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Abstract 

Functional connectivity (FC) calculated from task fMRI data better reveals brain-phenotype 30 

relationships than rest-based FC, but why is unknown. In over 700 individuals performing 7 tasks, 

we use psychophysiological interaction (PPI) and predictive modeling analyses to demonstrate 32 

that FC and overall degree of task-induced signal change, but not task-evoked activation alone, 

drive phenotypic prediction, and their combination further improves prediction. Inter-subject PPI 34 

demonstrates that predictive utility is highest in distributed FC patterns that are dissimilar across 

individuals, except in regions of group-level task activation, suggesting that task FC better 36 

predicts phenotype than rest FC for two, regionally specific reasons: (1) tasks synchronize 

activated regions and amplify signal components that meaningfully vary across individuals; and 38 

(2) elsewhere, prediction is driven by nodal interactions that set individuals apart. These findings 

offer a framework to leverage both task activation and FC to reveal the neural bases of complex 40 

human traits, symptoms, and behaviors. 

 42 
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Introduction 44 

 Functional connectivity analyses have offered sweeping insights into the macroscale 

neural circuits underlying complex cognitive processes, finding these circuits to be broadly 46 

distributed across the human brain (e.g., Dubois et al., 2018; Finn et al., 2015; Hsu et al., 2018; 

Rosenberg et al., 2015; Wager et al., 2013). Such analyses are typically performed using resting-48 

state data (Biswal, Yetkin, Haughton, & Hyde, 1995; Power, Schlaggar, & Petersen, 2014), 

revealing “intrinsic connectivity networks” that recapitulate networks invoked during task 50 

execution (Stephen M Smith et al., 2009). This correspondence—along with demonstrations of 

the stability of functional connectivity (FC) patterns between resting and task states (Cole, 52 

Bassett, Power, Braver, & Petersen, 2014; Gratton et al., 2018; Krienen, Yeo, & Buckner, 2014)—

suggests that the functional network architecture of the human brain is relatively state-invariant. 54 

Nevertheless, there is a growing consensus that FC contains useful dynamic, rather than just 

static, information (J. R. Cohen, 2018). Task-induced changes in patterns of FC have been shown 56 

to be widely distributed across the brain (Bolt, Nomi, Rubinov, & Uddin, 2017), to subserve the 

task at hand (Medaglia, Lynall, & Bassett, 2015), to make individuals more identifiable (Finn et 58 

al., 2017), and to improve FC-based prediction of both task performance (Rosenberg et al., 2015) 

and stable traits, such as intelligence measures (Greene, Gao, Scheinost, & Constable, 2018). 60 

Together, these findings suggest that task-induced changes in FC, while perhaps low-amplitude 

and/or local perturbations of a core functional architecture, are functionally significant and may 62 

amplify individual differences in brain functional organization.  

Thoughtfully leveraging such changes therefore holds the promise of advancing 64 

individual differences research, but this will first require a more complete characterization of how 

tasks change patterns of FC. In particular, the question of whether these changes reflect task-66 

evoked activation, changes in neural interaction, or some combination of the two has received 

substantial attention. While some have raised concerns that inadequate removal of task-evoked 68 

activation from node time courses may yield spurious patterns of FC (Cole et al., 2019), others 

have demonstrated that task-evoked activation and task-induced changes in FC can be cleanly 70 

dissociated (Di & Biswal, 2018), even when task-evoked activation is not removed from the BOLD 

signal (Kieliba et al., 2018), and that task-evoked FC (that is, task-induced changes in FC 72 

attributable to task-evoked activity) explains relatively little of the total task-induced change in 

FC (Lynch et al., 2018).  74 

Here, we replicate and extend this growing literature, and in particular the work of Di and 

Biswal (Di & Biswal, 2018), by demonstrating that activation and FC calculated from in-scanner 76 
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task data (hereafter, “task FC”) are spatially distinct and, critically, offer complementary insights 

into the neural bases of a given phenotype. That is, while we have previously demonstrated that 78 

task FC-based models better predict phenotypic measures than rest FC-based models (Greene 

et al., 2018), whether this improvement is attributable to sharpening of connectivity patterns 80 

irrespective of task condition (hereafter task “context”), task-evoked activation, and/or context-

dependent changes in nodal synchrony (Figure 1a) remains an open question. To explore this 82 

question, we use the connectome-based predictive modeling (CPM) framework (Finn et al., 2015; 

Gao, Greene, Constable, & Scheinost, 2019; Xilin Shen et al., 2017), psychophysiological 84 

interaction (PPI) analyses (Cole et al., 2013; McLaren, Ries, Xu, & Johnson, 2012), and a novel 

extension of PPI and inter-subject FC (Simony et al., 2016) analyses to demonstrate that, in a 86 

range of tasks, the most informative single signal component for fluid intelligence (gF) prediction 

varies by task, but task activation fails to predict gF in all tasks, and model performance is 88 

improved by the inclusion of multiple signal components. This is true even when no single 

component successfully predicts gF, suggesting that each component carries independent, 90 

trait-relevant information that together is greater than the sum of its parts. Finally, given the 

recent finding that tasks increase both the similarity (i.e., correlation) of individuals’ patterns of 92 

FC and the identifiability of individuals on the basis of these patterns (Finn et al., 2017), we 

investigated the relationship between consistency of BOLD signals across individuals and their 94 

predictive utility. Across the brain, inter-subject consistency of moment-to-moment BOLD 

fluctuations decreases the predictive utility of incident edges, with one exception: for edges that 96 

connect focal, activated regions, inter-subject consistency boosts predictive utility. This finding 

highlights that while changes in FC, not task activation, reveal brain-phenotype relationships, 98 

informative task-induced changes in FC take two forms: distributed and individual-specific, and 

focal and stereotyped.  100 

 

Results  102 

During a task, FC and overall degree of task-induced signal change—but not task-evoked 

activation—predict phenotype 104 

 To explore why task FC-based models outperform resting-state FC-based models, we 

used data from the Human Connectome Project (HCP; Van Essen et al., 2013) S1200 release (n 106 

= 703; see Methods for inclusion criteria). Each subject completed seven in-scanner tasks, 

providing an internal validation of results’ generalizability; for each task run, fMRI data were 108 

parcellated into 268 nodes (Finn et al., 2015; X. Shen, Tokoglu, Papademetris, & Constable, 
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2013) and a mean time course was calculated for each node. Each node’s time course was 110 

decomposed via multilinear regression, using a validated psychophysiological interaction (PPI) 

framework (Cole et al., 2013; McLaren et al., 2012), into terms that reflect its context-112 

independent FC with the predictor node (ciFC), its context-dependent FC with the predictor node 

(cdFC), its task activation, and its overall degree of task-induced signal change (i.e., intercept, 114 

which effectively combines the task activation and interaction terms, as well as potentially 

relevant, unmodeled information; for further discussion, see Figure 2—figure supplement 1). 116 

Note that a non-zero, informative intercept term was made possible by the choice to zero-center 

(i.e., set condition-on to 0.5, condition-off to -0.5), not mean-center (i.e., z-score), task-timing 118 

regressors. The analysis was repeated with mean-centered task regressors, with comparable 

results (Figure 2—figure supplement 1). For an explanation of why this choice does not affect 120 

results of this analysis, as well as more details on the relevant methods, see Methods, 

Investigating potential confounds and Figure 2—figure supplement 1. This regression was 122 

performed for every node pair for each task and subject, and linear contrasts were calculated for 

task activation and cdFC terms, yielding four PPI beta matrices per subject per task (Figure 1b).  124 

 
Figure 1 with 2 supplements. Pairing psychophysiological interaction (PPI) analysis with 126 
prediction permits characterization of how tasks change patterns of brain activity to reveal 
brain-phenotype relationships. (a) Relative to rest, in-scanner tasks may sharpen context-128 
independent FC (“ciFC”), elicit baseline shifts in activity (“task activation”), and/or induce 
context-dependent changes in nodal synchrony (“cdFC”). (b) These components of each node’s 130 
time course (here, examples taken from nodes in the WM task; see Methods) can be modeled in 
an adapted gPPI framework, yielding one node-by-node matrix of PPI betas for each term in 132 
each subject s. After calculating condition contrasts for the task activation and cdFC terms 
(indicated schematically by subtracted betas) and collapsing task activation via averaging into a 134 
single value per node per subject, these matrices (and vector, in the case of activation) were then 
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submitted, individually and in combination, to the ridge CPM pipeline (rCPM; Gao et al., 2019) 136 
to yield predictions of fluid intelligence (gF). See Methods for details. Cond, condition; i, j, two 
nodes in the Shen parcellation (Finn et al., 2015; X. Shen et al., 2013).  138 
 

These matrices were then submitted, individually (“individual-term model”) and in 140 

combination (“combined model”), to a ridge regression-based version of the connectome-based 

predictive modeling pipeline (rCPM; Gao et al., 2019; Shen et al., 2017) to predict phenotype 142 

(here, gF) scores (Figure 1b). In brief, this cross-validated machine learning approach selects 

features on the basis of their correlation with the predicted measure, regresses (with ridge 144 

regularization) phenotype scores on selected features’ values (here, PPI beta estimates), and 

uses resulting ridge regression coefficient estimates to construct a linear model relating brain 146 

data to phenotype measures. This model is then applied to the left-out fold, and the process is 

repeated iteratively until all folds have been used as the test group (see Methods for details). 148 

Model performance was quantified as 1 – normalized mean squared error (Methods) of each 

model (q2; higher values indicate better performance). This analysis was repeated 100 times with 150 

different assignments of participants to folds, and performance is presented for every iteration 

(Figure 2a) and as the mean and standard deviation across iterations (Figure 2b).  152 

Model performance was assessed for significance using non-parametric permutation 

tests. That is, the analysis was repeated 100 times with gF permuted across subjects each time; 154 

given the existence of many sibships in the dataset, allowed permutations respected family-

related limits on exchangeability (Winkler, Ridgway, Webster, Smith, & Nichols, 2014; Winkler, 156 

Webster, Vidaurre, Nichols, & Smith, 2015). P values were calculated as the fraction of iterations 

on which the unpermuted gF-based models performed worse than the best-performing 158 

corresponding null model. For each task, the best-performing (i.e., highest mean q2) unpermuted 

gF-based model was also compared to the second best-performing model via Wilcoxon signed-160 

rank test. All P values were corrected for multiple comparisons using the Bonferroni correction.  

 Consistent with previous work demonstrating that HCP task-based models successfully 162 

predict gF (Greene et al., 2018), for each task, at least one model significantly predicted gF (all 

P < 0.001, corrected). Predictions were most accurate with the combined model for the language 164 

task (mean q2 = 0.12). Notably, which individual term best predicted gF was task-dependent. For 

some tasks, the intercept best predicted gF (gambling: intercept mean q2 = 0.05, P < 0.001, 166 

corrected; WM: intercept mean q2 = 0.02, P < 0.001, corrected; social: intercept mean q2 = 0.03, 

P < 0.001, corrected). For other tasks, ciFC best predicted gF (motor: ciFC mean q2 = 0.03, P < 168 

0.001, corrected; emotion: ciFC mean q2 = 0.03, P < 0.001, corrected). In the language task, 
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intercept and cdFC predicted gF about equally well (intercept mean q2 = 0.05, cdFC mean q2 = 170 

0.06, both P < 0.001, corrected). Finally, for the relational task, none of the individual-term 

models successfully predicted gF (all P > 0.05, corrected). Notably, task activation did not predict 172 

gF for any of the tasks; this result was replicated using HCP-released, individual-level GLM-

based node activation for prediction (see Methods, Investigating potential confounds and Figure 174 

2—figure supplement 2). We note that model performance is lower than previously reported 

(Greene et al., 2018), a finding that holds when “standard FC” matrices (i.e., without task 176 

modeling) were passed through the same preprocessing and prediction pipelines (gray bars in 

Figure 2b, Figure 2—figure supplement 3); in fact, the best-performing PPI-based models often 178 

outperformed the standard FC-based models. However, the addition of global signal regression 

(GSR) to the FC matrix preprocessing pipeline substantially improved prediction performance, 180 

rendering it comparable to previous results (Figure 2—figure supplement 3). While GSR was not 

appropriate for main analyses due to potential task-related fluctuations of the global signal (e.g., 182 

due to fluctuating arousal or vigilance [Liu et al., 2017]), and while these analyses depend on 

relative, rather than absolute, prediction performance, this finding supports the utility of GSR for 184 

FC-based prediction (Greene et al., 2018; Li et al., 2019). 

