The compact genome of Giardia muris reveals important

 steps in the evolution of intestinal protozoan parasitesFeifei Xu ${ }^{\mathbf{1}}$, Alejandro Jiménez-González ${ }^{\mathbf{1}}$, Elin Einarsson ${ }^{1, \&}$, Ásgeir Ástvaldsson ${ }^{1,}$
Dimitra Peirasmaki ${ }^{1}$, Lars Eckmann ${ }^{2}$, Jan O. Andersson ${ }^{1}$, Staffan G. Svärd ${ }^{\mathbf{1}}$, Jon Jerlström-Hultqvist ${ }^{\text {3/ }}$,
${ }^{1}$ Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
${ }^{2}$ Department of Medicine, University of California, San Diego, La Jolla, California, USA
${ }^{3}$ Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
${ }^{\text {\& }}$ Current address: Department of Biochemistry, University of Cambridge, Cambridge, England

\# Corresponding author: Dr. Jon Jerlström-Hultqvist

Department of Biochemistry and Molecular Biology

Sir Charles Tupper Medical Building

5850 College Street

Halifax NS Canada

B3H 4R2

Tel.: +1 902-494-2881; Fax: +1 902-494-1355

E-mail adress: jon.jerlstromhultqvist@dal.ca

Running title: Streamlined Giardia genome
Key words: parasite, diplomonad, Giardia, streamlined, intestinal colonization, evolutionary biology, horizontal gene transfer, antigenic variation

Abstract

Diplomonad parasites of the genus Giardia have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic Giardia species, Giardia intestinalis, has been extensively studied at the genome and gene expression level, but no such information is available for other Giardia species. Comparative data would be particularly valuable for Giardia muris, which colonizes mice and is commonly used as a prototypic in vivo model for investigating host responses to intestinal parasitic infection. Here we report the draft-genome of G. muris. We discovered a highly streamlined genome, amongst the most densely encoded ever described for a nuclear eukaryotic genome. G. muris and G. intestinalis share many known or predicted virulence factors, including cysteine proteases and a large repertoire of cysteine-rich surface proteins involved in antigenic variation. Different to G. intestinalis, G. muris maintains tandem arrays of pseudogenized surface antigens at the telomeres, whereas intact surface antigens are present centrally in the chromosomes. The two classes of surface antigens engage in genetic exchange. Reconstruction of metabolic pathways from the G. muris genome suggest significant metabolic differences to G. intestinalis. Additionally, G. muris encodes proteins that might be used to modulate the prokaryotic microbiota. The responsible genes have been introduced in the Giardia genus via lateral gene transfer from prokaryotic sources. Our findings point to important evolutionary steps in the Giardia genus as it adapted to different hosts and it provides a powerful foundation for mechanistic exploration of host-pathogen interaction in the G. muris - mouse pathosystem.

Importance

The Giardia genus comprises eukaryotic single-celled parasites that infect many animals. The Giardia intestinalis species complex, which can colonize and cause
diarrheal disease in humans and different animal hosts has been extensively explored at the genomic and cell biologic levels. Other Giardia species, such as the mouse parasite Giardia muris, have remained uncharacterized at the genomic level, hampering our understanding of in vivo host-pathogen interactions and the impact of host dependence on the evolution of the Giardia genus. We discovered that the G. muris genome encodes many of the same virulence factors as G. intestinalis. The G. muris genome has undergone genome contraction, potentially in response to a more defined infective niche in the murine host. We describe differences in metabolic and microbiome modulatory gene repertoire, mediated mainly by lateral gene transfer, that could be important for understanding infective success across the Giardia genus. Our findings provide new insights for the use of G. muris as a powerful model for exploring host-pathogen interactions in giardiasis.

Background

Many eukaryotes have evolved from free-living to parasitic lifestyles over evolutionary time, yet parasitism has developed independently in different taxonomic groups and is therefore characterized by many unique features ${ }^{1,2}$. Comparative genomics provides an opportunity to investigate the factors of parasitism such as loss of morphological, metabolic and genomic complexity, and consequently reduced evolutionary potential for a free-living lifestyle ${ }^{2}$. It can also identify the drivers and consequences of a parasitic lifestyle and generate new testable ecological and evolutionary hypotheses ${ }^{3}$.

