to rationally redesign sequences and optimize poorly-performing toeholds 

into high-performing ones via predictive point mutations. We converted our initial pre-trained 

model to build a Sequence-based Toehold Optimization and Redesign Model (STORM). Rather 

than using gradient descent as in the previous classification and regression tasks, we used 

gradient ascent to optimize sequences to meet target ON and OFF values (Fig. 3A, B). To 

evaluate the utility of STORM, we took the 100 worst experimental toeholds and engineered 

these to have a higher ON and lower OFF value, respectively (Fig. 3C, D). Clear differences 
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emerged in the first ten to twelve nucleotides, with a run of cytosines that resemble the patterns 

learned by filters 2 and 4 of our two-layer CNN (Fig. 2E). The post-optimization sequences had 

an NUA motif enriched at positions 22-24, indicating the same preference for NUA that was 

seen in our previous triplet codon enrichment analysis (Fig. 1B, Fig. S2). These results confirm 

that the model can incorporate information learned in the training process to the redesign task, 

such that our framework is not limited to learning toehold sequence functionality, but rather, can 

be converted to other utilities such as toehold redesign. Saliency maps generated of the 100 worst 

sequences before and after optimization (Fig. S7) indicate that the model focuses more attention 

on the first ten to twelve nucleotides after optimization, signifying that the run of cytosines 

actionably changed the toehold performance prediction and were not an artifact of the redesign. 

Though the cytosine enrichment appears contradictory to results implying the first twelve 

nucleotides are inconsequential to model prediction, changes in model attention confirm that the 

cytosines contribute to model decision-making, encouraging the use of neural networks over 

simple nucleotide frequency studies which did not identify such a feature. 

For the set of 100 worst toeholds, the pre-optimization and post-optimization predicted 

ON and ON/OFF ratio values increase (Fig. 3E, G), which is expected given that the gradient 

ascent framework makes as many mutations to the sequence as possible to maximize the ON 

state while simultaneously minimizing the OFF state. Our results show that post-optimization 

predicted OFF values increase slightly from pre-optimization predicted OFF values (Fig. 3F), 

suggesting that for this set of optimized toeholds, higher performance was achieved by 

modifications to increase the ON value rather than decrease the OFF value. To ensure that these 

results were robust despite difficulties in predicting the ON and OFF values of experimentally 

poor toeholds, STORM was applied to a set of 100 toeholds with higher correlation in the 
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experimental and predicted pre-optimization performance (Fig. S8). Interestingly, the focus on 

maximizing ON values was not observed in the set of 100 toehold sequences with a high 

correlation between their ON and OFF experimental and predicted values. These sequences had 

both high ON values and high OFF values at baseline, and the model focused on decreasing the 

OFF values rather than substantially increasing the ON values. However, the model’s OFF 

prediction quantified via R2 is less accurate than its ON prediction (Fig. 2C, Table S2), so it is 

unclear if this observation is an artifact arising from less reliable OFF prediction. Nevertheless, 

these results suggest that STORM is not following a static set of guidelines for optimization but 

rather adapts to each sequence by sampling from its custom mutation space. As the sequence 

optimization process may create a toehold that is not complementary with the original intended 

biological target, we envision STORM being utilized as a valuable tool for unconstrained 

sequence development, such as in synthetic circuit component construction. 

 

Discussion 

Given the power of modular, programmable synthetic circuit components for diverse 

design problems and applications, there is a compelling need to better integrate computational 

and experimental approaches. We hoped to address this prediction and design bottleneck by 

building STORM, a deep learning framework that allows for the optimization of toehold 

switches according to user-inputted criteria. Our deployable models build on convolutional 

architectures and only require the RNA or DNA sequence of the trigger as input. 

 Our convolutional neural network offers meaningful insight into toehold design and pre-

experimental performance prediction, underscoring the importance of designing models with 

interpretability in mind. Rather than treating the model as a black box and trusting its 
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predictions, recent advancements in machine learning have emphasized the importance of 

understanding how and why models reach their conclusions28,32–34. The convolutional neural 

network employed here gives us an opportunity to directly visualize the learned motifs of the 

network, highlighting potentially interesting biological features. Furthermore, saliency maps are 

a valuable tool to identify possible areas of model confusion and understand where the model 

focuses its attention28,32. Synthetic biology can thus benefit greatly from applying interpretable 

methods to deep learning frameworks. 