 However, for all tasks except emotion, combining all terms (intercept, ciFC, cdFC, and 186 

task activation) yielded a model that significantly outperformed the best-performing individual-

term model for that task (all P < 0.001, corrected; Figure 2a,b). That the combined model was 188 

not most predictive for the emotion task may be related to the fact that the best-performing 

model for that task (ciFC alone) attained relatively low accuracy. The relatively high performance 190 

of combined models, but critically not cdFC- and activation-based models, persisted even when 

task regressors were mismatched with brain data (Figure 2—figure supplement 4; Methods), an 192 

analysis in which the combined model, and to a lesser degree ciFC (Figure 2—figure supplement 

2), would be expected to largely recapitulate standard FC.  194 

Strikingly, these results suggest that the combined models are greater than the sum of 

their parts. That is, even for tasks where only one individual-term model significantly predicted 196 

gF, a successful combined model still significantly outperformed that individual-term model, and 

even significantly predicted gF when no individual-term models did (relational task: combined 198 

model mean q2 = 0.07, P < 0.001, corrected). Further, examining the relative contributions of 

each term to the combined model for all tasks (Figure 2c; see Methods for derivation) 200 

demonstrates that these contributions often do not follow the performance of individual-term 

models for that task, highlighting the importance of information uniqueness. For example, for the 202 
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language task, the intercept- and cdFC-based models are the only individual-term models that 

significantly predicted gF, but in the combined model, ciFC contributed the most predictive 204 

information, followed by cdFC and then intercept terms. This finding also holds in reverse; that 

is, term contribution makes only a slight difference in the performance of the model when that 206 

term is dropped (Figure 2—figure supplement 5). Notably, the predictive contributions of task 

activation to the combined models are negligible for all tasks. 208 

 
Figure 2 with 10 supplements. Context-independent FC, context-dependent FC, and 210 
overall task effect contain complementary information about phenotypic measures. (a) 
Histograms of model performance (quantified as q2 [see Methods]) across 100 iterations of 10-212 
fold rCPM with a P threshold of 0.1 for feature selection. In every task, the best-performing model 
significantly outperformed the second-best-performing model (*P < 0.001, corrected, via 214 
Wilcoxon signed rank test). “Null”: prediction performance using permuted gF scores. (b) 
Summary (mean and s.d., indicated by error bars) of model performance for each task and term 216 
(*P < 0.001, corrected, via permutation test). Models with negative mean q2 were set to 0. 
“Standard FC”: prediction performance using FC calculated as Fisher-transformed Pearson 218 
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correlations, without task modeling (see Methods). (c) Percent contribution of each term to that 
task’s combined model (see Methods for derivation). WM, working memory. 220 
 

Further, given that mean motion was significantly correlated with observed gF for 3/7 222 

tasks (Figure 2—figure supplement 6) and with mean predicted gF for 6/35 tasks and terms 

(Figure 2—figure supplement 7), several additional analyses were performed to ensure that in-224 

scanner motion did not confound results. First, rCPM was repeated using partial correlation with 

individuals’ mean motion per condition—rather than simple correlation—for feature selection 226 

(i.e., selecting features that are correlated with gF after controlling for their correlation with 

motion). Second, even more conservatively, rCPM was repeated after regressing individuals’ 228 

mean motion for the given task from both gF and each edge (within the cross-validation loop); 

models were built from resulting residuals (see Methods, Investigating potential confounds). 230 

Results are comparable, both in terms of mean model performance (r(original, partial correlation) 

= 0.99, r(original, residualized) = 0.99, all P < 0.001; Figure 2—figure supplement 8) and feature 232 

weights (Figure 2—figure supplement 9), suggesting that modeling results are not confounded 

by in-scanner motion. Frame-to-frame motion was also found to be uncorrelated with task timing 234 

(Figure 2—figure supplement 10).  

 236 

Model contributions of FC and activation terms are spatially distributed and distinct 

 We next sought to characterize the spatial distribution of features with high predictive 238 

utility (i.e., model contribution) for each term in each task’s combined model. Predictive utility 

was quantified as the mean ridge coefficient across 100 iterations for features selected in 75% 240 

of analyses (10 folds * 100 iterations), scaled by the standard deviation of the PPI betas for that 

feature across all subjects. Except where otherwise noted, signed contributions were used to 242 

dissociate features that are positively and negatively related to gF. The seven tasks 

demonstrated substantial consistency in overall spatial patterns of predictive utility; for concision 244 

and clarity, the motor task is used to exemplify these patterns, with corresponding results for all 

tasks displayed in Figure 3—figure supplement 1. 246 

 We first summarized the distribution of predictive features at the node level, calculating 

the percent contribution of each node as the summed, absolute predictive utility of all edges 248 

incident to it (or, in the case of activation, as the absolute predictive utility of the node), 

normalized by the sum of all nodes’ absolute predictive utility for the given task and term. Results 250 

(Figure 3a, d, g) demonstrate that predictive ciFC and cdFC features are broadly distributed 
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across the brain, while activation information content is sparser and concentrated more focally 252 

(for the motor task, primarily in visual and motor regions). 

Next, we explored the distribution of predictive features at the network level, using ten 254 

canonical networks defined in an independent sample (Finn et al., 2015; Noble et al., 2017; for 

details, see Methods: Functional parcellation and network definition and Figure 3—figure 256 

supplement 2). For each network pair, ciFC and cdFC features’ contributions were summed and 

normalized by the total number of features between that network pair. These values were 258 

normalized by the total, absolute sum of contributions for the given task and term, to yield a 

comparable scale across tasks. For task activation, features’ (i.e., nodes’) contributions were 260 

summed for each network, normalized by the size of (i.e., number of nodes in) the given network, 

and then all values were normalized by the absolute sum of these contributions for the given 262 

task. Resulting matrices and vectors are visualized in Figure 3b (ciFC), 3e (cdFC), and 3h 

(activation) with the difference between absolute ciFC (Figure 3b) and absolute cdFC (Figure 3e) 264 

network contributions visualized in Figure 3i. Results across tasks demonstrate the substantial 

and distributed contributions of ciFC and cdFC features to the combined models (c.f., Figure 3—266 

figure supplement 1a, c, f), which contrasts with the more focal distribution of nodes with 

predictive activation (Figure 3g, h, and Figure 3—figure supplement 1e). Critically, predictive 268 

features are relatively non-overlapping for ciFC and cdFC (paired, two-sided Wilcoxon signed 

rank test of ciFC versus cdFC concatenated, vectorized, network matrices: P < 0.001; mean rank 270 

correlation between vectorized, absolute model contributions for ciFC versus cdFC across all 

tasks: overall 𝑟" = 0.01, intersection of predictive ciFC and cdFC features only 𝑟" = 0.10). In 272 

particular, visual inspection of these matrices reveals that, across tasks, predictive ciFC edges 

tend to be concentrated in medial frontal and frontoparietal networks, while predictive cdFC 274 

edges tend to be concentrated in motor and visual networks. 

 It is important to note that the predictive utility and distribution of useful context-276 

dependent features will necessarily depend on the condition contrast that is applied, and these 

results demonstrate how findings can be interpreted with some cognitive specificity, given this 278 

choice. For example, while motor task ciFC and cdFC demonstrate similar overall patterns of 

predictive utility as other tasks (i.e., relative overrepresentation of edges in medial frontal and 280 

frontoparietal networks for ciFC, and in visual networks for cdFC), the motor task contrast—all 

motions (tongue, hands, and feet) versus fixation—reveals consistently negative cdFC ridge 282 

coefficients. That is, across the brain, the lower the FC during these body motions, the higher an 

individual’s gF (Figure 3e). This pattern is in stark contrast to other tasks’ patterns of cdFC 284 
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predictive contributions (Figure 3—figure supplement 1c), a finding with potentially interesting 

cognitive implications (see Discussion). 286 

 Before calculating the predictive contributions of network pairs (or networks, in the case 

of activation), ciFC and cdFC features were divided into edges with mean positive and mean 288 

negative ciFC (and activation features into nodes with mean positive and negative activation). 

This avoids a potential ambiguity: one could imagine a positive edge that is more positive (i.e., 290 

stronger) in individuals with higher gF, or a negative edge that is less negative (i.e., weaker) in 

individuals with higher gF. Both edges would receive a positive ridge coefficient but may 292 

represent physiologically distinct processes. Interestingly, we found that the ciFC and cdFC of 

edges with mean negative ciFC made essentially no contributions to combined models for any 294 

of the tasks (Figure 3—figure supplement 3a-b), and main results reflect only edges with mean 

positive ciFC (Figure 3b, e, i). Network-level contributions of cdFC patterns were further divided 296 

by mean cdFC (i.e., edges with positive mean cdFC and edges with negative mean cdFC); results 

are visualized in Figure 3—figure supplement 4. Conversely, both activated and deactivated 298 

nodes were consistently included in predictive models; given this, task activation network-level 

predictive utility is presented for both activated and deactivated nodes (Figure 3h; Figure 3—300 

figure supplement 1e). 

 Visualizing predictive contributions at the network level, while useful, offers a necessarily 302 

coarse representation of where in the brain highly predictive features are located. To visualize 

the predictive utility of individual features, we present circle plots, with each network a different 304 

color on the outer track, and each line a ciFC (Figure 3c, Figure 3—figure supplement 1b) or 

cdFC (Figure 3f, Figure 3—figure supplement 1d) edge. This visualization again highlights that 306 

model contributions are distributed and relatively non-overlapping across terms. Specifically, it 

reveals that highly predictive cdFC features are not incident to the most predictive or most 308 

activated nodes (Figure 3f, Figure 3—figure supplement 1d): mean rank correlation of cdFC 

absolute contribution-based node degree (Methods) with absolute model contribution of each 310 

node’s activation: 𝑟" = 0.004; mean rank correlation of cdFC node degree with absolute task 

effect size: 𝑟" = 0.06. Similarly, the contribution of a node’s activation is only weakly related to its 312 

absolute task effect size: 𝑟" = 0.11. In sum, these results demonstrate that predictive utility—of 

ciFC, cdFC, or even task activation, itself—is not simply driven by task activation, and that 314 

predictive features from each of these terms are spatially highly distributed and relatively non-

overlapping across terms. 316 
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 Finally, it is worth noting that different insights can be gained from interpreting predictive 

contributions at the node, network, and edge levels (Horien, Greene, Constable, & Scheinost, 318 

2019), as shown in Figure 3. The maximum correlation between vectorized, absolute model 

contributions of ciFC and cdFC is for the motor task (overall rs = 0.07, intersection of predictive 320 

ciFC and cdFC features only rs = 0.27). Interestingly, the network visualizations (Figure 3b and 

