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While cognitive theory has advanced several candidate frame-
works to explain attentional entrainment, the neural basis for
the temporal allocation of attention is unknown. Here we
present a new model of attentional entrainment that is guided
by empirical evidence obtained using a cohort of 50 artificial
brains. These brains were evolved in silico to perform a du-
ration judgement task similar to one where human subjects
perform duration judgements in auditory oddball paradigms.
We found that the artificial brains display psychometric char-
acteristics remarkably similar to those of human listeners, and
also exhibit similar patterns of distortions of perception when
presented with out-of-rhythm oddballs. A detailed analysis
of mechanisms behind the duration distortion in the artificial
brains suggests that their attention peaks at the end of the
tone, which is inconsistent with previous attentional entrain-
ment models. Instead, our extended model of entrainment em-
phasises increased attention to those aspects of the stimulus that
the brain expects to be highly informative.
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Our ability to deduce causation, to predict, infer, and fore-
cast, are all linked to our perception of time. This activity of
the brain refers to an inductive process that integrates infor-
mation about the past and present to calculate the most likely
future event (1). Without a doubt, this ability is key to an
organism equipped with such a brain to survive and prosper,
by predicting and deciphering events in the world (2, 3)—as
well as the actions of other such organisms. A typical ex-
perimental procedure in the study of time perception is com-
parative duration judgement, in which subjects are asked to
compare and judge the duration of events. Generally, dura-
tion judgements display the scalar property, which implies
that the probability distribution of judgements is scale in-
variant (4). However, we do not perceive time objectively.
Rather, the experience of temporal signals is highly subjec-
tive, and is influenced by non-temporal perception, attention,
as well as memory (5, 6). An example of non-temporal per-
ception is the saliency of a stimulus (how it stands out over a
background), which may affect how it is perceived.
Attention is another variable that can shape time percep-
tion (7–11). Because our cognitive bandwidth is lim-
ited, we cannot pay attention to all sources of information
equally (12). Rather, a sophisticated mechanism selects
which stimuli are attended to, and how much attention is al-

located to them. A central hypothesis is that the more atten-
tion is devoted to the duration of an event, the longer it is
perceived to last (7–11). Proposed models of time percep-
tion such as Scalar Expectancy Theory (SET) (13) that sup-
port this hypothesis usually assume that duration perception
is performed with some sort of internal clock (4, 13, 14). In
that model, the onset of an event triggers a switch that starts
measuring the accumulation of pulses generated by a pace-
maker, and triggers the stop switch at the end of the event.
The effective rate of pulse accumulation, in turn, is modu-
lated by the attention given to the stimulus.

In SET, the amount of attention allocated to the stimulus is
uniformly distributed in time. By contrast, in models such
as Dynamic Attending Theory (DAT) (15–17) the temporal
structure of the signal within which the stimulus is embed-
ded may increase or decrease levels of attention in time. In
particular, rhythmic backgrounds can entrain the brain so that
it expects stimuli to occur periodically, and leads to peaks and
troughs of attention. Consequently, models of attentional en-
trainment based on DAT posit that attentional rhythms that
are internal to the cognitive architecture are synchronised
by external rhythms, so that the external stimuli can then
lead to an enhanced processing of events that occur precisely
when they are expected to occur (18–20). Previous stud-
ies have provided support for DAT and related entrainment
models, for example by showing that events that occur at
rhythmically expected time points can be discriminated more
easily than those that occur unexpectedly (17, 19, 21–23).
In a recent study, McAuley and Fromboluti provided addi-
tional support for DAT and related entrainment models by
studying the role of attentional entrainment on event duration
perception (24). In that work, they used an auditory odd-
ball paradigm in which a deviant tone (oddball) is embed-
ded within a sequence of otherwise identical rhythmic tones
(standard tones). Their results demonstrated that manipula-
tions of oddball tone onset can lead to distortions in oddball
tone duration perception. In particular, they observed a sys-
tematic underestimation of the duration of oddball tones that
came early with respect to the rhythm of the sequence, and
an overestimation of oddball duration in trials where oddballs
arrived late with respect the rhythm of the sequence.

Interval timing models such as DAT and SET and their com-
putational counterparts usually take a top-down approach by
engineering networks of high-level computational compo-
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nents that describe behavioural/psychophysical data in dura-
tion perception (4, 15, 16, 25, 26) (see also references in (27–
29)). Some studies have employed more elaborate models
that consist of neuron-scale components (30, 31). Here, we
take a bottom-up approach where evolution leads to a popula-
tion of diverse computational networks (artificial brains) con-
sisting of lower-level components. These brains may differ
in their components and possibly in their behaviours (higher
level computations). These modern computational methods
have opened a new path towards understanding perception:
the recreation, in silico, of neural circuitry that implements
behaviour similar to human performance. While this capac-
ity is still in its infancy and therefore can only emulate hu-
mans on fairly simple tasks (such as attentional entrainment),
the usefulness of this tool for a future “experimental robotic
psychology” (32, 33) is evident.
In this study, we use Darwinian evolution to create artifi-
cial digital brains, (also known as Markov Brains (34), see
Methods), that are able to perform duration judgements in
auditory oddball paradigms1. Markov Brains are networks of
variables with discrete states that undergo transitions evoked
by sensory, behavioural, or internal states, and capable of
stochastic decisions. As such, they are abstract representa-
tions of micro-circuit cortical models (35), except that their
dynamics is not programmed.
We run 50 replicates of the evolutionary experiment (i.e.,
50 different populations) and from each pick the best-
performing Brain. These evolved Brains display behavioural
characteristics that are similar to human subjects: for exam-
ple, their discrimination thresholds satisfy Weber’s law. In
fact, these 50 Brains can be thought of as participants in a
cognitive experiment. We then test these Brains against audi-
tory oddball paradigms that they have never experienced be-
fore, in which the oddball tone may come early or late with
respect to the rhythm of the sequence (similar to the first se-
ries of experiments in Ref. (24)). The evolved Brains show
distortions in perception of early/late tones similar to what
was reported in human subjects (24). We then analyse the
algorithms and computations involved in duration judgement
in order to discover how these algorithms result in systematic
distortions in perception of early/late oddballs.
Our findings demonstrate that the computations involved in
duration judgements and distortions is quite different from
existing time perception theories such as scalar expectancy
theory (SET) or dynamic attending theory (DAT), and sug-
gest a new theory of perception in which attention to uncer-
tain parts of the stimuli plays the central role, whereas pre-
dictable parts require less attention (i.e., less processing) be-
cause they are expected (36). This is consistent with recent
findings that predictability of stimuli results in more rapid
recognition (37). We close with speculations that suggest a
broader view in which all cognitive processing can be un-
derstood in terms of context-dependent prediction algorithms
that pay attention only to those parts of the signal that are pre-
dicted to have the highest uncertainty, and are therefore likely

1Here and below, to avoid confusion we use “Brain” with a capital B to
denote artificial brains, while biological brains remain just “brains”.

to be informative.

Results
We evolve Markov Brains that are capable of duration judge-
ments of an oddball tone placed in a rhythmic sequence of
identical tones (standard tones) with a variety of standard
tone durations and inter-onset-intervals (IOI) (Fig. 1 shows
a schematic of the auditory oddball paradigm). We ran 50
replicates of the evolution experiment for 2,000 generations
and from each population picked the Brain with the highest
performance at the end of each run. The best performing
Brains in all 50 populations gain 98.0% fitness on average
(see Supplementary Fig. 1).

time

oddballstandard tones

Inter-onset-interval

Fig. 1. A schematic of the auditory oddball paradigm in which an oddball tone is
placed within a rhythmic sequence of tones, i.e., standard tones. Standard tones
are shown as grey blocks and the oddball tone is shown as a red block. Oddball
tone duration may be longer or shorter than the standard tones.

Discrimination thresholds of evolved Markov Brains
comply with Weber’s law. We used average responses of
the evolved Brains to generate psychometric curves as fol-
lows. For each (IOI, standard tone) we averaged the deci-
sion responses of 50 evolved Brains. Using these averaged
responses, we generated psychometric curves corresponding
to each standard tone as prescribed by (38) and calculated
the point of subjective equality (PSE) and just noticeable dif-
ference (JND). The PSE measures the duration for which
Markov Brains respond longer (or shorter) 50% of the time
which, in essence, marks the duration of the oddball that is
perceived to be equal to the standard tone. The JND mea-
sures the sensitivity of the discrimination, or discrimination
threshold, for a standard tone. In other words, the JND rep-
resents the slope of the psychometric curve, where steeper
slopes show higher discrimination sensitivity or lower dis-
crimination threshold. The PSE reflects the accuracy of the
perception while the JND indicates its precision. The values
of PSE, JND, and their standard deviations are presented for
all inter-onset-intervals and standard tones in Table 1.
According to Weber’s law (39), the discrimination threshold
(e.g., the JND) varies in proportion to the standard stimu-
lus; therefore, the values of relative JND, defined as JND

std tone ,
should remain constant. Getty showed that empirical results
of duration perception in the range of 80 msec to 2 seconds is
explained very well with Weber’s law (40). Fig. 2A shows the
psychometric curves generated from the averaged responses
of all 50 Brains for every (IOI, standard tone). In this fig-
ure, durations are normalised by standard tone. Psychomet-
ric curves for different standard tones overlap, which shows
that relative JNDs in all these trials are similar and con-
firms that they are in accordance with Weber’s law. Fig. 2B
shows relative JNDs as a function of standard tones. All
relative JNDs are in the range between 0.04 and 0.07 with
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Table 1. This table contains point of subjective equality (PSE), just noticeable difference (JND), and their standard deviations (SD), as well as relative JNDs, and constant
error (CE) of on-time oddballs for all inter-onset-intervals, standard tones. Responses are averaged across all 50 Brains to generate psychometric curves.