Armed with a pre-trained convolutional neural network, our gradient ascent framework 

can be used to optimize any set of toehold sequences for any performance constraints. Though 

gradient ascent is not a new concept35, the application of generative models to redesign linear 

sequences for the end goal of improving function has been gaining traction in protein 

engineering36,37. For instance, generative adversarial networks38 (GANs) — a modeling paradigm 

that simultaneously trains two competing neural networks — are being used to teach a network 

to produce realistic protein structure maps39, in the same way that such tools have been used in 

computer vision to make realistic celebrity faces40. However, GANs remain challenging to train 

and define for biological tasks. By comparison, STORM readily converts our existing predictive 

CNN without extensive re-training, allowing for the redesign of sub-optimal toehold switches in 

a generative manner. Given more popular and accurate sequence-to-function prediction models41, 

STORM could be used as a guide for new nucleic acid modeling problems such as combinatorial 

circuit design, as well as to look inside of and augment existing prediction frameworks. 

Additionally, the STORM framework allowed us to concertedly identify key design rules 

for this class of riboregulators. Importantly, both high-performing toeholds and optimized 

redesigned sequences have an over-representation of NUA at positions 22-24, suggesting that 
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toehold performance suffers if there is hybridization with the start codon. Additionally, bulky 

hydrophobic amino acids or amino acids that disrupt polypeptide structures are unfavorable at 

the N-terminus, with charged amino acids appearing over-represented in top sequences. The first 

twelve nucleotides in the sequence corresponding to the toehold region exhibit evidence of being 

less important than the remaining nucleotides, indicating that the first twelve nucleotides can be 

freely designed based on trigger complementarity without constraining any design rules. 

However, the STORM redesign preferentially transformed the first twelve nucleotides to 

cytosines, implying that particularly well-designed arrangements of nucleotides in these 

positions can affect toehold performance. While GC content and MFE of the sequence should be 

considered, these properties are not strongly predictive of experimental performance, but can be 

included as additional considerations in switch selection. 

 It is important to note that the tools developed here are not constrained to any single 

riboregulator design or dataset. Our neural network architecture can be adapted for any RNA or 

DNA sequence with a measurable performance, dependent only on a large enough set of data to 

perform model training. Similarly, white-box tools are model-agnostic, with applicability to any 

convolutional model and nucleic acid dataset. Our gradient ascent framework to transform 

poorly performing toehold sequences can be applied to any set of toeholds or similar nucleic acid 

sequences. With the advent of tools to design, test, and process high-throughput biological 

datasets, machine learning could be fully exploited as a means to glean new insight into synthetic 

biology components, tools, and phenomena. 

 

Methods 

Toehold Sequence Generation 
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 In order to define the sequences to be tested (see Angenent-Mari et al.23), we perform a 

sequence tiling on a variety of prokaryotic genomes, as well as the complete set of human 

transcriptional regulators. Briefly, each chosen sequence was tiled with a sequence length of 30 

nucleotides and a stride of 5 nucleotides. Additionally, we generated a set of 10,000 random 

sequences of length 30, drawing each nucleotide from a uniform distribution at each position. 

This approach resulted in a set of 244,000 sequences to be synthesized and tested experimentally. 

 

Data Filtering and Visualization 

 244,000 toehold sequences were tested by Angenent-Mari et al.23 and the experimental 

data was obtained as logarithm-transformed GFP fluorescence measured at both the modified 

ON state (with trigger present, fused to the switch sequence) and OFF state (without trigger). 

Measurements were normalized and quality control was performed as indicated in Angenent-

Mari et al23, resulting in 91,534 sequences. Additionally, a final filtering step was applied prior 

to training the neural network, where sequences were split into 1000 bins for both ON and OFF 

distributions, and bins were down-sampled to the mean number of counts across all bins (Fig. 

S9). The union of sequences from both the ON and OFF filtering stage was carried forward, 

resulting in 81,155 switches. All sequence logos were visualized with LogoMaker42. 

 

Model Architecture 

The model was constructed of two convolutional layers to detect genomic motifs24,28,43,44. 

The first convolutional layer consisted of 10 filters of width 5; the second convolutional layer 

consisted of 5 filters of width 3. The filters, or weight matrices, were convolved over nucleotide 

channels and point-wise multiplied with the input sequence, with the magnitude of this 
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multiplication, or activation, corresponding to the degree of similarity between the filter pattern 

and the input28. Activations from the second convolutional layer were flattened into a one-

dimensional vector and fed as input to three fully connected layers with successively decreasing 

numbers of nodes (150, 60, 15, respectively). All layers applied the rectified linear unit (ReLU) 

nonlinearity function to node outputs25 and these activations were passed independently to two 

output layers: the ON and OFF prediction outputs, respectively. For the regression task, the last 

fully connected layer utilized linear activation to output continuous ON and OFF values; in 

contrast, a softmax activation was used for the classification task in order to ensure normalized 

class probabilities. After each layer, a dropout rate45 of 0.3 was applied, and the ridge regression 

(L2 regularization) coefficient on the activations was set to 0.001 to increase the sparsity of the 

hidden layers and decrease the risk of overfitting by constraining the values of the weights25. 