3e) obscure this similarity, which is more evident when feature contributions are visualized at the 322 

edge level (Figure 3c and 3f), demonstrating the differential utility of fine- and coarse-scale spatial 

localization analyses.  324 

 
Figure 3 with 4 supplements. Context-independent FC, context-dependent FC, and 326 
activation predictive features are distributed and distinct. (a) Visualization of predictive ciFC 
features by node (i.e., absolute weighted node degree, normalized within task/term [see 328 
Methods], such that darker red indicates greater predictive utility). In this and all subsequent 
panels, results are depicted for the motor task; comparable results in all tasks can be found in 330 
Figure 3—figure supplement 1. (b) Visualization of predictive ciFC features by network for each 
task. Red = positive ridge coefficients, blue = negative ridge coefficients, shade = relative model 332 
contribution. In this and all subsequent figures: “+ve” indicates that results reflect only 

-0.1

-0.05

0

0.05

0.1
 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1 2  3  4  5  6  7  8  9  10

Fractional m
odel

contribution

−0.0035
−0.0026

0

0.0026
0.0035

-0.1

-0.05

0

0.05

0.1
 1
 2
 3
 4
 5
 6
 7
 8
 9

10
1 2  3  4  5  6  7  8  9  10

Fractional m
odel

contribution

EC

−0.0032
−0.0024
−0.0016
−8e−04
0
8e−04
0.0016
0.0024
0.0032

NA

-0.1

-0.05

0

0.05

0.1 1
 2
 3
 4
 5
 6
 7
 8
 9

10
1 2  3  4  5  6  7  8  9  10

D
ifference absolute

fractional contribution

FCexp/ gF

Predictive utilityFC /   gF FC /   gF

FCexp/ gF

cdFC > ciFC ciFC > cdFC

Predictive utility

Predictive utility

CO
NT
EX
T-

IN
DE
PE
ND
EN
T

+ve

CO
NT
EX
T-
DE
PE
ND
EN
T

+ve

+ve

MF
FP
DMN
Mot
Vis A
Vis B
Vis Assoc
Sal
Sub
CBL

MF
FP
DMN
Mot
Vis A
Vis B
Vis Assoc
Sal
Sub
CBL

Node contribution Network contribution Feature contribution

cdFC

1: Medial frontal   2: Frontoparietal   3: DMN   4: Motor   5-7: Visual   8: Salience   9: Subcortical   10: Cerebellum

a b c

d e f

g h i

DI
FF

−0.895

0

0.895

Activatio
n

Deactivatio
n

-1.0

-0.5

0.0

0.5

N
et

w
or

k 
co

nt
rib

ut
io

n MF
FP
DMN
Motor
Vis A
Vis B
Vis Assoc
Sal
Sub
CBL

ciFC

Activation

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/870287doi: bioRxiv preprint 

https://doi.org/10.1101/870287
http://creativecommons.org/licenses/by/4.0/


	 13 

contributions of edges with mean positive ciFC. 1-10 = network assignment. (c) Visualization of 334 
individual predictive ciFC features, with each consistently selected edge represented as a line; 
line color and thickness scale with predictive model contribution. In this and all subsequent 336 
figures, MF = medial frontal, FP = frontoparietal, DMN = default mode network, Mot = motor, Vis 
A = visual A, Vis B = visual B, Vis Assoc = visual association, Sal = salience, Sub = subcortical, 338 
CBL = cerebellum. (d) Visualization of predictive cdFC features by node (as in [a]). (e) Visualization 
of predictive cdFC features by network. FCexp, FC during the experimental condition (i.e., 340 
condition of interest). Red = positive ridge coefficients, blue = negative ridge coefficients, shade 
= relative model contribution. 1-10 = network assignment.  (f) Visualization of individual predictive 342 
cdFC (lines) and activation (outer track circles) features; line color and thickness scale with cdFC 
feature predictive utility, and circles represent the corresponding nodes, with their color 344 
indicating mean activation (red = positive, blue = negative) and distance from the x axis indicating 
their model contribution. EC, edge contribution; NA, node activation. (g) Visualization of 346 
predictive activation features (i.e., absolute node predictive utility, normalized within task/term, 
as in [a,d]). (h) Visualization of predictive activation features’ (i.e., nodes’) network assignments 348 
for nodes with mean positive PPI activation betas (“activation”) and for nodes with mean negative 
PPI activation betas (“deactivation”). (i) Visualization of the difference between absolute, 350 
network-level ciFC model contributions (i.e., absolute value of matrix in [b]) and absolute, 
network-level cdFC model contributions (i.e., absolute value of matrix in [e]).  352 
 

Context-independent FC is more consistent across individuals than context-dependent FC or 354 

activation 

 To explore the consistency of task effects on FC and activation across individuals, and 356 

the potential relationship between this consistency and predictive utility, we performed an inter-

subject PPI analysis (Figure 4a) on the five tasks with consistent task timing across individuals 358 

(emotion, gambling, social, relational, and WM). This analysis revealed substantial consistency 

in activity patterns across individuals.  360 

The network-level spatial distribution of inter-subject consistency is visualized for positive 

(and self-connecting; see Methods) edges’ context-independent (Figure 4b) and context-362 

dependent (Figure 4c) signals. As was the case for the prediction analyses, effects were almost 

entirely limited to edges with positive mean ciFC (i.e., positive mean PPI betas for the ciFC term, 364 

as were used previously); inter-subject consistency of mean negative edges’ ciFC are presented 

in Figure 4—figure supplement 1c, and of mean negative edges’ cdFC in Figure 4—figure 366 

supplement 1d. These visualizations reveal two trends. First, during a task, positive edges’ ciFC 

and nodes’ time courses become more similar across individuals (relative to intrinsic 368 

components of the BOLD signal, e.g., at rest, which should be uncorrelated across subjects 

[Simony et al., 2016]) in almost all networks for all tasks (Figure 4b), while context-dependent 370 

effects vary more by task and network, as would be expected given the varying designs and 

demands of the tasks (e.g., some network pairs’ edges are consistently stronger during the 372 
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experimental condition relative to the control condition [red], while others are consistently weaker 

during the experimental condition relative to the control condition [blue]; Figure 4c). Second, 374 

ciFC inter-subject consistency is overall greater than cdFC or task activation inter-subject 

consistency (Figure 4d; median ciFC consistency: mean across tasks = 0.396, range = 0.27-376 

0.63; median cdFC consistency: mean across tasks = -0.01, range = -0.04-0.01; median 

activation consistency: mean across tasks = -0.004, range = -0.03-0.01), suggesting that 378 

moment-to-moment fluctuations are more similar across individuals than are block-level 

changes in FC and activation. 380 

 
Figure 4 with 2 supplements. Inter-subject PPI analysis reveals consistent task-induced 382 
changes in context-independent and context-dependent activity across individuals. (a) 
Schematic depiction of the inter-subject PPI analysis pipeline, in which the target node i time 384 
course is taken from subject t, and the predictor node j time course is averaged across all 
remaining subjects p. (b,c) Network-level visualization of the substantial inter-subject 386 

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

1

0.5

0

-0.5

-1

RelationalGambling Emotion WM Social

-2

0

2

-3

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

3

-2

-1

0

1

2

   
  I

nt
er

-s
ub

je
ct

 
co

ns
ist

en
cy

 (
)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1  2  3  4  5  6  7  8  9 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1  2  3  4  5  6  7  8  9 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1  2  3  4  5  6  7  8  9 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1  2  3  4  5  6  7  8  9 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1  2  3  4  5  6  7  8  9 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1  2  3  4  5  6  7  8  9 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1  2  3  4  5  6  7  8  9 10

 1
 2
 3
 4
 5
 6
 7
 8
 9

10
1  2  3  4  5  6  7  8  9 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1  2  3  4  5  6  7  8  9 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

1  2  3  4  5  6  7  8  9 10

+ve

+ve

a

b

c

= + +  : +  : j,pj,pi,t t t

. . . 

n - 1
1

p=t
nodej,p

n-1

CO
NT

EX
T-

DE
PE

ND
EN

T

d

M
ean inter-subject
consistency (β)

M
ean inter-subject
consistency (β)

CO
NT

EX
T-

IN
DE

PE
ND

EN
T

1: Medial frontal   2: Frontoparietal   3: DMN   4: Motor   5-7: Visual   8: Salience   9: Subcortical   10: Cerebellum

ActivationciFC cdFC

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/870287doi: bioRxiv preprint 

https://doi.org/10.1101/870287
http://creativecommons.org/licenses/by/4.0/


	 15 

consistency for both context-independent and context-dependent signals. 1-10 = network 
assignment. (d) Violin plots (dashed line, median; dotted line, quartiles) of inter-subject 388 
consistency for all unique features (i.e., inter-subject PPI betas) reveal that inter-subject 
consistency of moment-to-moment fluctuations (ciFC) is greater than inter-subject consistency 390 
of block-level activation (“Activation”) or FC (cdFC) changes. 
  392 

Inter-subject similarities and differences in task response contribute differentially to predictive 

models 394 

 To explore the relationship between inter-subject consistency of task effects and 

predictive utility—and whether there is any spatial or functional structure to this relationship—396 

we performed several analyses. First, we re-grouped reliably selected predictive features based 

on their absolute inter-subject consistency (see Methods) and visualized the network-level model 398 

contributions for these groups for ciFC (Figure 5a, top two rows) and cdFC (Figure 5a, bottom 

two rows). This analysis revealed that ciFC contributions are spatially distinct for high- and low-400 

consistency edges, with predictive, high-consistency edges concentrated within medial frontal 

and visual networks, while predictive, low-consistency edges are more distributed across the 402 

brain. Differences in the spatial distribution of high- and low-consistency predictive cdFC edges 

are less pronounced, as demonstrated by higher rank correlations between vectorized high- and 404 

low-consistency predictive utility network matrices (Figure 5a) for cdFC than ciFC: ciFC rs = -

0.30-0.37; cdFC rs = 0.26-0.73; mean within-task cdFC-ciFC difference = 0.3978, 95% CI = 0.15-406 

0.65). 

 Next, we explicitly modeled the relationship between absolute inter-subject consistency 408 

and absolute predictive utility using a multilinear regression that included one additional term 

and the interaction between this term and inter-subject consistency (see Methods). To capture 410 

key anatomical and functional features for each edge, we used the following terms: mean 

absolute task effect size for the two nodes incident to the given edge (calculated as in Salehi et 412 

al., 2019; see Methods), edge membership between or within canonical networks, resting-state 

edge test-retest reliability (calculated as in Noble et al., 2017), edge length (i.e., Euclidean 414 

distance between incident nodes), and edge membership within or between hemispheres. 