IOI, std tone PSE PSE SD JND JND SD relative JND CE
(10, 5) 4.89 0.073 0.335 0.050 0.067 -0.109
(11, 5) 5.09 0.068 0.292 0.039 0.058 0.092
(12, 6) 5.92 0.083 0.458 0.051 0.076 -0.077
(13, 6) 6.27 0.072 0.339 0.050 0.057 0.265
(14, 7) 6.80 0.080 0.404 0.050 0.058 -0.204
(15, 7) 7.05 0.072 0.416 0.041 0.059 0.049
(16, 8) 7.76 0.067 0.380 0.037 0.047 -0.242
(17, 8) 8.05 0.064 0.402 0.038 0.050 0.051
(18, 9) 8.58 0.072 0.372 0.049 0.041 -0.417
(19, 9) 9.01 0.081 0.469 0.048 0.052 0.012
(20, 10) 9.76 0.078 0.403 0.052 0.040 -0.240
(21, 10) 10.45 0.093 0.442 0.045 0.044 0.448
(22, 11) 11.19 0.109 0.655 0.085 0.060 0.192
(23, 11) 11.99 0.116 0.756 0.075 0.069 0.993
(24, 12) 13.04 0.119 0.829 0.071 0.069 1.036
(25, 12) 13.82 0.128 0.900 0.079 0.075 1.819

A

B

C

Fig. 2. (A) Psychometric curves generated from averaged responses of 50 evolved
Brains for every inter-onset-interval, standard tone. Oddball durations on the x-axis
are normalised by standard tone to lie in the range (-1, 1). (B) Relative JND values
and their 95% confidence interval as a function of inter-onset-interval, standard
tone. Dashed line shows the average value of relative JNDs. (C) Constant errors,
the difference between PSE and standard tone, and their 95% confidence interval
as a function of inter-onset-interval, standard tone. Dashed line shows CE=0.

mean=0.06 and standard deviation=0.01, similar to the values
found in (40). The difference between PSE and the standard
tone, also known as the constant error (CE), shows the devi-
ation of perceived duration of tone from its actual duration.
The values of CE are shown for every (IOI, standard tone) in
Fig. 2C and we observe that for longer IOIs, CE values start
to deviate slightly from zero. This deviation in PSE values for
longer tone durations is also observed in human subjects (40).
However, this deviation of CEs for longer tones in Markov
Brains was different from human subjects in that CE values
in human subjects start decreasing for longer durations (they
are negative) whereas in Markov Brains CE values increase
(they are positive). This difference can be attributed to the
fact that in the experiments described in Ref. (40) subjects do
not receive any feedback about their performance duration
judgements whereas Darwinian evolution provides feedback
implicitly via selection. The mechanisms behind the distor-
tion in duration perception in longer IOIs are explained in
more detail in Supplementary Information.

Evolved Brains show systematic duration perception
distortion patterns similar to human subjects. In the
next step, we tested evolved Markov Brains with stimuli that
they had never experienced during evolution, namely odd-
balls that arrive early or late with respect to the rhythm of the
sequence of tones (termed “test trials”). In trials used during
evolution (“training trials”), oddballs always occurred in sync
with the rhythmic tone (on-time oddballs). These test trials
included all possible oddball durations but also all possible
oddball onsets, meaning oddballs were delayed or advanced
as many time steps as possible as long as they did not in-
terfere with the following or preceding tone. Then, we used
the average response of 50 Brains to generate psychometric
curves for early/late oddballs, and to calculate PSE values.
We used PSE values to calculate the duration distortion factor
(DDF), defined as the ratio of the point of objective equality
(the standard tone) and the point of subjective equality (PSE).
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Fig. 3. Duration distortion factors (DDF) and their 95% confidence interval as a function of the onset of the oddball for all IOI, standard tones. Negative onset values represent
early oddballs and positive values of onset represent late oddballs. A DDF greater than 1 shows an overestimation of the duration of the oddball and DDF less than unity
shows an underestimation of the duration of the oddball. The dashed line indicates DDF=1 and the dotted line shows DDF for on-time oddball tone.

Fig. 3 shows the DDF as a function of the onset of the odd-
ball for all IOIs. In this plot, negative onset values stand for
early oddballs and positive values of onset represent late odd-
balls. A DDF greater than one shows an overestimation of
the duration of the oddball whereas a value less than unity re-
flects an underestimation of the duration of the oddball. Just
as was observed with human subjects (24), the late oddballs
are perceived as longer and the early oddballs are perceived
as shorter compared to the standard tone. In addition, the
more delayed (early) the oddball tone, the more its duration
is overestimated (underestimated) compared to the standard
tone, which is again consistent with results presented in ex-
periment 2 of Ref. (24).

Algorithmic analysis of duration judgement task in
Markov Brains. The logic circuits of evolved Markov Brains
are complicated and defy analysis in terms of causal logic. As
observed before, these networks turn out to be “epistemolog-
ically opaque” (41), in the sense that their evolved logic does
not easily fit into the common logical narratives we are famil-
iar with. Rather than focus on the Boolean logic of Markov
Brains, we here focus on their state space (42, 43). In partic-
ular, we investigate the state transitions and how these tran-
sitions unfold in time, in order to discover the computations
that are at the basis of the observed behaviour (44).

Temporal information about stimuli is encoded in sequences
of Markov Brain states. Evolved Brains display periodic neu-
ral activation patterns in response to rhythmic auditory sig-
nals (this is, by definition, entrainment). These periodic neu-
ral firing patterns translate to loops in state transition dia-
grams (see Methods for more details on state transitions in
Markov Brains). In each trial, the first few tones an evolved
Brain listens to typically shift the Brain’s activation pattern
towards a region in state space that is associated with this
rhythm. More precisely, the opening tones transition the
Brain to a sequence of states that form a loop in the state-
to-state diagram, and the Brain remains in that loop as long
as the stimulus is repeated. Fig. 4A shows an instance of
a Markov Brain state transition diagram when listening to
rhythmic tones with IOI=10 and standard tone=5 in the ab-
sence of an oddball. The state of the Brain is calculated from
equation (2). Supplementary Movie 1 shows the state-to-
state transitions as the Brain listens to a sequence of standard
tones. This sequence of Brain states encodes the contextual
information about the stimuli, that is, the sequence forms an
internal representation of the rhythm and the standard tone.
More importantly, this sequence produces an expectation of
future inputs that enables the Brain to compare the input it
has sensed with future inputs. In particular, when the Brain
receives the oddball, it usually transitions out of this loop to
follow a different trajectory in state space (see for example
Fig. 4B) to judge the oddball duration, which is a compari-
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son mechanism between the standard tone (what is expected)
and the oddball. Fig. 5 shows that in most of the trials (77.6%
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Fig. 4. State-to-state transition diagram of a Markov Brain for IOI=10, and standard
tone=5, with oddball tones of duration 5, 6 shown in (A) and 4 shown in (B). Before
the stimulus starts, all neurons in the Brain are quiescent so the initial state of the
Brain is 0. The stimulus presented to the Brain is a sequence of ones (represent-
ing the tone) followed by a sequence of zeros (denoting the intermediate silence).
The stimulus at each time step is shown as the label of the transition arrow in the di-
rected graph. The input sequence is shown for the standard and oddball sequences
at the bottom of the state-to-state diagrams. (A) State-to-state transition diagram of
a Markov Brain when exposed to a standard tone of length 5, as well as a longer
oddball tone of length 6. This Brain judges an oddball tone of duration 6 by following
the same sequence of states as the original loop, because the transition from state
485 to 1862 occurs irrespective of the sensory input value, 0 or 1. This Brain cor-
rectly issues the judgement “longer” from state 3911, indicated by the red triangle at
the end of the time interval (see Supplementary Movie 1 and Supplementary Movie
2 for standard tone and longer oddball tone, respectively). (B) The state-to-state
transition diagram of the same Brain when presented with a shorter oddball tone of
length 4. The decision state is marked with a down-pointing blue triangle. Once the
Brain is entrained to the rhythm of the stimulus, the shorter oddball throws the Brain
out of this loop. The exit from the loop transitions this Brain into a different path.
After four ones the Brain transitions to state 359 (instead of continuing to 485), and
then continues along a path where it correctly judges the stimulus to be “shorter” in
state 2884 (see also Supplementary Movie 3).

of the trials) Brains evolve loops of the same size as the pe-
riod of the rhythmic tones (the IOI), but some Brains have
loops that are multiples of the IOI. In this figure, the size of
the each marker is proportional to the number of Brains that
evolve a particular loop length in each IOI. Also, further anal-
ysis shows that in 93.6% of trials, evolved Brains transition
out of these loops at the exact time point where there is a
mismatch in oddball and standard tone.