Giardia is a protozoan parasite that non-invasively colonizes the intestinal tract of many vertebrates. The human pathogen, Giardia intestinalis, is estimated to cause 300 million cases of giardiasis in the world each year, being a major cause of diarrheal disease ${ }^{4}$. Giardiasis is also a problem in domestic animals, and the zoonotic potential of Giardia has been highlighted in recent years ${ }^{5}$. In vitro models of the interaction of G. intestinalis with human cells have helped to unravel clues to how Giardia causes disease ${ }^{6-8}$, such as the importance of, the adhesive disc for attachment 9, flagella for motility ${ }^{10,11}$, secreted cysteine proteases for interference with host defenses ${ }^{12-16}$, interactions with the intestinal microbiota ${ }^{6,17}$, differentiation into cysts for transmission ${ }^{4,18}$ and interference with nitric oxide (NO) production ${ }^{19,20}$. Despite this progress it remains uncertain whether these in vitro models are representative of the natural infection, particularly because animal models of G. intestinalis infection have significant limitations. For example, infection of mice, the most commonly used laboratory animals, with human G. intestinalis isolates is unreliable and requires manipulations such as antibiotic conditioning ${ }^{6}$. Giardia muris, one of six recognized species of Giardia ${ }^{21}$, has been used as a mouse model since the

1960s for exploring the pathogenesis and immunological responses of the mammalian host to infection ${ }^{22}$. The availability of knock-out mice and other host-related resources makes G. muris a powerful model to investigate host-pathogen interactions ${ }^{6}$. The life cycle and infective process of G. muris is closely related to infection by G. intestinalis ${ }^{23}$. Major findings in Giardia biology such as flagellar and disc function, cellular differentiation ${ }^{22,24,25}$, and immunity ${ }^{23,26-29}$ have been pioneered with G. muris, and later been shown to be transferable to human G. intestinalis infections ${ }^{29,30}$. Unfortunately, research on G. muris has been hampered by the lack of genome information and gene expression data ${ }^{5}$.

Here we describe the draft genome of G. muris, representing the first genome of any Giardia outside of the G. intestinalis species complex. We performed comparative genomics with free-living (Kipferlia bialata 31) and parasitic (G. intestinalis ${ }^{32-34}$ and S. salmonicida ${ }^{35}$) relatives to G. muris to determine how G. muris may have evolved into an intestinal pathogen of rodents.

Results

Genome assembly

We extracted DNA from freshly excysted G. muris cysts purified from the feces of infected mice (Fig. S1A) and assembled a high-quality draft genome using sequences obtained by PacBio and Illumina technologies. In addition, we generated RNA-Seq data for gene prediction and gene expression analyses with total RNA extracted from cysts, recently excysted cells (excyzoites), and trophozoites isolated from the small intestine of infected mice (Fig. S1A).

The G. muris draft genome consists of 59 contigs spanning 9.8 Mbp , which is notably smaller than the G. intestinalis WB genome (12.6 Mbp, Table 1). Most of the
genome ($9.0 \mathrm{Mbp}, 92 \%$) is found on five contigs ($>1 \mathrm{Mbp}$). Of the remaining short contigs ($<30 \mathrm{kbp}$), ten are terminated in telomeric repeats (TAGGG), suggesting they are the terminal points of five chromosomes. The karyotype of G. muris was previously shown to consist of four separable chromosomes ${ }^{36}$. We hypothesize that our five major contigs represent a total of five chromosomes in G. muris, two of which are so close in size (1.290 and 1.297 Mbp) that they were not readily resolved using pulsed-field gels, and are named accordingly from 1 to 5 from largest to smallest in size (Fig. 1). 42 of the 44 small contigs contain ribosomal DNA (rDNA) clusters that encode $28 \mathrm{~S}, 18 \mathrm{~S}$, and 5.8 S rRNAs. In fact, rDNA clusters make up 2.0% of the total genome, and account for 91.6% of the identified repeats (Supplementary Methods). Half of the contigs terminated by telomeric repeats have adjacent rDNA clusters (Fig. S1B), suggesting that multiple of the G. muris chromosomes ${ }^{36}$, like those in G. intestinalis ${ }^{37}$, have long repeats of rDNAs close to the telomeres. In contrast to G. intestinalis chromosomes ${ }^{37}$, no retrotransposon sequences were found in the telomeric regions and overall very few retrotransposon sequences were detected in the G. muris genome.

Allelic sequence heterozygosity (ASH) in the assembly was estimated to be 0.016% (Table 1), equivalent to the low level found in the G. intestinalis WB genome (0.026%, Table 1). Distribution of ASH along chromosomes showed only weak clustering in certain areas, particularly at the ends of chromosomes (Fig. 1).