Across these analyses, effects were more pronounced for ciFC than cdFC or task activation 416 

(where relevant; activation predictive utility was only modeled as a function of consistency and 

node activation, as the other edge-level metrics cannot meaningfully be applied to nodes). This 418 

is consistent with the finding that inter-subject consistency is greater for context-independent 

than context-dependent terms (Figure 4d), and thus would be expected to have a greater effect 420 
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on predictive utility for ciFC than for cdFC or activation; for completeness, we display results for 

all modeled terms (Figure 5b), but for clarity and concision, only ciFC effects are discussed. 422 

Overall, inter-subject consistency was negatively related to predictive utility, such that more 

consistent edges were less predictive. Interestingly, activation was also negatively related to 424 

predictive utility, suggesting that activated regions are connected by less predictive edges than 

non-activated regions. The interaction between inter-subject consistency and activation, 426 

however, was positive (Figure 5b, leftmost panel), suggesting that edges affected by task activity 

are more predictive when that effect is consistent across individuals. Network modeling results 428 

demonstrate that network membership does not itself affect predictive utility, but that predictive, 

consistent edges tend to be within-network, rather than between-network (Figure 5b, middle 430 

panel), consistent with the finding that high-consistency, predictive ciFC features tend to be 

concentrated within medial frontal and visual networks (Figure 5a, top row). Finally, reliability 432 

modeling results demonstrate that inter-subject consistency in this analysis does not simply 

recapitulate reliability, but that consistent, reliable edges are more predictive than consistent, 434 

unreliable edges (Figure 5b, rightmost panel). Because hemisphere and edge length were not 

clearly related to predictive utility, results for these analyses are displayed in Figure 5—figure 436 

supplement 1. 
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 438 
Figure 5 with 1 supplement. Task fMRI-based prediction is driven primarily by 
individualized, distributed FC patterns, except within networks activated by the task. (a) 440 
Visualization of predictive ciFC (top two rows) and cdFC (bottom two rows) features at the 
network level, with features divided by median inter-subject consistency. rs, rank correlation 442 
between high- and low-consistency network matrices for the given task and term. 1-10 = 
network assignment. (b) Regression analyses relating the predictive utility of a feature’s ciFC (all), 444 
cdFC (all), and activation (“Activation” only) to its inter-subject consistency, task activation, 
status between or within networks, resting-state test-retest reliability estimate, and relevant 446 
interactions. Results presented as regression coefficient for the given predictor in each of the 
five modeled tasks; bar height reflects mean coefficient; error bars indicate s.d. of coefficients. 448 
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 In-scanner tasks have been found to amplify individual differences in patterns of FC and 

correspondingly improve FC-based prediction of phenotype (Greene et al., 2018), but the nature 452 

of this improvement—whether it is due to changes in ciFC, cdFC, and/or activation patterns—

remains unexplored. In this work, we leverage intra- and inter-subject PPI and predictive 454 

modeling analyses to ask this question. Despite substantial differences in the nature and design 

of the analyzed tasks, we found a striking consensus: task FC better reveals brain-phenotype 456 

relationships than resting-state FC due not to task-evoked co-activation, but rather to task-

induced changes in patterns of context-independent and -dependent FC, as well as to the overall 458 

degree of task-induced change in patterns of activity and FC. Further, tasks do not simply 

emphasize individual differences in FC patterns; while predictive utility is generally boosted by 460 

amplification of such individual differences, precisely the opposite is true for edges between 

regions activated by the task. That is, in regions activated by the task, it is the similarities 462 

between individuals that allow us to find the differences. 

 464 

Anatomy of a successful predictive model 

While the FC and intercept terms are the most useful for prediction, it is noteworthy that 466 

the components of a given node’s signal contain complementary (i.e., unique), phenotype-

relevant information, such that their combination further improves predictive model performance 468 

for a given task; in fact, in many cases, the combined model performs better than would be 

expected given the performance of corresponding individual-term models. This is consistent 470 

with reports of improved ridge regression-based CPM performance with the inclusion of more 

relevant features in the model (up to a P value of 0.5 [Gao et al., 2019]). That is, in evaluating and 472 

weighting each component of the signal separately, the combined model is able to capture more 

information than is contained in any of its component parts, or in comparably preprocessed 474 

standard FC (Figure 2—figure supplement 3), even when incorrect task regressors are used 

(Figure 2—figure supplement 4). Similar efforts to reveal brain-phenotype relationships may 476 

therefore benefit from the inclusion of more features—even if their relationship to the phenotype 

of interest is relatively weak—in models that use regularization (Gao et al., 2019), although it is 478 

always wise to exclude uninformative features to avoid overfitting (Scheinost et al., 2019).  

 Interrogation of these combined models revealed that they are broadly distributed and 480 

relatively non-overlapping across terms (i.e., ciFC, cdFC, and activation), further highlighting the 

distinct, phenotype-relevant ways in which tasks alter each signal component and replicating 482 

the finding that task-related activation and context-dependent FC are spatially distinct (Di & 
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Biswal, 2018). Further, across all tasks, predictive FC patterns tend to be concentrated in medial 484 

frontal, frontoparietal, visual, and motor networks. These networks have all been previously 

implicated in successful FC-based predictive models of gF (Finn et al., 2015; Greene et al., 2018), 486 

but PPI-based prediction permits a more fine-grained evaluation of their involvement, revealing 

that medial frontal and frontoparietal networks are overrepresented in predictive context-488 

independent FC edges, while visual and motor networks are overrepresented in predictive 

context-dependent FC edges (Figure 3i, Figure 3—figure supplement 1f). That is, while medial 490 

frontal and frontoparietal network FC is relevant to gF regardless of when in the task you look, 

block-level changes in visual and motor network FC predict gF. This is consistent with evidence 492 

that frontal and frontoparietal networks comprise domain-general, core components of task-set 

representations (Cole et al., 2013; Dosenbach et al., 2006), while visual and motor networks 494 

comprise domain-specific “data processing” systems (Posner & Petersen, 1990), which would 

be expected to adapt their operations to the nature and demands of the task at hand. This work 496 

is, to our knowledge, the first to parse and localize the differential predictive utility of context-

independent FC and context-dependent FC. Results demonstrate the exciting potential of this 498 

analysis framework to understand the neural bases of successful predictive models, offering 

more nuanced insights into the neural representation of the predicted measure than would be 500 

accessible with standard FC-based models. 

These findings are in line with the growing consensus that complex cognitive processes 502 

and constructs, such as fluid intelligence, are supported by distributed neural circuitry, rather 

than by circumscribed regions of interest (Turk-Browne, 2013), and demonstrate that rest-to-504 

task FC changes, while perhaps small in magnitude (Cole et al., 2014), contain important 

information about phenotype independent of task-evoked activation. We of course do not 506 

suggest that co-activation cannot drive changes in FC (see, for example, Cole et al., 2019), but 

rather that predictive FC changes are not driven by co-activation.  508 

 

A framework to explore task-specific effects on functional organization 510 

 In addition to task-general predictive changes in FC, spatial localization of predictive 

features demonstrates the utility of this approach for drilling down into task-specific FC changes 512 

and their relationships to phenotypic measures. For example, the motor task is the only task for 

which context-dependent FC model contributions at the network level are consistently negative, 514 

indicating that the weaker an individual’s predictive context-dependent FC edges during motion, 

the higher that individual’s gF. Further, the finding that both edges that strengthen (i.e., mean 516 
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positive cdFC) and those that weaken (mean negative cdFC) during motion relative to fixation 

have negative context-dependent FC ridge coefficients (Figure 3—figure supplement 4) suggests 518 

that the relationship between context-dependent FC and gF depends more on total FC strength 

(i.e., globally weaker FC during motion predicts higher gF) than on the nature of task-induced 520 

change in FC (i.e., increased or decreased edge strength). It is possible that this task, given its 

low cognitive demands, does not require the widespread neural interactions that support higher-522 

demand tasks (Di, Gohel, Kim, & Biswal, 2013), permitting mind wandering and decreased neural 

integration, which is energetically costly (Bullmore & Sporns, 2012; Di & Biswal, 2018).  524 

While these preliminary results would be expected to depend to some extent on task 

design and modeling choices (Newell, 1973), they suggest a potentially fruitful direction for future 526 

investigation into the nature and cognitive implications of task-specific changes in functional 

brain organization. It is likely that such task-specific changes, by offering complementary insights 528 

into brain-phenotype relationships, explain the finding that combining FC data across task 

conditions often outperforms prediction using FC data from a single condition (Elliott et al., 2019; 530 

Gao et al., 2019). Better understanding these changes will enable more selective inclusion of 

data by condition, particularly when using data that include potentially less informative or noisy 532 

conditions (e.g., rest; Elliott et al., 2019). 

 534 

Inter-subject PPI reveals two classes of predictive functional connections 

The inter-subject correlation analyses are a novel extension of prior work on inter-subject 536 

correlation (Hasson, Nir, Levy, Fuhrmann, & Malach, 2004) and FC (Simony et al., 2016) that 

provide a complementary approach to study how tasks change patterns of FC to better reveal 538 

meaningful individual differences in them. Given the finding that tasks both increase inter-subject 

FC similarity and improve individual identifiability on the basis of FC patterns (Finn et al., 2017), 540 

we sought to explicitly explore the relationship between inter-subject time course synchrony (i.e., 

consistency) and predictive utility: do tasks constrain the state space (Buckner, Krienen, & Yeo, 542 

2013; Elton & Gao, 2015; Leonardi, Shirer, Greicius, & Van De Ville, 2014), simultaneously making 

a relevant network more similar across individuals and amplifying signal components within it 544 

that vary across individuals, and/or are increased inter-subject consistency and increased 

predictive utility spatially separable? In fact, patterns of context-independent FC with high 546 

predictive utility are quite different for high- and low-consistency edges. While this was not the 

case for cdFC, inter-subject consistency was overall lower for cdFC than for ciFC, as might be 548 

expected given that interaction effects are less reliable than main effects (Di & Biswal, 2017); 
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future investigations may seek to explore these relationships in longer tasks to increase cdFC 550 

reliability. Regression analyses confirmed that the effect of inter-subject consistency on 

predictive utility is greater for context-independent than for context-dependent FC and 552 

activation. Specifically, more consistent context-independent FC patterns are less useful for 

prediction, but among consistent edges, those that are activated, more reliable, and within 554 

network tend to be most predictive.  

Taken together, these results parallel two, complementary lines of human neuroscience 556 

research on task-induced changes in brain function: task activation studies, which identify clearly 

demarcated regions that are consistently activated by a task across individuals, and functional 558 

connectivity studies, which identify distributed, subtler task effects on patterns of brain activity 

outside of these consensus regions of activation (Cole et al., 2014; Horien et al., 2019; Salehi et 560 

al., 2019). The latter proved to be, overall, more useful for phenotypic prediction—in fact, task 

activation here failed to predict phenotype in every analysis. However, activation does have 562 

predictive relevance: in activated regions, functional connections that experience more similar 

task-induced changes across individuals are more predictive. When these regions are called 564 

upon to subserve a given task, their signals may become time-locked to the task (increasing 

inter-subject consistency [Hasson et al., 2004]) and/or more constrained (Buckner et al., 2013), 566 

amplifying signal components that may vary meaningfully across individuals (improving 

prediction accuracy). In non-activated regions, such consistency of moment-to-moment 568 

fluctuations was found to decrease the predictive utility of incident edges. These findings 

suggest that task-based FC better predicts phenotype than rest-based FC for two, regionally 570 

specific reasons: in regions where activity changes with task context, prediction is driven by 

edges between regions that change in the same way across people—that is, by edges 572 

connecting nodes that become time-locked to the task and more constrained to phenotypically 

relevant patterns of activity. Everywhere else in the brain, however, prediction is driven by 574 

diversity, by nodes that are doing different things in everyone, revealing inter-individual 

differences in FC patterns that reflect phenotype. 576 

 

Additional considerations and future directions 578 

It is worth noting that our characterization of task effects is intentionally limited; given 

that blocked task designs are common and better powered to reveal effects of interest than 580 

event-related or mixed designs (Chee, Venkatraman, Westphal, & Siong, 2003; Friston, Zarahn, 

Josephs, Henson, & Dale, 1999), we chose to use simple, well-studied task condition contrasts 582 
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(Barch et al., 2013) to reveal fundamental, generalizable effects of task execution on FC and 

activation predictive utility. Further, regression analyses are here limited by the relatively small 584 

number of measurements (i.e., coefficient estimates for the five tasks that were used for both 

inter- and intra-subject analyses), which precludes the performance of rigorous statistical tests. 586 

Future application of the analysis framework presented here to independent datasets will provide 

opportunities to replicate, broaden (i.e., demonstrate their generalizability to different tasks and 588 

modeling approaches), and narrow (i.e., reveal task-specific changes in FC with phenotypic 

relevance) presented results.  590 

Similarly, a deeper investigation of task-specific activation patterns may reveal that task-

evoked activation here demonstrates little predictive utility because of the relatively large size of 592 

each node, which may blur informative, fine-scale patterns of activity and/or “wash out” 

activated voxels by grouping them with less activated voxels (Kriegeskorte, Goebel, & Bandettini, 594 

2006; Norman, Polyn, Detre, & Haxby, 2006; Turk-Browne, 2013). We note, however, that we do 

not seek to make claims about the predictive utility of task activation, but rather to demonstrate 596 

that task-induced changes in standard FC that improve phenotype prediction are not driven by 

task activation. As such, we chose to use a conventional parcellation to calculate FC (Finn et al., 598 

2015; X. Shen et al., 2013), but future work may seek to compare the predictive utility of FC and 

task activation at a finer spatial scale. 600 

 

Conclusion 602 

As task-based FC gains popularity for individual differences research, a better 

understanding of how tasks change patterns of FC is critical. By demonstrating that the success 604 

of task FC-based predictive models is attributable to task-induced changes in context-

independent FC, context-dependent FC, and overall task effect, but not to task-evoked 606 

activation alone, and by characterizing how tasks change patterns of context-independent FC 

to improve prediction, these findings demonstrate that reconfiguration of the functional 608 

connectome during in-scanner tasks is real, meaningful, and useful. This lays the foundation for 

intentional, precise use of in-scanner tasks to amplify individual differences in functional brain 610 

organization and more effectively map the neural representations of behaviors, traits, and clinical 

symptoms. 612 

 

Methods 614 

Dataset 
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 Data used in this work were released as part of the Human Connectome Project (HCP) 616 

S1200 release, described below. 