Algorithmic analysis of distortions in duration judge-
ments: Experience and perception during misjudge-
ments of early/late oddballs. The similarity of behavioural
characteristics in the perception of event duration between
Markov Brains and human subjects appears to imply a funda-
mental similarity between the underlying computations and
algorithms. In the following, we present brief definitions
of concepts such as attention, experience, and perception
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Fig. 5. The distribution of loop sizes of 50 evolved Brain for each inter-onset-interval
(IOI). The size of the markers is proportional to the number of Brains (out of 50)
that evolve a particular loop length in each IOI. The dashed line shows the identity
function.

in terms of state transitions in deterministic finite-state ma-
chines that are later used in our analysis (in Methods we
present more formal definitions of these concepts and the rea-
soning behind them).
1) Attention to a stimulus: When a Brain is in state St and
transitions to state St+1 regardless of the stimulus (zero or
one), we say the Brain does not pay attention to the input
stimulus. More generally, a Brain pays less attention to an
input stimulus or a sequence of stimuli if that input does not
affect the state of the Brain later in the future state, St+k.
2) Perception of a trial: The state of the Brain at the end of
the oddball tone interval (when it issues the longer/shorter
decision) is the Brain’s perception of the tone sequence.
3) Experience of the stimuli: The temporal sequence of Brain
states when exposed to a sequence of input stimuli constitutes
the Brain’s experience.
We first hypothesised that early or late oddball tones drive the
Brain into states that they had never visited before (as these
Brains had never previously experienced early or late odd-
ball tones) and that these new states are responsible for mis-
judgements of early or late oddballs. When exposed to late
or early oddballs, Brains visited on average 22.26 (SE=4.33)
new states across 50 evolved Brains, approximately 32% of
the number of states they visited during trials with on-time
oddballs, which is 69.80 states on average (SE=5.07). We
then tested how often these new states are decision states for
the misjudgements of out-of-time oddball tones. Our tests
show that in such misjudgements, the Brain state at deci-
sion time point is almost never a new state that has not ap-
peared before (it happened in one test trial for one Brain out
of 56,250 different test trials in all 50 Brains).
Given that during misjudgements of out-of-rhythm oddballs
the decision state is a state that had previously occurred dur-
ing evolution, we test whether there is any connection be-
tween Brain states during these misjudgements and Brain
states in training trials. In other words, we investigate how
the experience during a misjudgement relates to experiences
the Brain had in its evolutionary history. In the next two
sections, we address these questions by separately focusing
on perception and experience of Markov Brains during mis-
judgements of out-of-rhythm oddball tones.
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The onset of the tone does not alter a Brain’s perception of
the tone. Our null hypothesis is that the perception of an out-
of-rhythm oddball tone may be any one of the states that the
Brain has traversed in training trials with equal probability. In
any of these Brain states, the decision neuron will be either
quiescent or firing, so we call the set of states with quiescent
decision neuron “shorter-judging states” denoted as SSh, and
the set of states with firing decision neuron “longer-judging
states” denoted as SLo. Thus, the probability that a Brain
at decision time is in any of the shorter-judging states, for
example, is calculated by

Prob(Sdecision ∈ SSh) = 1
|SSh|

, (1)

where |SSh| is the cardinality of the set of shorter-judging
states, and similarly, Prob(Sdecision ∈ SLo) = 1

|SLo|
.

We develop our alternative hypothesis that captures possible
associations between experience and perception during mis-
judgement of out-of-rhythm oddballs and experiences and
perceptions they had in training trials. In order to discover
such possible associations, for any given misjudgement of
early or late oddball we limit our search domain to training
trials with the same inter-onset-interval and standard tone as
the misjudgement trial. In the next step, we search for corre-
lations between the perception and various oddball tone prop-
erties such as its 1) onset (time step at which the oddball be-
gins, Tinit), 2) duration (∆T ), and 3) ending time point (time
point at which the oddball ends, Tfin). To this end, we cal-
culated the information shared between the perception and
oddball tone properties (see Methods for a detailed explana-
tion of information computation procedures). Fig. 6A shows
the information shared between the perception (decision state
Sdecision) of the Brains and 1) oddball ending time (shown in
grey), 2) oddball onset (shown in blue), and 3) oddball du-
ration for each inter-onset-interval and standard tone. These
results show that the oddball ending time point is a better pre-
dictor of the perception than the oddball tone onset or its du-
ration. Note also that the information shared between the per-
ception and the oddball ending time point remains consistent
across all IOI and standard tones, whereas shared information
between perception and oddball duration, and perception and
onset decrease monotonically as IOI and standard tones in-
crease. Building on these results, we propose the following
alternative hypothesis: during misjudgement of an early or
late oddball, a Brain goes through a state sequence that is
reminiscent of experiences it had during trials with the same
IOI and standard tone, and with on-time oddballs that end at
the same time point as the early or late oddball (an example
scenario is shown Fig. 6B).
In order to test this alternative hypothesis, we perform an-
other test to measure how often perception in misjudge-
ment of early or late oddballs is identical to perceptions in
similar training trials. Consider for example a trial with
IOI=10, standard tone=5 with a late oddball tone (onset=2)
that is shorter than the standard tone (duration=4) as shown
in Fig. 6B. When a Brain misjudges this oddball as “longer”
(with Sdecision = 3911 as shown in Fig. 6B), we search

for instances in the set of training trials (with on-time odd-
ball) with IOI=10 and standard tone=5, where that Brain is-
sued a correct “longer” decision for an oddball that ended
at the same time point as the late shorter oddball (as shown
in Fig. 6B). The same analysis can be performed for mis-
judgement of early oddballs that are longer than the stan-
dard tone (Fig. 6B). We count the number of such instances
for each Brain and divide the result by the total number of
its misjudgements of out-of-rhythm oddball tones. Fig. 6C
(left data point) shows the result of this analysis for all 50
Brains. This result shows that in the vast majority of the
cases (with median of 69.5% of the cases), the misjudged
out-of-rhythm oddball and on-time oddballs that end at the
same time point are perceived the same. In other words,
the misjudgement is due to Brains paying less attention to
the onset of the tone, meaning the onset of the oddball does
not affect the ultimate state from which the decision is is-
sued. The middle and left data points show the probabilities
calculated from equation 1 described in the null hypothesis,
that measure how likely it is for a Brain to, by chance, end
up in any of the “shorter-judging” or “longer-judging” state
at decision time. Our statistical analysis shows that having
the same decision state in out-of-rhythm oddball and on-time
oddballs (with constraints explained above) are significantly
more likely than being in “shorter-judging” (median=0.695
vs. median=0.069, Mann Whitney U = 2494.0,n = 50,p =
5.03× 10−18 one-tailed) or “longer-judging” state at deci-
sion time (median=0.695 vs. median=0.023, Mann Whitney
U = 2500.0,n= 50,p= 3.51×10−18 one-tailed), therefore,
we reject the null hypothesis in favour of the alternative hy-
pothesis.
Based on these findings, we conclude that during misjudge-
ments of early or late oddball tones, Markov Brains pay more
attention to the end point of the oddball and less attention to
the oddball duration, or it onset. This is presumably because
during evolution tones are always rhythmic and Brains that
entrain to the rhythm expect the oddball to be on-time. As
a result, Brains pay more attention to when the oddball ends
which is a more informative component of the stimuli than its
onset which, during evolution, had no variation and hence, no
uncertainty.

Experience of early or late oddball is similar to adapting en-
trainment to phase change. Here we investigate the entire se-
quence of Brain states (Brain experiences of the stimuli) for
those instances we found in previous section, in which the
perception of the Brain in misjudgement of early/late odd-
balls was the same as perception of shorter/longer on-time
tones with the same end point as an out-of-time oddball. In
order to compare two experiences, we use two different mea-
sures (experience comparison is a form of representational
similarity analysis, see for example (45, 46)). First, we find
the longest common sub-sequence that includes the decision
state. In other words, we start from the decision state in on-
time and out-of-time sequences (note that the decision state
is the same in both sequences), trace back the transitions in
sequences and count the number of states that are identical in
both sequences until the first mismatch occurs. The length of
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Fig. 6. (A) The mutual information between perception, i.e., the decision state of the Brain, and 1) the oddball tone ending time step (shown in black), 2) the oddball tone
duration (shown in red), 3) the oddball tone onset (shown in blue), and their 95% confidence intervals. (B) Sequence of inputs for a standard tone, an on-time longer oddball
tone that is correctly judged as longer, and a shorter late oddball tone that is misjudged as longer. Sequence of inputs for a standard tone, an on-time shorter oddball tone
that is correctly judged as shorter, and a longer early oddball tone that is misjudged as shorter. Sequences of Brain states along with input sequences for on-time longer
oddballs and shorter late oddballs.(C) The fraction of misperceived out-of-time oddball tones that resulted from having the same perception in on-time and out-of-time stimuli
with the same oddball end points (left data point), compared to the null hypothesis; likelihood that Brains misjudgements were to be issued from any one of states from set of
“shorter-judging” or “longer-judging” states (middle and right data point, respectively).

the identical portion of the two sequences is then normalised
by the total length of one sequence (recall that the length of
both sequences are the same) to lie in the range (0,1], we term
this normalized length of the identical portion of experiences
the similarity depth, since it measures how deeply the on-
time and out-of-time oddball experiences are identical. We
note that because the perception of the tone is the same in
these trials, the similarity depth must be greater than zero.
Second, we use the Jaccard index, that measures the overall
similarity of sequences by comparing states at same positions
in the two sequences.

Fig. 7A shows the distributions of similarity depth and to-
tal similarity of experiences. Fig. 7B shows the distribution
of the difference between the similarity depth and total sim-
ilarity. The difference between the two measures is zero in
91.5% of the cases which implies that the experiences are
almost always entirely different up to the point where they
become identical. We observe a wide variety in these simi-
larity measures which shows that Brains do not traverse the
exact same trajectory they did during an on-time trial; rather
the early or late oddball initially throws the Brain out of this
trajectory but later the Brain returns to states it experienced
during an on-time oddball with the same end point. In other
words, the onset of the out-of-time oddball is noticed, how-
ever, since the Brains are entrained to the rhythm and expect
the oddball to be on-time their computations of duration re-
lies more on their expectation than the actual start point of the
oddball. This mechanism is reminiscent of adapting to phase
changes in entrainment to rhythmic stimuli.