Errors between true and predicted ON and OFF values were computed over small batches of 128 

toehold sequences at a time using a binary cross-entropy loss function. This loss information was 

backpropagated through the model, and stochastic gradient descent via the Adam optimizer was 

used to update the weights of the model such that the disparity between model predictions and 

true value was minimized25. Adam was used with a learning rate of 0.005 to train the model at a 

speed that achieved fast convergence without over- or under-shooting the optimal model fit. 

Weights were updated with respect to both ON prediction and OFF prediction simultaneously. 

Keras with a TensorFlow46 backend was used to construct and optimize the model. 

 

Hyperparameter Optimization via Grid Search 

 A grid search was conducted to find the best model structure and architecture settings 

(Supplemental Information File 1). We explored within the space of convolutional architectures, 
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as recurrent neural networks (RNNs) tend to be harder to disentangle why predictions were 

made, and CNN structures have grown increasingly popular for sequence-based tasks43. 

Architecture design parameters were selected randomly rather than combinatorically as in a 

traditional grid search to enable a broader search of the architecture landscape within time and 

computation constraints47. The convolutional hyperparameters were varied to maximize the 

convolutional layers’ ability to learn a sufficient number of short, meaningful patterns of relevant 

nucleotide combinations24,44. In accordance with Occam’s Razor, model simplicity was 

prioritized to avoid unnecessary complexity (i.e. more convolutional filters than needed) that did 

not augment the biological interpretability of the model48.   

Five-fold cross validation was used to train and evaluate each parameter combination. 

For each fold, and for ON and OFF predictions separately, R2 and Spearman’s rank correlation 

were calculated to estimate the generalizability of the model. The best architecture was selected 

by sorting the results by their combined average R2 over ON and OFF prediction and choosing 

an architecture with first layer filters that would enable downstream interpretation of 

biologically-meaningful motifs and maximal ability to decode predictions in the context of 

toehold design rules. 

 

Model Evaluation 

To assess the best architecture performance and train the final model, the data was 

shuffled and iteratively split using 10-fold cross validation; the test set per fold was further split 

in half to be used as validation toehold sequences to select the optimal number of training 

epochs. A stratified split method enabled the cross-validation to be conducted with the class 

imbalance from the 90%/10% classification split preserved in each fold. A deployable model was 
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trained on 85% of the data, with 15% held-out as validation data to enable early stopping in 

training. The same architecture found in the grid search was used for the binary classification 

task and trained using the 10-fold cross validation procedure detailed above; the area-under-ROC 

curve values and area-under-PR curve values were calculated for ON and OFF classification 

tasks. 

 

Saliency Maps 

 Saliency maps were generated to visualize which positions and nucleotides mattered most 

towards high ON and low OFF model predictions28,32,33. The keras-vis package was used to 

analyze how small changes in a given input toehold sequence change the model’s output 

predictions. The gradients were computed to highlight changes to the input sequence that 

produce large changes in the output predictions, revealing which positions in the toehold 

sequence were prioritized the most when predicting ON and OFF values. A saliency (i.e., an 

“importance score”) for each position and each nucleotide at that position was calculated by 

summing the gradients across all positions and nucleotides for each toehold. This saliency was 

normalized by the number of times a given nucleotide appeared at that position to control for 

more frequent nucleotides. 

 

STORM: A Sequence-based Toehold Optimization and Redesign Model 

 We converted our predictive pipeline to redesign poorly performing toehold switches via 

gradient ascent. The 100 toeholds with the lowest ON/OFF ratio were one-hot encoded and fed 

as inputs to the static model. Target ON and OFF values of 0.99 and 0.001, respectively, were set 

and supplied to SeqProp, an open-source python package that enables streamlined development 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/870055doi: bioRxiv preprint 

https://doi.org/10.1101/870055
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22  

of gradient ascent pipelines for genomic and RNA biology applications22. Toehold design 

constraints were incorporated into the loss function, such that the modified toehold switch 

contained the conserved sequences and base pairing within the hairpin was preserved. At each 

iteration, the ON and OFF values of the initial toehold sequence were predicted and the 

difference between the predicted values and target values was computed. This discrepancy 

between predicted and target values was then propagated back through the model to update the 

input sequence in the direction that decreased the difference between the predicted ON and OFF 

values and the target. The updated toehold position weight matrix was used as input to the next 

round of optimization, and at the last round of iteration, the final sequence was composed of 

nucleotides with the highest probabilities in the position weight matrix. 
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Figure 1: Top-performing toehold switches show over-representation of certain nucleotides 

at critical positions. 