HCP participants. We restricted our analyses to those subjects who completed all seven 618 

fMRI tasks (WM, gambling, language, social, relational, motor, and emotion), whose grand mean 

root mean square (RMS) relative motion across all task runs was less than 0.1 mm and whose 620 

maximum mean RMS relative motion was less than 0.16 mm, and for whom gF measures were 

available. One subject was found to be missing data due to a download failure, and was excluded 622 

from all analyses to ensure consistency with previous results. A similarly conservative threshold 

for motion-based exclusion has been previously demonstrated to mitigate the relationship 624 

between FC and gF measures (Greene et al., 2018). In total, data from 703 subjects were used 

(342 males, ages 22-37 years [mean = 28.5, s.d. = 3.8, median = 29]). 626 

HCP imaging parameters and preprocessing. Details of imaging parameters (Stephen M 

Smith et al., 2013; Uğurbil et al., 2013; Van Essen et al., 2013) and preprocessing (Glasser et al., 628 

2013; Stephen M Smith et al., 2013) have been published elsewhere. In brief, all fMRI data were 

acquired on a 3T Siemens Skyra using a slice-accelerated, multiband, gradient-echo, echo 630 

planar imaging (EPI) sequence (TR = 720 ms, TE = 33.1 ms, flip angle = 52 degrees, resolution = 

2.0 mm3, multiband factor = 8). Images acquired for each subject include a structural scan and 632 

eighteen fMRI scans (WM task, incentive processing [gambling] task, motor task, language 

processing task, social cognition task, relational processing task, emotion processing task, and 634 

two resting-state scans; two runs per condition [one left/right (LR) phase encoding run and one 

right/left (RL) phase encoding run]; Barch et al., 2013; Smith et al., 2013) split between two 636 

sessions. Data from the seven HCP tasks were used for this work, and each task was a different 

length (WM, 5:01; gambling, 3:12; language, 3:57; social, 3:27; relational, 2:56; motor, 3:34; 638 

emotion, 2:16). The scanning protocol (as well as procedures for obtaining informed consent 

from all participants) was approved by the Institutional Review Board at Washington University 640 

in St. Louis. Use of HCP data for these analyses was deemed exempt from IRB review by the 

Yale Human Investigation Committee. The HCP minimal preprocessing pipeline was used on 642 

these data (Glasser et al., 2013), which includes artifact removal, motion correction, and 

registration to standard space. All subsequent preprocessing was performed in BioImage Suite 644 

(Joshi et al., 2011) and included standard preprocessing procedures (Finn et al., 2015), including 

removal of motion-related components of the signal; regression of mean time courses in white 646 

matter and cerebrospinal fluid; removal of the linear trend; and temporal smoothing with a 

Gaussian filter, s = 0.18 (a relatively high low-pass filter designed to preserve potential high-648 
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frequency, task-related signal components). Mean RMS relative motion was averaged for the LR 

and RL runs, yielding seven motion values per subject; these were used for subject exclusion 650 

and motion analyses (e.g., partial correlation-based feature selection). All subsequent analyses 

and visualizations were performed in BioImage Suite (Joshi et al., 2011), Matlab (Mathworks), R 652 

version 3.6.0 for macOS (packages: RColorBrewer [Neuwirth, 2014], ComplexHeatmap [Gu, Eils, 

& Schlesner, 2016], and circlize [Gu, Gu, Eils, Schlesner, & Brors, 2014]), and GraphPad Prism 654 

version 8.0 for macOS. 

 656 

Functional parcellation and network definition 

 The Shen 268-node atlas (Finn et al., 2015; X. Shen et al., 2013) was applied to the HCP 658 

data, as described previously (Greene et al., 2018). This parcellation is derived from the 

application of a group-wise spectral clustering algorithm to an independent data set (X. Shen et 660 

al., 2013). Time courses of voxels within each node were averaged. Subjects without whole-brain 

coverage (i.e., with missing nodes) were excluded from all further analyses. 662 

 The same spectral clustering algorithm was used to assign these 268 nodes to eight 

networks (Finn et al., 2015; X. Shen et al., 2013), and the subcortical-cerebellar network was split 664 

into networks 8-10 (Noble et al., 2017; Figure 3—figure supplement 2). These networks are 

named based on their approximate correspondence to previously defined resting-state 666 

networks, and are numbered as follows: 1. Medial frontal, 2. Frontoparietal, 3. Default mode, 4. 

Motor, 5. Visual A, 6. Visual B, 7. Visual association, 8. Salience, 9. Subcortical, 10. Cerebellum. 668 

 

Psychophysiological interaction (PPI) analysis 670 

 After parcellation, node time courses were submitted to an adaptation of the PPI pipeline 

developed and described by Cole and colleagues (Cole et al., 2013) and modeled after the 672 

generalized PPI framework (McLaren et al., 2012). In brief, the mean time course for each node 

was decomposed via multilinear regression with three regressor types: the mean time course of 674 

a predictor node (yielding a beta weight that reflects context-independent FC [ciFC] between the 

predictor and target nodes); zero-centered, block-level task boxcar regressors convolved with 676 

the canonical HRF (yielding a beta weight that reflects the influence of task activation on the 

target node time course), and the interactions of these terms (yielding a beta weight that reflects 678 

context-dependent FC [cdFC] between the predictor and target nodes). The canonical HRF 

(generated using SPM8) was used given its demonstrated efficacy in identifying patterns of task 680 

activation in these data (Barch et al., 2013). Task conditions and cues were modeled separately, 
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as relevant (WM: 0-back task, 2-back task, and cue regressors; language: story task and cue 682 

regressors; emotion: face block and cue regressors; gambling: reward block and loss block 

regressors; relational: relational block, matching block, and cue regressors; social: mental video 684 

block and random video block regressors; motor: left hand, right hand, left foot, right foot, 

tongue, and cue regressors). Regressors were calculated separately for each subject using HCP 686 

EV.txt files and downsampled given the HCP sampling rate (i.e., TR = 720 msec). Thus, for a 

given task with k conditions (including fixation and cue, if present), a given node’s time course 688 

can be described by the following equation: 
𝑣* = 	𝛽- + 𝛽/𝑣0 + 𝛽1:3𝑇/:35/ + 𝛽36/:135/𝑓 𝑇/:35/ 𝑣0 690 

𝑓 𝑇 = 0.5	if	𝑇 > 0
−0.5	if	𝑇 ≤ 0 

where 𝑣*,0 are the z-scored time courses of target node i and predictor node j, and T is the 692 

relevant, HRF-convolved, zero-centered task timing regressor(s). As in previously published 

work (Cole et al., 2013), the task regressors used in the interaction term were binarized. Here, 694 

after convolution with the HRF, values greater than zero were set to 0.5, and values less than or 

equal to zero were set to -0.5 (to zero-center the binarized task regressors, as for the non-696 

binarized task regressors) prior to their multiplication by the predictor node time course to yield 

the interaction regressor. (For a discussion of the choice to zero-center task regressors, see 698 

Methods: Investigating potential confounds). These steps are each depicted schematically in 

Figure 1—figure supplement 1. For all tasks except the emotion and language tasks (for which 700 

there were no fixation blocks, rendering the contrast implicit by modeling only one of the two 

task conditions) and the motor task (for which all motion conditions were summed to yield a 702 

motion versus fixation contrast), interaction and task activation beta weights were each 

combined via subtraction to yield one activation contrast beta weight and one interaction 704 

contrast beta weight per feature in each subject (McLaren et al., 2012; contrasts: n-back: 2-back 

– 0-back; gambling: reward – punish; emotion: fear [faces] versus neutral [shapes]; language: 706 

story versus math; relational: relation – match; social: TOM – random), and beta weights were 

calculated separately for each task run (i.e., LR and RL phase encoding runs) and then averaged. 708 

This process was repeated for every node pair (i.e., for a given target node, all other nodes were 

used as predictor nodes) and every subject, yielding, for each subject, four asymmetric, node-710 

by-node matrices of beta weights (one each for the intercept, ciFC, task activation, and cdFC 

terms). Each task activation matrix was collapsed via averaging into a 268-element vector. All 712 

other matrices were symmetrized by averaging them with their transpose. All matrices (and 
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vectors, in the case of activation) of a given type were then submitted—alone and in 714 

combination—to the predictive modeling pipeline described below (Cognitive prediction). 

Finally, to explore the effects of modeling task timing on resulting beta weights, we 716 

repeated the PPI using mismatched brain data and task regressors in an exhaustive fashion (e.g., 

emotion task fMRI data with gambling, language, motor, relational, social, and WM task 718 

regressors). Resulting betas were also submitted to the cognitive prediction pipeline; results are 

presented in Figure 2—figure supplement 4. 720 

 

Cognitive prediction 722 

 Fluid intelligence was quantified using a 24-item version of the Penn Progressive Matrices 

test; this test is an abbreviated form of Raven’s standard progressive matrices (Bilker et al., 724 

2012). Integer scores indicate number of correct responses (PMAT24_A_CR, range = 5-24, mean 

= 17.70, s.d. = 4.43, median = 19). 726 

 A modified version of connectome-based predictive modeling (CPM; Finn et al., 2015; 

Shen et al., 2017) was used to predict gF from brain measures (i.e., beta matrices [see 728 

Psychophysiological interaction analysis]) using ridge regression (Gao et al., 2019). This pipeline 

predicts gF in novel subjects, validating the model through iterative, k-fold cross-validation; in 730 

this work, k = 10 to balance model bias and variance given the large sample size (Scheinost et 

al., 2019). Consistent with this motivation, split-half (i.e., k = 2) analyses yielded comparable 732 

patterns of results (e.g., best performance from combined models), but overall lower prediction 

performance (Figure 2—figure supplement 8). First, the sample was divided into ten groups, 734 

respecting family structure such that family members were always assigned to the same group. 