Discussion

This study was aimed at elucidating the neural (mechanistic)
underpinnings of perception, by evolving digital Brains that
perform duration judgements of tones that were presented in
a rhythmic sequence, and that were later subjected to out-
of-rhythm oddball tones to quantify distortions in duration
judgement that occur as a response to the onset manipula-
tion. We found that evolved Markov Brains display a capac-
ity to discriminate tone length that is remarkably similar to
people’s ability to distinguish changes (quantified by Weber’s
Law) to the extent that the observed relative JND of Markov
Brains was in the same range (6-10%) as in some of the ex-
periments in (24, 40). Furthermore, evolved Markov Brains
exhibit a systematic distortion in perceived event duration of
out-of-rhythm oddball tones that is also similar to what was
observed in a human subjects study previously conducted by
one of the authors. But while the conclusion of (24) was
that the experiments supported the dynamic attending theory
(DAT) of attentional entrainment (which, we recall, posits
that entrainment creates peaks of attention that coincide with
the start of each tone) we here find instead that Markov Brains
pay attention to the end of the signal, and pay less attention
to the onset.

From the point of view of Bayesian inference (47), a model
of cognition that focuses attention on those parts of the sig-
nal that carry most of the uncertainty (the end of the stimulus)
makes eminent sense. After all, Brains that have experienced
only on-time stimuli should take the rhythmic nature of stim-
uli for granted: there is no need to pay attention to predictable
stimuli. In fact, this view of cognition is fully consistent with
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A B

Fig. 7. (A) Distribution of similarity depth of experiences (sequences of states) of on-time and early/late oddball tones in trials in which onset does not change the perception
of the tone in Markov Brains. Similarity depth one implies that the experiences are identical throughout the tone perception. (B) The distribution of the difference between the
total similarity and similarity depth in each trial.

the Hierarchical Temporal Memory (HTM) model of neo-
cortical computation (48), which is based on the idea that
brains are prediction machines. This model of attention dif-
fers from common models of visual processing and attention
such as visual and auditory saliency (49, 50), because in those
models only the contrast of the stimulus with the background
is considered for saliency, not the value of the information it
contains. The model is consistent, however, with neurophys-
ical models in which temporal anticipation improves percep-
tion but does not affect the spontaneous firing rate (36, 37),
which is associated with attention in visual processing (51).
The present work suggests a model of cognition where the
stimulus not only entrains the cognitive apparatus, but condi-
tions the brain to expect only a small subset of possible future
states. From this point of view, any temporal history of stim-
uli leads to predictions that, for the most time, will come to
pass unless the environment has changed in a way that neces-
sitates further attention. In particular, our findings suggest
that both DAT and SET are incomplete models of time per-
ception where DAT unduly emphasises attention peaks at the
beginning of each tone in the sequence, while SET uses the
onset and the end of the tone to start and stop a clock, con-
trary to our (admittedly digital) evidence.
The results presented here open up a number of different
questions and avenues for future exploration. Can the theory
of dynamical entrainment we present here be meaningfully
tested in human experiments, by focusing on those predic-
tions that distinguish it from established theories such as SET
and DAT? Does this theory also explain observations in dif-
ferent sensory modalities such as vision? A program in which
empirical studies using human subjects coupled with sophis-
ticated digital experimentation might provide an answer, and
open up avenues for a detailed mechanistic understanding of
the complexities of perception. Ultimately, this opens up the
possibility of explaining phenomenological concepts such as
attention, perception, and memory in terms of state-space dy-
namics of cortical networks.

Methods

The use of mathematical and computational methods for the
study of behaviour is growing, especially due to the unprece-
dented increase in our computational power (52). Computa-

tional methods in particular enable us to perform a large num-
ber of “experiments” in silico, with parameters varying in a
wide range, in a reasonably short time. Such experiments al-
low us to explore parameter space more broadly and to make
predictions about conditions that have not been tested before
and, more importantly, are currently beyond the reach of our
empirical power. Naturally, for such computational experi-
ments to have any explanatory power, they must be validated
thoroughly with behavioural data.
In this work, we use an agent-based model in which agents
are controlled by artificial neural networks (ANNs) that dif-
fer in many important aspects from the more common ANN
method. Because the logic of these networks is deter-
mined by logic gates with the Markov property we refer to
these neural networks as Markov Brains (53). Below, we
describe the structure, function, and encoding of Markov
Brains, but see (34) for a full description of their proper-
ties and how they are implemented. Markov Brains have
been shown to be well-suited for modelling different types
of behaviour observed in nature, from simple elements of
cognition such as motion detection (54) and active categor-
ical perception (41, 55), to swarming in predator-prey inter-
actions (56), foraging (57), and decision-making strategies in
humans (58).

Markov Brains. Markov Brains are networks of variables
connected via probabilistic or deterministic logic gates with
the Markov property. While we often term these variables
“neurons”, the state of the variable is more akin to a binary
firing rate, that is, each neuron is a binary random variable
(i.e., a bit) that may take two values: 0 for quiescent and 1
for firing. Fig. 8A shows a schematic of a simple Brain con-
sisting of 12 neurons (labelled as 0-11) at two subsequent
time points t and t+ 1. The state of neurons in this exam-
ple are updated via two logic gates. Fig. 8B shows a gate
that takes inputs from neurons 0, 2, and 6 and writes the out-
put into neurons 6 and 7. This logic gate produces output
states of neurons 6 and 7 at time t+ 1 given input states at
time t. Each gate is defined by a probabilistic logic table in
which the probability of each output pattern for a given input
is specified. For example, in the probability table shown in
Fig. 8C, p52 specifies the probability of obtaining output state
(N6,N7) = (1,0) (a state with decimal representation ‘2’)
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given input states (N0,N2,N6) = (1,0,1) (decimal transla-
tion ‘5’), that is,

p52 = P (N0,N2,N6 = 1,0,1→N6,N7 = 1,0).

Since this gate takes 3 inputs, 23 possible inputs can occur,
which are shown in eight rows. Similarly, this probabilistic
table has four columns, one for each of the 22 possible out-
puts. The sum of the probabilities in each row must equal
1:
∑
j pij = 1. When using deterministic logic gates (such

as in this study), all the conditional probabilities pij are ze-
ros or ones. In general, Markov Brains can contain an ar-
bitrary number of gates, with any possible connection pat-
terns, and arbitrary probability values in logic tables (34). As
is clear from this example, we do not implement the update
of the Brain state using probabilities that are conditional on
the environmental state ~Et; rather, we update the joint state
( ~Et, ~St).
In Markov Brains, a subset of the neurons is designated as
sensory neurons that receive inputs from the environment.
Similarly, another subset of neurons serves as actuator neu-
rons (or decision neurons) that enable agents to take actions
in their environment. In principle, an optimal Brain is de-
signed in such a manner that a particular sequence of inputs (a
time series of environmental states ~Σt = ~σ1,~σ2, ...,~σt) leads
to a Brain state ~St that triggers the optimal response in that
environment. Rather than using an optimisation procedure
that maximises an agent’s performance over the probabilities
P (~St→ ~St+1| ~Et), we use an evolutionary process in which
a Brain’s entire network is encoded in a genome (59) and
optimisation occurs through the evolution of a population of
such genomes using a “Genetic Algorithm” (GA, see for ex-
ample (60)). In particular, each gene specifies a gate’s con-
nectivity and its underlying logic as shown in Fig. 8D. This
evolutionary approach is explained in more detail in the fol-
lowing section.

Evolution of Markov Brains. Markov Brains can evolve to
perform a variety of tasks representing different types of be-
haviours observed in nature. Selecting for any desirable task
leads to the evolution of network connections and logic-gate
properties that enable the agents to succeed in their envi-
ronment. Each genome is a sequence of numbers ranging
between 0-255 (bytes) that represent a set of genes that en-
code the logic and connectivity of the network. The arbitrary
pair of bytes 〈42,213〉 represents the "start codon" for each
gate (Fig. 8D), while the downstream loci instruct the com-
piler how to construct the network, by encoding how many
inputs and outputs define each logic gate, where the inputs
come from (that is, which neuron or neurons), and where it
writes to. In this manner, by "expressing" each gene, the net-
work is fully determined via the connections between neu-
rons and the logic those connections entail. Once a Brain is
constructed, it is implanted in an agent whose performance
is evaluated in an artificial environment that selects for the
task. Those agents that perform best are rewarded with a dif-
ferential fitness advantage. As these genomes are subject to
mutation, heritability, and selection, they evolve in a purely

Darwinian fashion (albeit asexually). The Genetic Algorithm
specification details are shown in Table 2.

Table 2. Genetic Algorithm configuration. We evolved 50 populations of Markov
Brains for 2,000 generations with point mutations, deletions, and insertions. We
used roulette wheel selection, with 5% elitism, and with no cross-over or immigra-
tion.

Population size 100
Generations 2000

Initial genome length 5,000
Point mutation rate 0.5%
Gene deletion rate 2%

Gene duplication rate 5%
Elitism 5%

The population of Markov Brains evolves to judge the du-
ration of an oddball tone (“longer” or “shorter”) in multiple
trials with different IOIs and oddball durations. The full set
of all (IOI, standard tone), possible oddball tone durations,
and the total number of trials for each pair of (IOI, standard
tone) used in the evolution is shown in table 3. All told, there
are 1,472 possible trials. However, agents are only evaluated
on a subset of trials in every generation. This sampling in-
creases the evolution efficiency (61), and helps to avoid over-
fitting and enhances generalisation of learning (62). In each
generation, we randomly pick 22 trials from each (IOI, stan-
dard tone) pair (each row in Table 3) to form the evaluation
subset: 11 trials with a longer oddball, and 11 trials with a
shorter oddball, so as to prevent biasing Brains toward one
response or the other. All agents of the population are then
evaluated in that same subset of trials, which is 352 trials.