Genome streamlining and synteny

Gene prediction and manually curated annotation identified 4653 protein coding genes in G. muris (Table 1). This makes 84.5% of the genome coding, counting also the tRNAs and rRNAs (Table 1). Thus, the G. muris genome is an example of a very compact
eukaryotic genome. Consistent with that, the average intergenic size is 264 bp (Table 1), with a prominent skew towards shorter intergenic regions for a high proportion of genes (median size at 37 bp , Fig. 2C). The compactness of the genome is also illustrated by multiple instances of overlapping genes, with 441 genes (9.5% of all genes) showing an average overlapping size of 21 bp (spanning 1-327 bp) with neighboring genes.

The G. muris and the new improved G. intestinalis WB genome (AACB03000000, F. Xu and S.G. Svärd) do not maintain clear chromosomal synteny even though both are assembled as five near-complete chromosomes (Fig. S2). However, local synteny (Fig. 2AB) was obtained among 3,043 one-to-one orthologs (Table S1A) (an average amino acid similarity of 44.7%) shared by the two genomes. Comparing local synteny, it becomes obvious that G. muris keeps shorter orthologous gene and intergenic region sizes (Fig. 2BCD).

Gene regulation

We could not identify any universal, conserved promoter motifs shared by all G. muris genes except for an enrichment of A residues around the start codon (Fig. S3A), which resembles observations in G. intestinalis ${ }^{38}$. The streamlining of the G. muris genome was also apparent at the 3 ' end of genes where the putative polyadenylation signal, which is similar to the one described in G. intestinalis ${ }^{38}$, is overlapping with the stop codon for most genes (Fig. S3B). Genes up-regulated early during encystation in G. intestinalis have specific promoter elements ${ }^{39,40}$. Most of these genes were also identified in G. muris, with one notable exception of cyst-wall protein 3 (Fig. 3C). Encystation-related genes in G. muris share promoter motifs (Fig. 3A), similar to the Myb binding sites found in G. intestinalis ${ }^{40}$, suggesting a similar type of regulation. We also noted that the encystation-related genes are among the
most highly expressed genes in G. muris trophozoites in vivo (Fig. S3C, Table S1B), similar to G. intestinalis infection in mice ${ }^{41,42}$.

Very few genes in G. intestinalis contain introns, with only eight known cisspliced and four trans-spliced genes (five trans-introns) ${ }^{43-45}$. Similarly, only three cisand no trans-introns were identified in the parasitic diplomonad S. salmonicida ${ }^{35}$, whereas the free-living fornicate K. bialata has on average seven cis-introns per protein encoding gene ${ }^{31}$. G. muris maintains homologs to the eight cis-spliced G. intestinalis genes, but has only three retained introns (Fig. S4A). All four trans-spliced genes in G. intestinalis have homologs in G. muris with conserved splicing motifs (Fig. S4). Mining genes with similar motifs did not reveal additional intron-containing genes in G. muris. Similar to G. intestinalis ${ }^{43}$ all the trans-spliced genes in G. muris preserve a similar cleavage motif TCCTTTACTCAA (Fig. S4C) as the RNA processing sequence motif ${ }^{43}$. Thus, we observe a reduction of introns in G. muris, and cis-introns seem to be easier to lose than trans-introns.

VSPs and antigenic variation in G. muris

Variant specific-surface proteins (VSPs) in G. intestinalis are characterized as cysteine-rich proteins with frequent CXXC motifs and a conserved C-terminal transmembrane (TM) domain followed by a cytoplasmic pentapeptide (CRGKA, Fig. S5A). We identified 265 VSP homologs in G. muris. Their C-terminal pentapeptide (GCRGK, Fig. S5A, Table S1C) differed slightly from that in G. intestinalis. However, the cysteine and arginine residues in the pentapeptide, which are known to be post translationally modified in G. intestinalis, are conserved ${ }^{46,47}$. In addition, the preceding 24 aa of the G. muris VSP TM domain show conservation to the TM domain of G. intestinalis VSPs (Fig. S5A). Most G. muris VSPs contain the conserved GGCY motif present in most G. intestinalis VSPs (Table S1C). Since bona fide VSPs need signal
peptides (SPs) at the N-terminus to guide VSPs to the parasite surface, we divided this group into two subgroups; proteins with predicted SPs are called VSPs, whereas VSP proteins without SPs are referred to as pseudogenized VSPs ($\psi \mathrm{VSPs}$). The 26 complete VSP genes (16 unique at 98% identity to each other) are mostly located chromosomecentrally (Fig. 1, Table 3). Seven pairs of VSP genes were identified with identical sequences arranged either as head-to-head (2 pairs) or tail-to-tail (5 pairs) (Table 4). Sequences in between the different VSP pairs resemble NimA (never in mitosis gene a)related kinase (NEKs), ankyrin repeat proteins (ARPs) and zinc-finger domains. There are also 4 copies of identical VSPs clustering close to the 3 ' end of chromosome 2 (Fig. 2) with tandem repeats and sequences resembling NEKs and zinc-finger domains interspersed (Table 4).