Nine of these groups were used as training data; in this training set, features (edges and/or 736 

nodes) were selected on the basis of their Pearson correlation with gF scores. A correlation P 

value of 0.1 was selected as the edge selection threshold, given evidence to suggest that more 738 

permissive feature selection yields improved regularized regression-based prediction results, 

and that P = 0.1 offers an acceptable compromise between model performance and 740 

computational demands (Gao et al., 2019). These edges were then submitted as predictors (with 

gF score as response) to an L2-constrained linear least squares regression (elastic net mixing 742 

value = 1e-6), using another, inner 10-fold cross-validation to find the regression coefficients that 

correspond to the largest regularization strength (lambda) that yields a MSE within one standard 744 

deviation of the minimum MSE. These fitted coefficients were then applied to the corresponding 
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edges in the left-out test subjects to predict their phenotype scores, and these steps were 746 

performed iteratively with each group left out once.  

Model performance was quantified as cross-validated r2: 𝑞1 = 1 − @AB
CDE(G)

, where y = 748 

observed gF scores. This whole pipeline was repeated 100 times with different group partitions, 

and model performance is reported as the mean across these 100 iterations (similarly, in 750 

graphical representations of results, bar heights represent mean performance, and error bars 

represent performance standard deviation). Significance of model performance was assessed 752 

via 100 iterations of nonparametric permutation testing (Finn et al., 2015), accounting for limits 

on exchangeability due to family structure (Winkler et al., 2014, 2015), and P values were 754 

calculated as the fraction of non-permuted iterations on which prediction accuracy was less than 

or equal to the accuracy of the best-performing null model for the given task and term. Two 756 

related subjects in our sample were missing family structure information; these subjects were 

excluded from permutation tests (n  = 701). Resulting P values were Bonferroni corrected for 758 

multiple comparisons. Last, for each task, a paired Wilcoxon signed rank test was used to 

compare performance across all 100 iterations of the two models with the highest and second-760 

highest mean performance.   

 762 

Evaluating and visualizing contributions to a predictive model 

 Given the improved performance of the combined models relative to the individual-term 764 

models and the opportunity to interrogate relative term contributions to these combined models, 

we performed several analyses to evaluate the contributions of individual features, networks, 766 

and terms to the combined model for a given task. First, to ensure that only reliably predictive 

features were analyzed, a given feature was required to have been selected on 75% of all feature 768 

selections (10 folds * 100 iterations = 1000 feature selections, for main analyses). The 

contribution of each selected feature was calculated as its mean ridge regression coefficients (b) 770 

across all 1000 analyses multiplied by the standard deviation of its PPI beta across subjects. 

That is, the contribution c for feature i was defined as 772 

𝒄𝒊 = 𝑠𝑡𝑑 β*OOP ∗ b*
E*STU 

For all reliably selected features from a given term t (e.g., ciFC), the absolute values of these 774 

contributions were summed and converted to fractional contributions, 

𝐶W =
𝑠𝑡𝑑 β*OOP ∗ b*

E*STUXY
*Z/

𝑠𝑡𝑑 β*OOP ∗ b*
E*STUXY

*Z/
[
WZ/

 776 
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where Nt represents the number of features from the given term t (with features that were not 

selected on 75% of feature selections set to 0) and T represents the number of terms. This 778 

procedure was repeated for each task to yield four contribution fractions per task (one per term). 

These contribution fractions were in turn used to drop terms in order of ascending and 780 

descending contributions, after which prediction was repeated to determine the impact of term 

contribution on model performance (Figure 2—figure supplement 5). Contributions across terms 782 

were compared using rank correlation of all features’ absolute contributions (ciFC and cdFC); of 

all nodes’ absolute contributions (cdFC contribution degree 𝑑* = 𝑎𝑏𝑠(𝑐*,0)
0
/ , with di the degree 784 

for node i, and ci,j the cdFC model contribution of the edge connecting nodes i and j) with 

absolute task activation contributions; and of absolute task activation contributions with 786 

absolute task activation, itself. 

 Contributions were visualized at several levels of analysis; results are displayed for the 788 

motor task in Figure 3 and for all tasks in Figure 3—figure supplement 1. First, signed 

contributions of each feature were visualized in circle plots (Figure 3c, f, and Figure 3—figure 790 

supplement 1b, d). In these plots, nodes are grouped by canonical network (see Functional 

parcellation and network definition), and reliably selected edges are represented by lines 792 

between these nodes. The color family of each edge indicates the sign of its predictive 

contribution (red for positive, blue for negative), and the shade and thickness of the line represent 794 

the magnitude of its predictive contribution (darker and thicker indicate greater contribution). 

Figure 3c and Figure 3—figure supplement 1b circle plots illustrate the predictive contributions 796 

of ciFC features for each task. Figure 3f and Figure 3—figure supplement 1d circle plots illustrate 

the predictive contributions of context-dependent features with predictive utility. That is, lines 798 

again represent edges (here, cdFC), with the addition of node-level information. Nodes, 

displayed as circles on each circle plot track, are colored by their mean activation difference for 800 

the given contrast (e.g., 2-back – 0-back), and their distance from the x axis indicates their signed 

predictive contribution. To avoid any bias in task activation beta estimates from the inclusion of 802 

additional predictors in the PPI analysis (but see Investigating potential confounds and Figure 

2—figure supplement 2 for evidence that PPI task activation betas closely follow independently 804 

estimated task effect sizes), activation was calculated for this analysis and for the inter-subject 

consistency/utility regression (see Modeling the relationship between inter-subject consistency 806 

and predictive utility) as follows. As in work by Salehi and colleagues (Salehi et al., 2019), we 

used individual-level, volume-based task contrast of parameter estimate (COPE) files generated 808 

and described previously (Glasser et al., 2013) using FSL FEAT’s FLAME (FMRIB's Local Analysis 
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of Mixed Effects [Smith et al., 2004]) to calculate effect size for each voxel. One-sample t-810 

statistics were calculated at each voxel and converted to Cohen’s d coefficients as 𝑑" =
W
X

, 

where ds is the sample d coefficient, t is the t-test statistic, and N is the sample size (J. Cohen, 812 

2013). We then applied the initial 268-parcel group-level parcellation (X. Shen et al., 2013) to 

these voxel-level maps to calculate a mean task effect size per parcel for each of the tasks. 814 

 Second, predictive contributions were visualized at the network level, using ten canonical 

networks (see Functional parcellation and network definition; Figures 3b, e, h, i, 4b, c, 5a, and 816 

Figure 3—figure supplement 1a, c, e, f, and Figure 3—figure supplements 3 and 4). Given the 

potentially divergent interpretations of the predictive contribution of a positive and a negative 818 

edge or node (e.g., a positive contribution for a negative edge suggests that it is less negative 

[weaker] in those with higher fluid intelligence, while the same contribution for a positive edge 820 

suggests that it is more positive [stronger] in those with higher fluid intelligence), edges were first 

divided by their mean ciFC sign (i.e., edges that, at baseline, are on average positive across all 822 

subjects, and edges that, at baseline, are on average negative across all subjects; Figure 3b, e, 

i, Figure 3—figure supplement 1a, c, f, and Figure 3—figure supplement 3), and nodes by their 824 

mean task activation sign (Figure 3h, Figure 3—figure supplement 1e). For each group, the 

signed contributions of selected edges from each network pair were summed, and this sum was 826 

normalized by the total number of edges between the given networks to account for differences 

in network size, yielding the mean contribution for an edge in the given network pair. Finally, to 828 

increase interpretability of the scale for these network-level contributions, each network pair’s 

contribution value was normalized by the summed absolute contributions of all network pairs for 830 

that term in both positive and negative edge groups. This analysis was repeated, with minor 

modifications, for task activation for each network, rather than network pair. That is, activation 832 

predictive utility was summed for all nodes in each network, and this value was normalized by 

the number of nodes in that network; resulting network contributions were then normalized by 834 

the summed absolute contributions of all networks for that task in both positive and negative 

node groups. To explore any differences in the spatial distribution of high-consistency predictive 836 

edges and low-consistency predictive edges, this analysis was repeated after splitting the 

reliably selected edges not by mean ciFC sign, but rather by the median absolute inter-subject 838 

consistency (see Inter-subject psychophysiological interaction analysis) for these selected edges 

for the given term and task. 840 
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 Finally, predictive contributions were visualized at the node level (Figure 3a, d, g). Node 

percent contribution was quantified as the summed, absolute contributions (i.e., predictive utility) 842 

of all edges incident to it (or, in the case of task activation, as the absolute predictive utility of 

the given node), normalized by the sum of all nodes’ absolute predictive utility for the given task. 844 

Because the percent predictive utility of node activation calculated in this way tended to be 

sparsely concentrated (i.e., high percentages for a few nodes), the colormap range was set so 846 

as to balance capturing the full range of percentages across all tasks and terms and the subtle 

differences among nodes’ ciFC and cdFC percent predictive utility. To do so, the maximum was 848 

set such that a small number of nodes’ percent predictive utility of activation was saturated (0-

10 nodes per task).  850 

 

Inter-subject psychophysiological interaction analysis 852 

 To evaluate inter-subject consistency separately for ciFC, task activation, and cdFC, the 

intra-subject PPI analysis was repeated with one modification: the predictor node’s time course 854 

was averaged across the subset of all subjects that did not include the target subject (and that 

experienced the same task stimulus order; range across tasks = 608-703 subjects), and this 856 

process was repeated iteratively with each subject serving once as the target subject, yielding, 

again, one asymmetric matrix per term for each subject. That is,  858 

𝑣*,W = 	𝛽- + 𝛽/𝑣0_ + 𝛽1:3𝑇/:35/ + 𝛽36/:135/𝑏𝑖𝑛 𝑇/:35/ 𝑣0_ 

𝑣0_ =
1

𝑛 − 1
𝒏𝒐𝒅𝒆0,_

_fW
 860 

where t is the target subject, p are the non-target subjects, and nodej,p represents the time course 

of the jth node for subject p. These matrices were averaged across all subjects, and, as before, 862 

contrasts were calculated, LR/RL contrast matrices averaged, and resulting beta contrast 

matrices symmetrized, yielding one matrix per term. Inter-subject consistency of task activation 864 

was defined as the main diagonal of the inter-subject interaction matrix. This was repeated for 

each of the five tasks for which task timing was meaningfully synchronized across subjects: 866 

gambling, emotion, WM, social, and relational. All subsequently described analyses using inter-

subject consistency results were limited to these five tasks. 868 

 To explore the spatial distribution of ciFC and cdFC inter-subject consistency, the mean 

consistency of an edge in each canonical network pair was visualized (Figure 4b, c), using the 870 

same approach as in Figures 3 and 5 (see Evaluating and visualizing contributions to a predictive 

model), again after dividing these edges into those with mean positive ciFC and those with mean 872 
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negative ciFC (Figure 4—figure supplement 1c-d). We note that self-connections (e.g., node 1 – 

node 1) are constant in intra-subject analyses and thus non-contributory to predictive models. 874 

In inter-subject analyses, however, these self-connections correspond to inter-subject 

correlation (ISC; Hasson et al., 2004), or the similarity in a given node’s time course across 876 

individuals. These connections are thus neither positive nor negative in the intra-subject 

analyses, but are included in Figure 4b-c, and context-dependent ISC is interpreted as 878 

consistency of task activation across individuals in subsequent analyses. 

 880 

Modeling the relationship between inter-subject consistency and predictive utility  

 To investigate a potential relationship between predictive utility and feature consistency 882 

across individuals, we designed a regression-based analysis in which the combined model 

predictive utility (i.e., absolute contribution) of each reliably selected feature for the given task 884 

and term was used as the outcome variable, and the inter-subject consistency of each reliably 

selected feature (i.e., absolute inter-subject PPI beta) for the corresponding task and term was 886 

used as a predictor. We suspected that this relationship may interact with functional and 

anatomical relationships; to this end, we built five separate models, each with a different 888 

functional or anatomical variable explicitly modeled as a predictor: edge location within or 

between canonical networks (Figure 5b), edge location within or across hemispheres (Figure 5—890 

figure supplement 1b), edge length (as measured by Euclidean distance between the nodes 

incident to that edge; Figure 5—figure supplement 1a), edge reliability (calculated in HCP resting-892 

state data by Noble and colleagues [Noble et al., 2017]; Figure 5b), and task activation (i.e., mean 

absolute task effect size [see Evaluating and visualizing contributions to a predictive model] of 894 

the nodes incident to the given edge; Figure 5b). All non-dummy predictors were mean-centered. 