Experimental Setup. The Brains we evolve can have up to
16 neurons, of which one serves as the sensory neuron, and
one delivers the decision (the “actuator” neuron). The re-
maining 14 neurons can be used for computation and sig-
nal transduction, but how many of them are actually used is
determined by evolution. The population of Markov Brains
evolves to judge the duration of a deviant tone (oddball)
within a rhythmic sequence of otherwise identical tones, sim-
ilar to experiments in (24) (see Fig. 9). In each trial, agents
listen to a sequence of nine tones with a constant inter-onset-
interval (IOI). An oddball is embedded within this sequence
that is either shorter or longer in duration compared to the
other eight tones (standard tones). Markov Brains sense the
stimulus in one of their neurons (here, neuron 0, see Fig. 9).
Agents must decide whether the oddball stimulus is longer
or shorter than the standard tones. The agent is rewarded for
correct duration judgements and does not gain any reward or
incur a penalty for incorrect judgements. One neuron (neu-
ron 15) in the Markov Brain is designated for delivering the
decision (“longer” or “shorter”).
For the purpose of fitness evaluation, agents are evaluated in
several trials with different inter-onset-intervals (IOIs), dif-
ferent standard tones, a wide range of oddball durations, and
with oddballs placed in different positions in the sequence.
Standard tones range from 5 time steps to 12 time steps.
The IOI is approximately twice the standard tone, and ranges
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Fig. 8. (A) A simple Markov Brain with 12 neurons and two logic gates at two consecutive time steps t and t+ 1. (B) Gate 1 of (A) with 3 input neurons and 2 output neurons.
(C) Underlying probabilistic logic table of gate 1. (D) Markov Network Brains are encoded using sequences of numbers (bytes) that serve as agent’s genome. This example
shows two genes that specify the logic gates shown in (A), so that, for example, the byte value ’194’ that specifies the number of inputs Nin to gate 1 translates to ’3’ (the
number of inputs for that gate).

oddballstandard tones

time

oddballstandard tones

Inter-onset-interval

Inter-onset-interval

111110000011111000001111100000111110000011111000001111111000111110000011111000001111100000

A

B

Fig. 9. (A) A schematic of auditory oddball paradigm in which an oddball tone is
placed within a rhythmic sequence of tones, i.e., standard tones. Standard tones are
shown as grey blocks and the oddball tone is shown as a red block. (B) The oddball
auditory paradigm, which is converted to a sequence of binary values, shown as
sensed by the input neuron of a Markov Brain. When a stimulus is present, a
sequence of ‘1’s (shown by black blocks) is supplied to the sensory neuron while
during silence, a sequence of ‘0’ is fed to the sensory neuron. Each block shows
one time step of the sequence experienced by the Brain.

from 10 to 25. Oddball durations can take any value from
the shortest possible duration (1 time step) all the way to IOI
minus 1 to avoid interfering with the next tone. During evo-
lution, agents are not evaluated with oddball tones with the
same duration as the standard tone since it is not shorter or
longer than the standard tone. Oddballs can occur in either
5th, 6th, 7th, or 8th position, exactly as in the protocol of (24).
Our standard tones would be comparable in duration to those
used in (24) if a digital time step is represented by a physical
signal with about 70msec duration.

The set of all IOIs, standard tones, possible oddball-tone
durations, and the total number of trials for each pair of
(IOI,tone) is given in Table 3. All agents of the population
are then evaluated in that same subset of trials, half of which
with a longer oddball and the other half with shorter oddball,
to avoid creating a bias in the agents’ judgements. This subset
of randomly picked trials consists of 512 trials (out of a total
2,852 trials): 22 trials for each (inter-onset-interval, standard
tone) (see Table 3).

Discrete time in Markov Brains. The logic of Markov
Brains is implemented by probabilistic or deterministic logic
gates that update the Brain states from time t to time t+ 1,
which implies that time is discretised not only for Brain up-
dates, but for the environment as well. Whether or not the
brain perceives time discretely or continuously is a hotly de-
bated topic (63), but for common visual tasks such as mo-
tion perception (64) discrete sampling of visual scenes can
be assumed. For Markov Brains, the discreteness of time is
a computational necessity. Because no other states (besides
the neurons at time t) influence a Brain’s state at time t+ 1,
the gates possess the Markov property (hence the name of the
networks). Note that even though the Markov property is usu-
ally referred to as the “memoryless” property of stochastic
systems, this does not imply that Markov Brains cannot have
memory. Rather, memory can be explicitly implemented by
gates whose outputs are written into the inputs of other gates,
or even the same gates, i.e., to itself (41, 53).

Markov Brains as finite state machines. Because the
Brains we evolve are deterministic, they effectively represent
a deterministic finite-state automaton (DFA). There is consid-
erable literature covering the mathematics of DFAs (see, for
example (65)), but very little is applicable to the automata we
evolve here. For example, realistic evolved automata are un-
likely to have absorbing states, their stationary distributions
are irrelevant, and they may be both cyclic and acyclic.
We define the state of a Markov Brain as the vector of
states of all neurons except the sensory ones (35, 43, 66):
~St = (Np,Np+1, ...,Nn−1), where Ni is the state of the ith

neuron, p is the number of sensory (or peripheral) neurons,
(N0,N1, ...,Np−1) is the state vector of sensory neurons, and
n is the total number of neurons. We abbreviate the Brain-
state using the decimal translation of the state vector as:

St =
n−1∑
i=p

Ni(t)×2i. (2)

The Brain state can be thought of as a snapshot of the en-
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Table 3. Complete set of all inter-onset-intervals, standard tones, and oddball durations used for the evolution of duration judgement. Oddballs can occur in either of the 5th,
6th, 7th, or 8th position in the rhythmic sequence. Also, oddball durations are always either shorter or longer than the standard tone. The total number of trials for each pair
〈ioi,tone〉 is four times the IOI minus 2 (excluding oddball duration=standard tone, oddball duration=IOI), because the oddball can appear in four different positions within
the rhythmic sequence.

(Inter-onset-interval, Standard
tone)

Oddball tone durations Total number of
possible trials

Number of evalua-
tion trials

(10, 5) {1, 2, 3, 4} , {6, 7, 8, 9} 32 22
(11, 5) {1, 2, · · · , 4} , {6, · · · , 10} 36 22
(12, 6) {1, 2, · · · , 5} , {7, · · · , 11} 40 22
(13, 6) {1, 2, · · · , 5} , {7, · · · , 12} 44 22
(14, 7) {1, 2, · · · , 6} , {8, · · · , 13} 48 22
(15, 7) {1, 2, · · · , 6} , {8, · · · , 14} 52 22
(16, 8) {1, 2, · · · , 7} , {9, · · · , 15} 56 22
(17, 8) {1, 2, · · · , 7} , {9, · · · , 16} 60 22
(18, 9) {1, 2, · · · , 8} , {10, · · · , 17} 64 22
(19, 9) {1, 2, · · · , 8} , {10, · · · , 18} 68 22
(20, 10) {1, 2, · · · , 9} , {11, · · · , 19} 72 22
(21, 10) {1, 2, · · · , 9} , {11, · · · , 20} 76 22
(22, 11) {1, 2, · · · , 10} , {12, · · · , 21} 80 22
(23, 11) {1, 2, · · · , 10} , {12, · · · , 22} 84 22
(24, 12) {1, 2, · · · , 11} , {13, · · · , 23} 88 22
(25, 12) {1, 2, · · · , 11} , {13, · · · , 24} 92 22

tire Brain that contains information about the activity (firing
rate) of all neurons at that particular point in time. Markov
Brains go through discrete states as the agent it controls be-
haves, reminiscent of what has been observed in monkeys
performing a localisation task (43). In our experimental
setup, Markov Brains have 16 neurons in total, so n = 15.
One of the neurons senses the stimulus, i.e. p = 1, so
equation [2] can be written as St =

∑15
i=1Ni(t)× 2i which

means the Brain can be in at most 215 = 32,768 different
states. We also denote the sensory input at time t as ~σt,
and define the sequence of sensory inputs from time t0 to
t1, ~Σ(t0 : t1) = (~σt0 ,~σt0+1, ...,~σt1).

The initial Brain state is always 0 since all neurons are qui-
escent at the outset. State-to-state transitions of an evolved
Brain can be represented (or explained) as a mapping of the
state of the Brain and the sensory input to the future state of
the Brain. Formally, the set of all transitions of the Brain
over all visited states in trials (states that Brains have taken
on in those trials) can be viewed as a function T that takes
the current state of the Brain St as well as the sensory input
~σt (in our experimental setup it is just one bit) as the input,
and returns the future state of the Brain as the output, St+1:

T : St,~σt 7→ St+1, or St+1 = T (St,~σt), (3)

We restrict the domain of variable St to those Brain states that
actually occur during training (i.e., evolution) or test trials
(early/late oddball tones). This function can be illustrated
as a directed graph in which Brain states are represented by
nodes (labelled by the decimal translation of the Brain state,
see Eq. [2]) and edges represent transitions that are labelled
with the stimulus that drives those transitions, ~σ (see (34) for
a more detailed exposition of state-to-state diagrams).