(A) Toehold switches modify their secondary structure in response to the presence of a 

complementary RNA molecule known as a trigger. In absence of the trigger, the Shine-Dalgarno 

sequence, or ribosome binding site (RBS), remains inaccessible and the reporter protein is not 

translated (OFF state). Upon binding of the trigger to the switch, the hairpin melts, allowing 

ribosome recruitment to the Shine-Dalgarno sequence and subsequent translation of the 

downstream reporter GFP protein (ON state). A modified ON state switch was built for 

experimental testing so that one molecule could be tested with trigger and switch fused together. 

(B) Top-performing sequences were chosen by selecting the top 5% of toehold switches when 

ranked according to experimental ON/OFF ratios. Over-representation of each codon triplet at 

each position in the first 30 nucleotides of the switch was calculated by normalizing the 

frequency of the triplet in the top sequences by the frequency of the triplet across all sequences, 

with a normalized frequency higher than 1 indicating that the triplet is overrepresented in the top 

sequences. (C) Changes in frequencies of the in-frame amino acids located after the start codon 

in the N-terminus of the reporter protein were calculated by subtracting the frequency in the top 

5% of sequences by the frequency in the bottom 5% and normalizing by the frequency in the 

bottom 5%. Sequence logos were calculated for the set of all sequences (D), the bottom 5% of 

sequences according to the experimental ON/OFF ratios (E), and the top 5% of sequences (F) by 

calculating the probability of each nucleotide occurring at each position in the switch sequence. 

GC content distributions (G) and switch minimum free energy estimates according to 

NUPACK17 (H) were calculated for all sequences and the top 5% of sequences, with clear 

differences in distributions (p < 5 x 10-8, Mann-Whitney U test).  
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Figure 2: A convolutional neural network built to predict the ON and OFF values of 

toeholds switches can be examined with white-box tools. 

(A) A neural network was constructed that takes an RNA sequence as input and passes the one-

hot encoded matrix to two convolutional layers, the first of which learns motifs or partial motifs 

in the sequences and the second of which may learn interactions between these motifs. The 

information is then passed to three fully connected layers and two output nodes, which can be 

used to predict ON and OFF values. The model, along with simplified models of one 

convolutional layer (1 Layer CNN) and zero convolutional layers (multi-layer perceptron, or 

MLP), were evaluated on a classification task: specifically, can we map toehold sequences into 

top performing (top 10th percentile ON/OFF value) vs. poor performing (remaining 90th 

percentile)? ROC and Precision-Recall curves were plotted for the 10-fold cross validation on 
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both ON values (B, Fig. S4A) and OFF values (Fig. S4B, S4C). Regression model performance 

of ON (C) and OFF (Table S2) predictions were also compared between the MLP, 1 Layer CNN, 

and full-model 2 Layer CNN. To visualize how the model makes its decisions, 500 random 

sequences were selected and a saliency map (D) was plotted of the importance of each nucleotide 

to the model’s prediction of ON, with high saliency meaning the nucleotide at that position was 

critical to the model’s prediction. To understand the sequence patterns registered by the model, 

the learned filter weights for each of the 10 filters of width 5 in the first convolutional layer can 

be visualized as sequence logos similar to position weight matrices (E).  
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Figure 3: Poorly performing sequences can be transformed into highly performing toehold 

switches by co-opting the neural network for an optimization task.  

(A) Transformation of a poorly performing toehold switch can be achieved by ascending the 

fitness landscape of any given sequence to converge on a maxima in the landscape. (B) In 

contrast to the normal model optimization, which uses gradient descent to update the model and 

predict the ON and OFF values for any given sequence, the model can be inverted for gradient 
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ascent of the sequence. Target ON and OFF values can be set, and a sequence is updated to 

achieve those target values while the trained model remains fixed. Position weight matrices can 

be plotted for a set of the 100 worst experimental toeholds both before (C) and after (D) 

optimization with gradient ascent; weight is the log2 of the probability of a nucleotide divided by 

the expected probability of the nucleotide. The ON values (E), OFF values (F), and ON/OFF 

ratios (G) can be plotted for the sequences before and after optimization. 
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