Both main effects and interaction terms of models with significant full-model P values are 896 

presented; betas of non-significant models were set to 0. Due to the limited number of 

measurements (i.e., five betas per model term, one per task) output by this analysis, results are 898 

discussed qualitatively, with the caveat that future work to replicate these findings with more 

tasks will permit more rigorous statistical testing of them (see Discussion). 900 

 

Investigating potential confounds 902 

 To evaluate the potential impact of collinearity on PPI beta estimates, intra- and inter-

subject PPI analyses were repeated with two partial models for each task: one without the ciFC 904 

term and one without the cdFC term. Partial-model and full-model betas for each term were 
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highly correlated, suggesting a minimal impact of collinearity on beta estimates (Figure 1—figure 906 

supplement 2 and Figure 4—figure supplement 2). 

 To ensure that ciFC and task activation beta estimates are comparable to standard 908 

measures of FC and task activation, respectively, ciFC betas were correlated with FC calculated 

using Fisher-transformed Pearson correlations across the entire node time courses (“standard 910 

FC”), mean task activation betas were correlated with group-level task effect size measures 

calculated for each node (see Evaluating and visualizing contributions to a predictive model), and 912 

HCP-released, individual-level GLM results were correlated with PPI task activation betas and 

averaged across subjects, for all subjects in the main sample for whom individual-level GLM 914 

results were available (n = 322; all results in Figure 2—figure supplement 2). These individual-

level GLM-based task activation vectors (i.e., parcellated t-statistic maps generated in the task 916 

effect size analysis, yielding a 268-element vector of node activation values for each task for 

each subject) were also used to predict gF; results were comparable to prediction using PPI 918 

activation betas, confirming that task activation alone does not predict gF (Figure 2—figure 

supplement 2). For completeness, cdFC beta estimates were also correlated with standard FC. 920 

As predicted, results (Figure 2—figure supplement 2) demonstrate that ciFC is strongly 

correlated with standard FC and task activation betas with task effect size (both at the group 922 

and individual levels), but that cdFC is not significantly correlated with standard FC, validating 

the interpretation of PPI betas. 924 

 To further ensure that methodological choices did not affect main results, we repeated 

main analyses with mean-centered PPI regressors (that is, after z-scoring each PPI predictor 926 

immediately prior to the regression step). Prediction results were largely unchanged (Figure 2—

figure supplement 1), though the intercept term, by definition, failed to predict gF in the mean-928 

centered case (numerical error will yield intercept values that are close, but not equal, to zero, 

but this fluctuation around zero should not—and did not—predict gF). While at first surprising 930 

that prediction results are comparable using these two approaches, it follows from the similarity 

of task timing across subjects and from our choice to z-score node timecourses. That is, mean 932 

centering PPI regressors causes a linear scaling of resulting betas that is comparable across 

subjects, since 𝛽"WDgSDES*hUS = 	
𝛽ig"WDgSDES*hUS 𝒔EUTEU""kE, and the standard deviation of task 934 

timing and of the interaction will be nearly identical across subjects. This linear shift in PPI betas 

will change their interpretation, but this change is not germane to the present work, as PPI betas 936 

themselves are not interpreted. However, with the exception of the intercept term, PPI betas’ 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2019. ; https://doi.org/10.1101/870287doi: bioRxiv preprint 

https://doi.org/10.1101/870287
http://creativecommons.org/licenses/by/4.0/


	 33 

predictive utility will be unchanged, since inter-subject relationships of PPI betas are relatively 938 

unchanged. Further, predictive utility estimates will be essentially unchanged, as ridge 

coefficients scale with PPI beta variance. The intercept will, of course, approach zero in the 940 

mean-centered case, but in the zero-centered case will reflect these linear shifts, scaled by 

subject-specific PPI activation and cdFC betas (Figure 2—figure supplement 1). If these betas 942 

meaningfully vary across subjects, then the intercept terms may predict individuals’ phenotypes, 

as was found to be true in these analyses (Figure 2). Given the predictive utility of this “overall 944 

task effect” term (i.e., intercept), the unchanged prediction results for other terms, and the 

decreased collinearity among predictors after zero centering relative to mean centering, we 946 

present zero-centered results in the main text, and mean-centered results in the supplementary 

materials. 948 

 Finally, while standard approaches were taken to mitigate the effects of motion on fMRI 

data, we sought to more thoroughly explore any relationship of motion to task timing by 950 

correlating, for each subject, frame-to-frame displacement (HCP Movement_RelativeRMS.txt) 

for each task and phase encoding direction with the corresponding task timing regressors. 952 

Results (Figure 2—figure supplement 10) demonstrate no consistent relationship. We also 

correlated mean RMS relative motion for each subject and task (averaged over phase encoding 954 

runs) with observed gF (Figure 2—figure supplement 6) and predicted gF (averaged over 100 

iterations for each task/term; Figure 2—figure supplement 7). Given several modest correlations, 956 

we repeated the prediction analyses using partial correlation-based feature selection with mean 

RMS relative motion (calculated for each subject and task) as a covariate. As an even more 958 

conservative motion control analysis, we also repeated the main analysis after regressing mean 

RMS relative motion out of gF and FC within the cross-validation loop. Regression coefficients 960 

were estimated for the training subjects and applied to the test subjects in the 10-fold analysis 

(to avoid the use of potentially unstable coefficient estimates in the smaller test sample), but 962 

were estimated separately for training and test subjects in the split-half analysis. Model 

performance and feature weights were relatively unchanged; the former is presented in Figure 964 

2—figure supplement 8, and the correlations of feature weights from main analyses and partial 

correlation-based analyses are presented in Figure 2—figure supplement 9. Correlations of 966 

feature weights from main analyses and residual-based analyses were comparable. 

 968 

Data and code availability 
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The HCP data that support the findings of this study are publicly available on the ConnectomeDB 970 

database (https://db.humanconnectome.org). MATLAB code to run the ridge regression-based 

CPM analysis can be found at https://github.com/YaleMRRC/CPM. MATLAB code to run 972 

additional core analyses (PPI analyses, basic visualization, synchrony vs. predictiveness 

analyses, and family-based cross-validation) can be found at 974 

https://github.com/abigailsgreene/taskFC. BioImage Suite tools used for analysis and 

visualization can be accessed at www.bisweb.yale.edu. MATLAB and R scripts written to 976 

perform additional post-hoc analyses and visualizations are available from the authors upon 

request.  978 
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Figure 1—figure supplement 1. Schematic depiction of the PPI analysis pipeline. 
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 Intercept, 
no cdFC 

Intercept, 
no ciFC 

ciFC, no 
cdFC 

Activation, 
no cdFC 

Activation, 
no ciFC 

cdFC, no 
ciFC 

Gambling 0.9910 0.9587 0.969 0.9941 0.9749 0.7439 
Emotion 0.9892 0.9654 0.9918 0.9903 0.9569 0.9343 

Language 0.9779 0.9337 0.9617 0.9877 0.9558 0.7679 
Motor 0.9754 0.9961 0.5986 0.9751 0.9915 0.7329 

Relational 0.9821 0.9438 0.9881 0.9878 0.9542 0.9290 
Social 0.9868 0.9275 0.9661 0.9925 0.9570 0.7050 
WM 0.9848 0.9228 0.9862 0.9891 0.9548 0.8920 

Figure 1—figure supplement 2. Mean Pearson correlation coefficients between full-
model PPI betas and partial-model PPI betas for a given term, computed within subject 
(separately for LR and RL runs) and averaged across subjects and then conditions (e.g. 
cue, 2-back, and 0-back terms for WM). 
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Figure 2—figure supplement 1. PPI intercept reflects overall degree of task effect on 
brain activity patterns, and has predictive utility. (a) Eliminating PPI model intercepts by 
mean centering all regressors (rather than zero centering task regressors and mean 
centering node time courses, as in main analyses) has little effect on prediction 
performance (mean and s.d., indicated by error bars) of ciFC, cdFC, activation, or 
combined models (c.f., Fig. 2b) because removal of a constant term (that is similar across 
subjects) from regressors scales beta estimates in a linear fashion, and thus does not 
affect their phenotypically relevant information content. However, the intercept reflects 
this constant term, weighted by activation and interaction betas, which may vary across 
subjects, reflecting inter-individual differences in overall degree of task effect on node 
activity and FC; should this inter-individual variance be related to gF, PPI intercept terms 
would be expected to successfully predict gF, as was found to be the case for 4/7 tasks 
(Fig. 2). (b) Schematic illustration of this interpretation of the intercept term. Here, task 
timing is represented as a zero-centered boxcar, yielding a mean task regressor value 
of 0.25 (because more time is spent in the “on” condition than in the “off” condition). 
Example node 1 time courses for two subjects are depicted in the rightmost panel; in 
subject 1, node 1 is strongly activated by the task, while in subject 2, node 1 is more 
weakly activated by the task, as reflected in the ß1 estimates for these subjects. This 
difference, in turn, determines the intercept values for each subject. This simple case 
excludes the PPI interaction term, but the same logic would hold for this term, rendering 
the intercept a reflection of the overall degree to which the task affects activation and 
connectivity of the target node, a value which may vary meaningfully across individuals. 
T, task regressor; y, node time course of activity; n, node; s, subject; r, Pearson 
correlation; s, standard deviation. 
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 ciFC/standard 
FC corr 

cdFC/standard 
FC corr 

Act. 
PPI/GLM 
grp corr 

Act. 
PPI/GLM 
IS corr 

GLM-based 
model 

performance 
Emotion 0.973 -0.0975 (0.25) 0.9360 0.9196 -0.0093 

Gambling 0.9364 -0.0049 (0.35) 0.7798 0.6725 
(0.0001) 

-0.0090 

Language 0.9512 0.0206 (0.39) 0.9363 0.9369 -0.0100 
Motor 0.6499 -0.0717(0.43) 0.8897 0.8259 

(0.0001) 
-0.0101 

Relational 0.9546 -0.0123 (0.34) 0.9457 0.7760 -0.0092 
Social 0.9278 -0.0064 (0.42) 0.92 0.8198 -0.0099 
WM 0.9554 -0.0428 (0.35) 0.9472 0.8448 

(0.0016) 
-0.0087 

Figure 2—figure supplement 2. Comparison of PPI results to “standard” FC and 
activation results. Columns 1-2: Pearson correlations of context-independent and 
context-dependent FC for each task with standard FC from that task, computed within 
subject and averaged across subjects to yield mean r(P, Bonferroni corrected). P value 
not reported indicates P << 0.001. Column 3: Pearson correlations of task activation 
PPI betas (averaged across subjects) with independently estimated, group-level HCP 
task effect sizes per node. All P << 0.001, Bonferroni corrected. Column 4: Pearson 
correlations of task activation PPI betas with independently estimated, individual-level 
HCP task effect sizes per node; intra-subject correlations averaged across subjects 
and presented as mean r(P, Bonferroni corrected). P value not reported indicates P << 
0.001. Column 5: performance of gF predictive models trained and tested with GLM-
based activation, rather than PPI-based activation. Results reported as mean q2 across 
100 iterations of 10-fold cross-validation. Act, activation; corr, correlation; grp, group; 
IS, intra-subject. 
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 Prediction performance, no 
GSR 