Attention, experience, and perception in Markov
Brains. We describe Markov Brains in terms of functions
that take (St,~σt) as the input and return St+1 as the output.
Definition 1. If the Brain transitions from a particular state
St to the same state St+1 for all possible values of ~σt we say:
the Brain does not pay attention to sensory input ~σt in state
St.
Note that it is possible that the Brain does not pay attention to
parts of the sensory input ~σt when the transition from St to
St+1 occurs independently of specific components of vector
~σt. We emphasise that when the Brain does not pay atten-
tion to a sensory input in one transition, it does not imply
that the stimulus is not sensed. Rather, it implies that even
though sensed, the value does not affect the Brain’s compu-
tation when in state St. It is crucial here that this definition of
attention to a stimulus depends not only on the stimulus itself
but also on the context in which it is sensed—this context is
represented by the state St the Brain has reached. Because
the Brain has reached the state St as a consequence of the
temporal sequence of states traversed, this context is in fact
historical. Also, note that the Brain state encompasses the
actuator neuron (decision neuron), therefore, “not paying at-
tention” is reflected in an agent’s behaviour as well as the
Brain’s computations on sensory information. In a sense, the
definition implies that an event that the Brain does not pay
attention to should not alter its experience of the world, a
concept that we will now define.
Definition 2. We define the Brain’s experience of the en-
vironment (which is sensed as a sequence of sensory inputs
~Σ(0 : t)) as the sequence of Brain states it traverses, i.e., as
~χ(0 : t) = (~S0, ~S1, ~S2, ..., ~St).
This definition implies that the experiences of different in-
dividual Brains can be different when encountering the ex-
act same sensory sequence, hence, experience is subjec-
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tive (67, 68). Furthermore, an agent may have experiences in
which it does not take any actions on its environment (does
not make any physical changes to itself or the world). Thus,
dreaming or thinking are instances of such experiences in hu-
mans (67–69). However, if the agent takes any actions in its
environment, those actions become part of the experience by
definition. For example, in our experimental setup Brains can
only “take an action” in one particular time step of the trials.
As a result, a sequence of states that excludes that time step is
still an experience, but does not involve any actions from the
agent. It is also crucial to understand that the experience of
the environment that is represented within Brain states is not
just a naive projection of the world on the Brain, but rather
contains integrated information about the relevant aspects of
the environment (cues), while ignoring unimportant details
(noise). In a very real sense, a Brain separates signal from
noise; information from entropy (70).
In general, two different input sequences ~Σ1(0 : t) and ~Σ2(0 :
t) will result in the Brain having two different experiences
~χ1(0 : t) and ~χ2(0 : t), but not necessarily. If experiences
~χ1(0 : t) and ~χ2(0 : t) are exactly the same, it means that
(according to Definitions 1 and 2) the Brain does not pay at-
tention to inputs during those transitions in which ~Σ1 and
~Σ2 are different. While in Definition 1 we only considered
the Brain’s transition at one time step, we can also look at
the sequence of future Brain states, to discover how sensory
inputs affect the Brain’s computations and transitions multi-
ple time steps after the input is sensed. Now, consider two
input sequences ~Σ1(0 : t) and ~Σ2(0 : t) that differ in time
steps (0 : t′), where t′ < t. Also, suppose ~Σ1(0 : t) and
~Σ2(0 : t) result in two different experiences ~χ1(0 : t) and
~χ2(0 : t). The effect of sub-sequence ~Σ(0 : t′) can be gauged
by how different experiences ~χ1(0 : t) and ~χ2(0 : t) are as
a result. For example, if two input sequences ~Σ1(0 : t′) and
~Σ2(0 : t′) (during time interval 0 : t′ where they are differ-
ent) throw the Brain into two different regions in state space
and therefore give rise to completely different experiences,
then those inputs disturb experiences substantially. If, by
contrast, ~Σ1(0 : t′) and ~Σ2(0 : t′) only result in different ex-
periences temporarily (for example, during 0 : t′) while ~χ1
and ~χ2 become similar or identical later, then the differences
in inputs is less disruptive to the Brain’s experience. In partic-
ular, if the experiences have identical states at decision time
td (assuming that td ∈ [0 : t]), the differences in sensory in-
puts impact experiences ~χ1 and ~χ2 even less. We emphasise
that the Brain state at the point of decision is key, because at
this time point in the trial, the state of the Brain specifies the
Brain’s judgement, and more importantly, represents the path
traversed in state space to reach this state. Consequently, we
use the Brain state at decision time to define what it means to
“perceive” a sensory input sequence.
Definition 3. If a Brain encounters two different input se-
quences ~Σ1(0 : t) and ~Σ2(0 : t), yet ends up in the same state
St at decision time t in both cases, we say that the Brain
had the same perception of sensory sequences ~Σ1(0 : t) and
~Σ2(0 : t).
By this definition, “having the same perception” is a superset

of “having the exact same experience” when encountering
two different sensory sequences. As discussed earlier, if the
Brain has the exact same experience when exposed to two
different input sequences, it clearly does not pay attention to
the sub-sequence of the inputs that is not common between
the two input sequences. In the same vein, how similar the
experiences are for two different input sequences correlates
with how little the Brain pays attention to those parts of input
sequences that are not the same. This correlation captures the
idea that there are different levels of “not paying attention”
to a phenomenon in the environment. At the same time, it
becomes clear that events that evoke the same perception (and
thus similar experiences) must overlap in the significant parts
of the sensory input. In this manner, the state of the Brain—
being specific to the path in state space that leads to it—can
encode “involuntary memory”, in the same way as Marcel
Proust’s memories of the past (71) are triggered by the taste
of a Madeleine dipped in Linden tea.

Information shared between perception and the odd-
ball tone. Here we describe the procedures used to calculate
the information shared between perception, (the Brain state
at decision time-step), and the different oddball tone proper-
ties such as its duration, onset, and ending time-step. Markov
Brains are tested against oddball tones varying in durations as
well as different onsets with respect to the rhythm of the se-
quence. For each individual Brain we create an ensemble of
trials with the same inter-onset-interval and standard tone, in
which oddball tones differ in duration, onset, or both. We can
calculate the information shared between the perception of
each individual Brain and oddball properties for a given inter-
onset-interval and standard tone using the standard Shannon
information (72)

I(Sd : Tob) =
∑
sd,tob

p(sd, tob) log( p(sd, tob)
p(sd)p(tob)

, (4)

where Sd denotes the Brain state at decision time (which we
defined as perception) and Tob denotes oddball properties,
for example the oddball duration. The shared information
between the perception and the oddball properties (duration,
onset, and ending time-step) captures the correlation between
the perception of the Brain and each of the oddball properties.
It is noteworthy that perception occurs after the oddball tone
has arrived and terminated. Thus, the information Eq. (4)
measures how well each of the oddball tone properties can
predict how the Brain perceives the tone.
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Supplementary Information

A B

Supplementary Figure 1. (A) Mean fitness across all 50 lineages and 95% confidence interval as a function of generation shown every 20 generations. (B) Mean fitness
(and 95% intervals) of best agents picked from each of the 50 populations after 2000 generations as a function of inter-onset-interval, standard tone.
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Supplementary Figure 2. State-to-state transition diagram of a Markov Brain for IOI=10, standard tone=5, oddball tones=4 and 6, and onset of oddball tones can be 2 time
steps early and 2 time step late.
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Fitness landscape structure and historical contingencies result in Markov Brains using
smaller regions of state space in trials with longer IOIs
In the main text we described that the judgement accuracy deteriorates as the IOI (and therefore tone lengths) increases. More
specifically, even though the relative JND values remain in the same range for different IOI and standard tones (see Fig. 2B in
the main text), PSE values start to deviate from the standard tone leading to higher values of “constant errors” (CE) that is, the
difference between PSE and POE (see Fig. 2C in the main text). Here, we show that 1) deviations of PSEs in longer IOIs result
from the fitness landscape structure and historical contingencies (see for example (1, 2)), and 2) the mechanistic basis of these
deviations is associated with the size of the state-space Markov Brains use to encode stimuli characteristics.
As discussed before, Markov Brains display periodic firing patterns in response to rhythmic stimuli. These periodic patterns
result in the formation of loops in their state transitions. This is the dominant mechanism by which Brains evolve to entrain to
rhythmic stimuli, and encode temporal characteristics of the stimuli (i.e., rhythm and standard tone’s duration). The distribution
of the period of these periodic firing patterns, that is, the lengths of the loops in state transition diagrams is shown here again in
Supplementary Fig. 3A. Since the first four standard tones are provided so that Brains entrain to the rhythm, we measured the
period of state transitions after the first four intervals, without an oddball tone. We also measured the number of distinct states
each Brain visits during these periodic state transitions. Supplementary Fig. 3B shows the distribution of number of distinct
states in traversing loops during entrainment for 50 evolved Brains for each IOI. Note that these data represent number of
distinct states in multiple loops, therefore, it is possible for a Brain to visit more states than the IOI. Note also that in traversing
the loop once (in one period of the sequence) it is possible to visit some Brain states more than once. For example, the sequence:
6,3,1,1,6,3,1,1,... has a period of 4, but only three distinct states are visited. These results indicate that the number of distinct
states visited by evolved Brains, i.e., the size of the state space used to encode temporal information, starts to plateau for longer
IOIs.

A B

Supplementary Figure 3. (A) The distribution of loop sizes of 50 evolved brain for each inter-onset-interval (IOI). The size of the markers is proportional to the number of
Brains (out of 50) that evolve a particular loop lengths in each IOI. (B) The distribution of number of distinct states in loops visited by Markov Brains in a sequence of rhythmic
standard tones, as a function of IOI. The dashed line shows the identity function line.