Prediction performance, with GSR 

Emotion 0.0305 (0.0053) 0.0771 (0.0036) 
Gambling -0.0017 (0.0028) 0.1028 (0.0047) 
Language 0.0387 (0.0046) 0.1046 (0.0035) 

Motor -0.0029 (0.0024) 0.0823 (0.0051) 
Relational 0.0280 (0.0068) 0.0990 (0.0047) 

Social -0.0042 (0.002) 0.0872 (0.0044) 
WM -0.0029 (0.0022) 0.1092 (0.0037) 

Figure 2—figure supplement 3. Prediction performance of rCPM (100 iterations, P 
threshold = 0.1) performed on “standard FC,” with and without global signal regression 
(GSR). Results presented as mean q2 (s.d. q2). 
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Figure 2—figure supplement 4. Combined and ciFC-based models, but not cdFC- or 
task activation-based models, successfully predict gF, even when incorrect task 
regressors are used. One iteration of 10-fold rCPM; 6 task/regressor combinations per 
task; models with q2<0 were set to 0. Error bars indicated s.d. of prediction performance. 
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Figure 2—figure supplement 5. Combined model prediction performance with 
increasing numbers of individual terms dropped from the model in order of increasing 
(red) and decreasing (green) contributions. Numbers indicate number of dropped terms. 
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 Motion/observed gF correlation 
Emotion -0.14* 

Gambling -0.06 
Language -0.09 

Motor -0.10 
Relational -0.15* 

Social -0.12* 
WM -0.08 

Figure 2—figure supplement 6. Pearson correlation between mean RMS motion 
(averaged between LR and RL runs for each subject) and observed gF. *indicates 
significant at P<0.05, Bonferroni corrected. 
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 Intercept ciFC cdFC Activation Combined 
Emotion 0 -0.14*+ -0.02 0.11 -0.11 

Gambling 0.04+ 0.08 0 0.09 -0.03+ 
Language -0.16*+ -0.09 -0.15*+ 0.05 -0.17*+ 

Motor -0.02 -0.20*+ 0.04 0.11 -0.13*+ 
Relational 0.08 -0.05 0 0.08 -0.09+ 

Social -0.02+ 0.09 -0.01 0.09 -0.05+ 
WM -0.06+ 0 -0.03 -0.01 -0.09+ 

Figure 2—figure supplement 7. Pearson correlation between mean RMS motion 
(averaged between LR and RL runs for each subject) and predicted gF (averaged 
across 100 iterations; see main text) for all tasks and terms. *indicates significant at 
P<0.05, Bonferroni corrected; +indicates significant corresponding predictive model 
(see Fig. 2). 
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  Intercept ciFC cdFC Activation Combined 
Em

ot
io

n Parcorr (10/1) 0.0076 0.0322 -0.0327 -0.0023 0.0255 
Residualized (10/1) 0.0061 0.0238 -0.0373 -1.02E-9  0.0211 
Original (10/100) 0.0042 0.0262 -0.0362 -0.005 0.0187 

Residualized (2/100) 0.0034 0.0176 -0.0301 1.78E-17 -0.0035 

G
am

bl
in

g Parcorr (10/1) 0.046 -0.0029 -0.015 -0.0029 0.0801 
Residualized (10/1) 0.0523 7.77E-4 -0.0104 -1.14E-9 0.0833 
Original (10/100) 0.0479 -0.0043 -0.0182 -0.0044 0.0783 

Residualized (2/100) 0.0302 0.0051 -0.0182 -3.44E-17 0.0499 

La
ng

ua
ge

 Parcorr (10/1) 0.0482 0.0088 0.0511 -0.0057 0.121 
Residualized (10/1) 0.0406 0.0079 0.0520 -2.39E-8 0.1198 
Original (10/100) 0.0467 0.0079 0.0559 -0.0044 0.1227 

Residualized (2/100) 0.0268 0.0231 0.0324 5.56E-07 0.0875 

M
ot

or
 Parcorr (10/1) -0.0027 0.0337 0.0087 -3.72E-04 0.051 

Residualized (10/1) 0.0024 0.0292 0.0060 -1.99E-7 0.0488 
Original (10/100) -0.0025 0.0269 0.0041 -0.0046 0.0555 

Residualized (2/100) 7.94E-04 0.0217 5.59E-04 3.22E-17 0.0327 

R
el

at
io

na
l Parcorr (10/1) -0.0039 -0.0039 -0.0142 -0.0039 0.0623 

Residualized (10/1) -1.71E-8 0.0071 -0.0057 -1.71E-8 0.0622 
Original (10/100) -0.0043 0.0026 -0.0138 -0.0042 0.0664 

Residualized (2/100) 0.0014 0.015 -0.0165 7.17E-06 0.0399 

So
ci

al
 Parcorr (10/1) 0.0326 -0.0018 0.0207 -0.0018 0.0621 

Residualized (10/1) 0.0309 -1.13E-5 0.0312 -8.12E-9 0.0596 
Original (10/100) 0.03 -0.0045 0.0162 -0.0046 0.0532 

Residualized (2/100) 0.0153 0.0035 0.0129 -5.55E-18 0.0449 

W
M

 

Parcorr (10/1) 0.0207 -0.003 0.0171 -0.0025 0.0526 
Residualized (10/1) 0.0216 4.38E-5 0.0011 -3.52E-7 0.0461 
Original (10/100) 0.0179 -0.004 0.0019 -0.0032 0.0454 

Residualized (2/100) 0.0186 0.0026 0.0179 6.77E-05 0.0536 
Figure 2—figure supplement 8. Comparison of main results (“Original”) to 
performance of predictive models built using partial correlation-based feature selection 
(“Parcorr,” i.e., controlling for motion), and regression of motion values out of FC and 
gF (“Residualized”). In all cases, P threshold = 0.1. Numbers in parentheses indicate 
number of folds and iterations (e.g., “Parcorr (10/1)” indicates partial correlation-based 
feature selection with 10 folds and 1 iteration). For cases in which a single iteration of 
prediction was performed, results presented as q2; for cases in which more than one 
iteration of prediction was performed, results presented as mean q2. 
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 Intercept ciFC cdFC Activation Combined 
Emotion NaN 0.9074 0.8881 NaN 0.9095 

Gambling 0.9739 NaN 0.9300 NaN 0.9636 
Language 0.9527 NaN 0.9368 NaN 0.9527 

Motor 0.8852 0.9321 0.9265 NaN 0.9329 
Relational NaN NaN 0.8916 NaN 0.9139 

Social 0.9347 NaN 0.9267 NaN 0.9465 
WM 0.8619 NaN NaN NaN 0.9779 

Figure 2—figure supplement 9. Pearson correlation between consistently selected 
features’ rCPM betas for the main models and the partial correlation-based models. 
NaN indicates that no features were selected on 75% or more feature selections for 
one or both model(s). 
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 Task timing/motion, LR 

correlation 
Task timing/motion, RL 

correlation 
Emotion -0.0002 0.0030 

Gambling -0.0167 -0.0220 
Language -0.0132 -0.0124 

Motor 0.0141 0.0065 
Relational 0.0011 -0.0048 

Social -0.0292 -0.0344 
WM -0.0055 -0.0015 

Figure 2—figure supplement 10. Rank correlation coefficients between frame-to-
frame relative RMS motion and task timing, averaged across task conditions and 
subjects. 
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Figure 3—figure supplement 1. Context-independent FC, context-dependent FC, and 
activation predictive features are distributed and distinct. (a) Visualization of predictive ciFC 
features by network for each task. Red = positive ridge coefficients, blue = negative ridge 
coefficients, shade = relative model contribution. In this and all subsequent figures: “+ve” 
indicates that results reflect only contributions of edges with mean positive ciFC. 1-10 = network 
assignment. (b) Visualization of individual predictive ciFC features, with each consistently 
selected edge represented as a line; line color and thickness scale with predictive model 
contribution. In this and all subsequent figures, MF = medial frontal, FP = frontoparietal, DMN = 
default mode network, Mot = motor, Vis A = visual A, Vis B = visual B, Vis Assoc = visual 
association, Sal = salience, Sub = subcortical, CBL = cerebellum. EC, edge contribution. (c) 
Visualization of predictive cdFC features by network for each task. FCexp, FC during the 
experimental condition (i.e., condition of interest). Red = positive ridge coefficients, blue = 
negative ridge coefficients, shade = relative model contribution. 1-10 = network assignment.  (d) 
Visualization of individual predictive cdFC (lines) and activation (outer track circles) features; line 
color and thickness scale with cdFC feature predictive utility, and circles represent the 
corresponding nodes, with their color indicating mean activation (red = positive, blue = negative) 
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and distance from the x axis indicating their model contribution. EC, edge contribution; NA, node 
activation. (e) Visualization of predictive activation features’ (i.e., nodes’) network assignments 
for nodes with mean positive PPI activation betas (“activation”) and for nodes with mean negative 
PPI activation betas (“deactivation”). (f) Visualization of the difference between absolute, 
network-level ciFC model contributions (i.e., absolute value of matrices in [a]) and absolute, 
network-level cdFC model contributions (i.e., absolute value of matrices in [c]).   
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Figure 3—figure supplement 2. Ten canonical networks used for network analyses (see 
Methods for derivation). Figure adapted from Greene et al. (2018). 
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Figure 3—figure supplement 3. Predictive model contributions of features with mean 
negative ciFC (a,b) and inter-subject consistency of features with mean negative ciFC 
(c,d), summarized by canonical networks (Figure 3—figure supplement 2). Canonical 
network labels: 1 = medial frontal, 2 = frontoparietal, 3 = DMN, 4 = motor, 5-7 = visual, 
8 = salience, 9 = subcortical, 10 = cerebellum. 
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Figure 3—figure supplement 4. Further separating cdFC model contributions (for 
features with positive mean ciFC) by positive (top row) and negative (bottom row) cdFC 
offers additional insight into predictive task-induced changes in FC. Canonical network 
labels: 1 = medial frontal, 2 = frontoparietal, 3 = DMN, 4 = motor, 5-7 = visual, 8 = 
salience, 9 = subcortical, 10 = cerebellum. 
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Figure 4—figure supplement 1. Predictive model contributions of features with mean 
negative ciFC (a,b) and inter-subject consistency of features with mean negative ciFC 
(c,d), summarized by canonical networks (Figure 3—figure supplement 2). Canonical 
network labels: 1 = medial frontal, 2 = frontoparietal, 3 = DMN, 4 = motor, 5-7 = visual, 
8 = salience, 9 = subcortical, 10 = cerebellum. For clarity, duplicate of Figure 3—figure 
supplement 3. 
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 Intercept, 
no cdFC 

Intercept, 
no ciFC 

ciFC, no 
cdFC 

Activation, 
no cdFC 

Activation, 
no ciFC 

cdFC, no 
ciFC 

Gambling 0.9830 0.7846 0.9368 0.9659 0.8441 0.9075 
Emotion 0.9563 0.9045 0.9407 0.9477 0.8550 0.9370 

Relational 0.9604 0.8388 0.9503 0.9428 0.8066 0.9655 
Social 0.9749 0.7681 0.9308 0.9642 0.8190 0.8768 
WM 0.9468 0.8164 0.9647 0.9515 0.8643 0.9684 

Figure 4—figure supplement 2. Mean Pearson correlation coefficients between inter-
subject PPI betas for full and partial models. 
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Figure 5—figure supplement 1. Relationships between inter-subject consistency, edge 
length (a), brain hemisphere (b), and predictive utility. Bar height reflects mean 
coefficient; error bars indicate s.d. of coefficents. 
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