The duration judgement task in trials with longer IOIs and standard tones is inherently more difficult (see Supplementary
Fig. 1B) for two reasons. First, longer rhythms and durations require more memory and computations to encode temporal
information, and second, the number of possible oddball tones (in range [1, IOI − 1]) is greater in longer IOIs compared to
the number of possible oddball tones in shorter IOIs. As a result, Markov Brains need to use progressively larger regions of
their state-space to encode the temporal information and moreover, they need more evoltionary time to learn a larger number of
patterns; however, state-space size does not grow linearly with IOI but rather begins to plateau (Supplementary Fig. 3B) which,
in turn, leads to less accurate performance in duration judgements in trials with longer rhythms and a systematic increase in
PSE and CE values. This plateau in utilisation of state-space occurs not because of limitations in Markov Brains capacity but
due to historical contingencies in the evolution. More specifically, the fitness landscape is structured in such a way that Markov
Brains evolve to perform the duration judgement task for shorter IOIs earlier during the evolutionary course. As a consequence,
algorithms that emerge later in evolution that perform the task in longer IOIs are built upon those algorithms evolved earlier. In
order to provide further support for the claims we made here, we conducted a series of additional experiments. In the following
sections we present results for the evolution of Markov Brains performing duration judgement for various experimental setups
that differ slightly from the original experimental setup used in the main text.

Longer evolutionary time does not resolve systematic behavioural distortions in longer rhythms/standard tones.
In the first set of additional experiment, we continued running the experiments presented in main text (which were run for
2,000 generations) for longer evolutionary time, namely 10,000 generations. Supplementary Fig. 4 shows the fitness values of
the best performing agents averaged across 50 runs as a function of IOI and colour-coded at different evolutionary times. We
observe that the average fitness values increase in all IOI and standard tones with evolution, however, we still observe the same
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pattern that the performance drops as IOI increases. Supplementary Supplementary Fig. 5 shows CE values as a function of
(IOI, standard tone) at different evolutionary time points. These results show that constant errors in longer IOIs decrease with
evolutionary time, however, this decrease slows down considerably and more importantly, a similar trend in CE values vs. (IOI,
standard tone) is observed in all generations.
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Supplementary Figure 4. (A) Mean fitness across all 50 lineages and 95% confidence interval color-coded at different evolutionary times as a function of inter-onset-interval,
standard tone.

Supplementary Fig. 6 shows the number of distinct states used to encode temporal information corresponding to each IOI at
different evolutionary time points. After 100 generations, the distributions of state-space size in shorter rhythms (IOIs 10-14)
peak at the IOI (the identity function shown with dashed line) but as the IOI increases the peak of the distribution start to
deviate from the identity line and begin to spread more widely. As evolution progresses, the distribution of distinct states in a
larger number of IOIs peaks at the identity function but in all the plots shown in Supplementary Fig. 6 (after different number
of generations), the distributions that deviate from the identity line correspond to the longest IOIs. For example, after 2,000
generations the distributions for IOIs 23-25 are further from the identity line, and after 10,000 elapsed generations this occurs
for IOIs 24, and 25. Recall that we observed a similar pattern in CE values, where at the beginning of evolution CEs for shorter
IOIs are around 0 but begin to deviate from 0 for longer IOIs, and as populations evolve further CEs for larger and larger
number of IOIs approach 0. Note that the size of the state-space corresponding to each rhythm is indicative of how accurately
the representation of that rhythm is encoded in the Brain. And clearly, in longer IOIs Markov Brains do not use as accurate an
encoding and therefore, their performance drops for longer IOIs and CE values start to increase systematically.
Here we investigate in more depth the correlation between CE values and the size of state-space used by Markov Brains to
encode temporal information. As discussed before, the optimum number of distinct states used to encode stimuli characteristics
is the length of the rhythm, i.e., IOI. When the number of distinct states used to encode the rhythm length is smaller than IOI, it
means that different time points during that interval have the same representation in the Brain because the Brain must visit some
state(s) more than once (at different time points). For example, consider a Brain that is entrained to a rhythm and is traversing
a loop in state-space. An oddball tone results in the Brain exiting that loop (we showed such an example in the main text).
In this case, if the exit from the loop occurs from a repeated state in that loop, the Brain’s experiences of oddballs that end at
different time points would be exactly the same. Alternatively, when the number of distinct states visited when traversing the
loops is greater than IOI, it means that the period of that loop is not IOI but a multiple of the IOI. This may also result in less
accurate performance in duration judgement task, for example in the judgement of oddballs with the same duration that occur
in different positions (recall that oddball tones can occur at 5th, 6th, 7th, or 8th position).
In Supplementary Fig. 3B, we observed that the distribution of number of distinct states in loops peaks at IOI for shorter
IOIs at the outset of evolution and increasingly more distributions move towards the IOI and accumulate around IOI. Let
~DIOI = (d1

IOI,d
2
IOI,d

3
IOI, . . . ,d

N
IOI), where diIOI represents the number of distinct states the ith Brain uses in its loops for a

particular IOI, and N = 50 since we have 50 evolved Brains. Thus, each distribution in Fig 6 can be represented by a vector ~D.
We now calculate the distance of each distribution to the IOI by:

δIOI = ‖di− IOI‖0 = lim
p→0

(∑
i

(di− IOI)p
) 1

p

, (5)

in which ‖‖0 denotes the `0-norm of vector (d1
IOI− IOI,d2

IOI− IOI, . . . ,dNIOI− IOI). In fact, δIOI simply reflects how many
of the 50 Brains do not use exactly IOI distinct states in their loops. We calculated δIOI for each IOI and at different points in
evolutionary time. We then normalised these δIOI by the maximum δIOI value. Fig 7 shows absolute CE values as a function
of normalised δIOI. Each data point shown in grey represents δIOI calculated in a distribution at a specific evolutionary time
and a particular IOI in Supplementary Fig. 6).
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Supplementary Figure 5. Constant errors and their 95% confidence interval for 50 best performing Brains as a function of inter-onset-interval, standard tone at different
evolutionary times. Dashed line shows zero constant error.
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Supplementary Figure 6. The distribution of number of distinct states used to encode rhythm and standard tone duration, i.e., the number of distinct states in each loop,
as a function of inter-onset-interval at different evolutionary times. The size of the circle is proportional to the likelihood at that loop size.The dashed line shows the identity
function.
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Supplementary Figure 7. Absolute constant errors (CE) shown in grey as a function of δIOI, as well as the binned data and the fitted softplus curve.

Supplementary Table 1. Non-linear regression analysis used to explain the correlation between the constant errors (CE) and δIOI which is a function of the distinct number
of states used in encoding stimuli. Residuals sum of squares (RSS), and the Bayesian information criterion. A BIC difference> 10 provide very strong support for one model
over the other (4).

function RSS BIC ∆BIC with quadratic ∆BIC with ramp ∆BIC with softplus
quadratic 6.49 -48.29 0 - -
ramp 2.41 -83.02 34.73 0 -
softplus 1.9 -91.39 43.10 8.37 0

We used a non-linear regression analysis (3) to find the correlation between the CE and δIOI. Since a large number of data
points fall around CE=0 and in the lower range of δIOI (which is not surprising since most trials result in CEs that are not
significantly different from 0), we applied binning with constant bin size to this data. Mean values of binned data and their
standard deviations as well as the fitted function are also shown in Supplementary Fig. 7. We tested three different kernel
functions for regression analysis: 1) quadratic function, 2) ramp function, 3) softplus function (f(x) = log(1 + ex), which is a
differentiable approximation of ramp function). Supplementary Table 1 shows the regression analysis results for three different
kernel functions. We compare these three models using Bayesian information criterion (BIC) (4). These results show that the
softplus function describes the pattern in the data better than quadratic and ramp function. This pattern can be interpreted as:
there is no significant change in CE values for a range of small δIOIs, however, by further increasing δIOI, at some threshold
CEs start to increase linearly with δIOI.

Training Markov Brains equally in all IOIs and standard tones has a minor effect on behavioural deviations in
longer rhythms. In this experimental setup, we used the same set of inter-onset-intervals, standard tones, and oddball tones as
used in original experimental setup. The only difference is that the number of evaluations for each (IOI, standard tone) is not
constant anymore (in the original setup we evaluate Brains in 22 trials for each IOI, standard tone) but in this modified setup
it increases with IOI linearly. Supplementary Table 2 shows the number of evaluation trials as well as IOI, standard tone, and
total number of trials for each (IOI, standard tone). Note that we tried to keep the total number of evaluations in this setup,
368 (37.1% of all possible trials), as close as possible to that of the original setup 352 (35.5% of all possible trials). Note also
that the number of evaluations in each (IOI, standard tone) is chosen proportionate to the number of oddball tones in that (IOI,
standard tone).
Supplementary Fig. 8 shows CE values for this experimental setup as a function of (IOI, standard tone) at different evolutionary
time points in the experiments. It is evident that the same trend in CE values that was observed in the original setup can be
seen in these experiments too. In particular, after 2,000 generations CEs for (IOI, standard tone)={(23, 11), (24,12), (25,12)}
are significantly different from 0 and similarly, after 10,000 generations the CE for (25, 12) is significantly different from
0. Supplementary Fig. 9 shows state-space sizes as a function of IOI at different evolutionary time points. Similar to trends
observed in the original setup, state-space sizes plateau as IOIs increase and again, their distributions are slightly closer to the
identity function (dashed line) but not significantly so. Thus, we conclude that having the same training set size for all IOIs has
little to do with distorted behaviours in longer rhythms. Supplementary Fig. 10 shows the binned CE values as a function of δIOI
as well as the fitted softplus function. We performed the non-linear regression analysis described before for this experiment and
the results are presented in Supplementary Table 3. Similar to previous experiment, the softplus function describes the pattern
in CE values and δIOI better than the other two models.
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Supplementary Figure 8. Constant errors and their 95% confidence interval for 50 best performing Brains as a function of inter-onset-interval, standard tone at different
evolutionary times. Dashed line shows zero constant error.
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Supplementary Figure 9. The distribution of number of distinct states used to encode rhythm and standard tone duration, i.e., the number of distinct states in each loop, as
a function of inter-onset-interval at different evolutionary times. The dashed line shows the identity function.
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Supplementary Figure 10. Absolute constant errors (CE) shown in grey as a function of δIOI, as well as the binned data and the fitted softplus curve.
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Supplementary Table 2. Complete set of all inter-onset-intervals, standard tones, and oddball durations used for evolution of duration judgement task. Oddballs can occur
in either of 5th, 6th, 7th, or 8th position in the rhythmic sequence. Also, oddball durations are always either shorter or longer than the standard tone.

Inter-onset-
interval

Standard tone
duration

Oddball tone duration Total number of
possible trials

number of evalua-
tion trials

10 5 {1, 2, 3, 4} , {6, 7, 8, 9} 32 8
11 5 {1, 2, · · · , 4} , {6, · · · , 10} 36 10
12 6 {1, 2, · · · , 5} , {7, · · · , 11} 40 12
13 6 {1, 2, · · · , 5} , {7, · · · , 12} 44 14
14 7 {1, 2, · · · , 6} , {8, · · · , 13} 48 16
15 7 {1, 2, · · · , 6} , {8, · · · , 14} 52 18
16 8 {1, 2, · · · , 7} , {9, · · · , 15} 56 20
17 8 {1, 2, · · · , 7} , {9, · · · , 16} 60 22
18 9 {1, 2, · · · , 8} , {10, · · · , 17} 64 24
19 9 {1, 2, · · · , 8} , {10, · · · , 18} 68 26
20 10 {1, 2, · · · , 9} , {11, · · · , 19} 72 28
21 10 {1, 2, · · · , 9} , {11, · · · , 20} 76 30
22 11 {1, 2, · · · , 10} , {12, · · · , 21} 80 32
23 11 {1, 2, · · · , 10} , {12, · · · , 22} 84 34
24 12 {1, 2, · · · , 11} , {13, · · · , 23} 88 36
25 12 {1, 2, · · · , 11} , {13, · · · , 24} 92 38

Supplementary Table 3. Non-linear regression analysis used to explain the correlation between the constant errors (CE) and δIOI which is a function of the distinct number
of states used in encoding stimuli. Residuals sum of squares (RSS), and the Bayesian information criterion.

function RSS BIC ∆BIC with quadratic ∆BIC with ramp ∆BIC with softplus
quadratic 5.36 -66.42 0 - -
ramp 1.59 -113.77 47.35 0 -
softplus 1.4 -118.65 52.23 4.88 0

Constant errors in longest rhythms are greater than zero regardless of trial size. In order to show that the deviations
of PSE (from the point of objective equality, i.e., standard tone) in longer IOI, and standard tones is not specific to a particular
value of IOI or standard tone, we used two experimental setups where one has a smaller set of (IOI, standard tone) with shorter
IOIs and standard tone durations, and one that has a larger set of (IOI, standard tone) with longer rhythms, standard tones. The
first training set is similar to the original experimental setup but we excluded trials with the following inter-onset-intervals and
standard tones from the original setup: {(23,11),(24,12),(25,12)}. Similar to the original setup, oddball tones can vary from
1 to IOI-1. In this experimental setup, there are 728 possible trials and all agents are evaluated in 20 trials from each IOI and
standard tone (10 with longer and 10 with shorter oddball tones) which is 35.7% of all possible trials (in the original setup
evaluation trials set was 35.5% of all possible trials).
Supplementary Fig. 11 shows mean constant errors as a function of standard tones at different evolutionary times for this
experimental setup. The increase in CEs is again observed for longer IOIs and noticeably, after 2000 generations in trials with
(IOI, standard tone)={(10, 5), (11,5)}, all 50 Brains perform the duration judgement task perfectly (100% performance for
all oddball tones in those rhythms) and we observe Brains perform the duration judgement task perfectly in more IOIs, and
standard tone in later generations, for example after 10,000 generations Brains perform perfectly in (IOI, standard tone)={(10,
5), (11, 5), (12, 6), (14,7)}. Cognitive scientists and psychophysicists are not in general interested in “trivial” experiments
in which all the subjects answer 100% of questions correctly; therefore, we did not design our experimental setup such that
Brains evolve to achieve 100% fitness either. Supplementary Fig. 12 shows state-space size distributions as a function of IOI
for different evolutionary time points. It is again evident that the state-space sizes start to plateau for longer IOIs but of course,
not as drastically as in the original setup. The CE values, as well as binned means and their standard deviations, are shown as a
function of δIOI are shown in Supplementary Fig. 13. In Supplementary Fig. 13, the blue dashed line shows the fitted softplus
function. The results of the non-linear regression analysis are shown in Supplementary Table 4. We again observe that the
softplus function describes the pattern in CE values and δIOI better than the other two functions.
The second experimental setup has all the trials from the original and we also added the following inter-onset-intervals and
standard tones: {(26,13),(27,13),(28,14),(29,14)}. In this experimental setup, there are 1400 possible trials and all agents
are evaluated in 24 trials from each IOI and standard tone (12 with longer and 12 with shorter oddball tones) which is 34.3%
of all possible trials to maintain the same ratio of evaluation trials to all possible trials. Supplementary Fig. 14 shows mean
constant errors as a function of standard tones at different evolutionary times for this experimental setup. These results show
a similar pattern in CE values and more importantly, we observe that the CEs for the inter-onset-interval and standard tones
{(23,11),(24,12),(25,12)} are not significantly different from 0 whereas in the original experiment, CEs were significantly
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Supplementary Figure 11. Constant errors and their 95% confidence interval for 50 best performing Brains as a function of inter-onset-interval, standard tone at different
evolutionary times. There are some missing data points in these plots which is due to the fact that in those trials the performances of all 50 Brains are 100%, as a result, PSE
would be exactly equal to the standard tone and the slope of the psychometric function would be infinity. Dashed line shows zero constant error.

different from 0 in the same trials, i.e., {(23,11),(24,12),(25,12)}. Supplementary Fig. 15 shows state-space size distributions
as a function of inter-onset-intervals for different evolutionary time points. We again observe that the state-space sizes start to
plateau for longer IOIs but of course, but not as drastically as in the original setup. We performed the non-linear regression
analysis on these data as well and the results are shown in Supplementary Table 5. As observed in previous results, the softplus
function describes the pattern in CE values and δIOI better than the other two models. The CE values, the binned data mean
and standard deviations, and the fitted softplus function is shown in Supplementary Fig. 16.
These results reaffirm that the entrainment and duration judgement task become much more difficult for longer (IOIs, standard
tone) and with greater set of trials, and that furthermore, Markov Brains do have the capacity to use greater regions of the
state-space and perform more accurately in longer IOIs. However, the historical contingencies in such fitness landscapes lead
to less accurate strategies in duration judgements in longer IOIs which results from using smaller regions in state-space.
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Supplementary Figure 12. The distribution of number of distinct states used to encode rhythm and standard tone duration, i.e., the number of distinct states in each loop, as
a function of inter-onset-interval at different evolutionary times. The dashed line shows the identity function.
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Supplementary Figure 13. Absolute constant errors (CE) shown in grey as a function of δIOI, as well as the binned data and the fitted softplus curve.
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Supplementary Table 4. Non-linear regression analysis used to explain the correlation between the constant errors (CE) and δIOI which is a function of the distinct number
of states used in encoding stimuli. Residuals sum of squares (RSS), and the Bayesian information criterion.

function RSS BIC ∆BIC with quadratic ∆BIC with ramp ∆BIC with softplus
quadratic 2.91 -76.33 0 - -
ramp 1.48 -99.97 23.64 0 -
softplus 0.98 -114.51 38.18 14.54 0
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Supplementary Figure 14. Constant errors and their 95% confidence interval for 50 best performing Brains as a function of inter-onset-interval, standard tone at different
evolutionary times. There are some missing data points in these plots which is due to the fact that in those trials the performances of all 50 Brains are 100%, as a result, PSE
would be exactly equal to the standard tone and the slope of the psychometric function would be infinity. Dashed line shows zero constant error.
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Supplementary Figure 15. The distribution of number of distinct states used to encode rhythm and standard tone duration, i.e., the number of distinct states in each loop, as
a function of inter-onset-interval at different evolutionary times. The dashed line shows the identity function.
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Supplementary Figure 16. Absolute constant errors (CE) shown in grey as a function of δIOI, as well as the binned data and the fitted softplus curve.
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Supplementary Table 5. Non-linear regression analysis used to explain the correlation between the constant errors (CE) and δIOI which is a function of the distinct number
of states used in encoding stimuli. Residuals sum of squares (RSS), and the Bayesian information criterion.

function RSS BIC ∆BIC with quadratic ∆BIC with ramp ∆BIC with softplus
quadratic 7.03 -53.20 0 - -
ramp 1.03 -126.34 73.14 0 -
softplus 0.89 -131.92 78.72 5.58 0
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Supplementary Video S1. Animation showing state transitions of Markov Brain shown in figure S2 entraining to the rhythm
with IOI=10, and std tone=5.

Supplementary Video S2. Animation showing state transitions of Markov Brain shown in figure S2 judging a longer oddball
tone IOI=10, std tone=5, and oddball tone =6.

Supplementary Video S3. Animation showing state transitions of Markov Brain shown in figure S2 judging a shorter oddball
tone IOI=10, std tone=5, and oddball tone =4.

Supplementary Video S4. Animation showing state transitions of Markov Brain shown in figure S2 judging a shorter oddball
tone that is late 2 time steps, IOI=10, std tone=5, oddball tone =4, and onset=+2.

Supplementary Video S5. Animation showing state transitions of Markov Brain shown in figure S2 judging a shorter oddball
tone that is early 2 time steps, IOI=10, std tone=5, oddball tone =6, and onset=-2.
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