In contrast to complete VSPs, most ψ VSPs (183 / 239) are found in linear arrays ($\mathrm{n}=17$) in G. muris, herein defined as having $>3 \psi$ VSPs genes (Fig. S5BC). Strikingly, nine out of the ten ends of the main contigs have a $\psi \mathrm{VSP}$ array at or close to the ends of the chromosomes (telomere-adjacent) containing a total of 131 genes (Table S1C). The only main contig that ends without an array has a cluster of two ψ VSPs close to the chromosome terminus. We found a single ψ VSP array consisting of 12 genes in a chromosome position that was non-telomere adjacent (on chromosome 5) (Fig. 1). The ψ VSP arrays vary in copy numbers (5-23 genes) and the terminal part of the ψ VSP array is always arranged with the tail-end towards the chromosome terminus. The tandem arrangement of the gene arrays suggested that they were generated by gene duplication. Two of the terminal arrays are scrambled and have a shift in the ψ VSP array directionality at the site of an intact VSP (Fig. S5B).

We constructed a phylogeny of all the VSPs and ψ VSPs in G. muris to investigate their evolutionary dynamics. The phylogeny revealed relaxed clustering of ψ VSP genes originating in each linear array (Fig. S5C). However, the internal linear array on chromosome 5 represents a noteworthy exception showcasing a very recent gene duplication event. Interestingly, the great majority of full-length VSPs (23/28) are clustered in the phylogeny, including the VSPs in the scrambled $\psi \mathrm{VSP}$ arrays, despite these genes being distributed in physically separate chromosomal locations across all five primary scaffolds (Fig. S5C). The few non-clustered VSP genes in the phylogeny that are not part of pairs or clusters are found directly adjacent to ψ VSPs genes. The relaxed clustering of VSPs and ψ VSPs suggested that these genes might be undergoing periodical recombination or gene conversion.

The VSPs and ψ VSPs showed distinct expression patterns. Essentially all the ψ VSP genes were non-transcribed in the three surveyed life-stages (Fig. S5D). VSPs, on the other hand, showed on average higher expression with one or a few loci displaying dominant expression in the different life-stages (Fig. S5D).

There is also another, less characterized VSP-related cysteine-rich protein family in G. intestinalis, High Cysteine Membrane Proteins (HCMPs) ${ }^{48}$, with 62 members ${ }^{32}$. Many are highly up-regulated during interaction with intestinal epithelial cells ${ }^{49}$. The HCMPs have several CXXC and CXC motifs, one VSP-like transmembrane domain but with longer C-terminals than in the VSPs^{49}. The 34 genes matching these criteria in the G. muris genome were named HCMPs after the corresponding gene family in G. intestinalis. They are found spread-out on the five chromosomes (Fig. 1).

Multigene families in G. muris

The largest multigene families in G. intestinalis outside the VSPs and HCMPs are the NEKs ${ }^{50}$ and ankyrin repeat containing proteins (Protein 21.1) ${ }^{32}$. There are 230 NEKs
in G. muris (Fig. 1, Table 4), making up 71% of its kinome, slightly more than what was found in G. intestinalis ${ }^{50}$. We classified ankyrin repeat containing proteins further into three groups. The ankyrin repeat protein-1 (ARP-1) with only ankyrin repeats, ARP-2 with ankyrin repeats plus zinc finger domains, and ARP-3 with both ankyrin repeats plus domains other than zinc finger domains. The NEKs and the different classes of ARPs are scattered throughout the chromosomes without obvious clustering (Fig. 1). A phylogenetic analysis revealed that 79 of the NEKs are conserved as $1: 1$ orthologs between G. muris and G. intestinalis (Fig. S6A). Each species has one massively expanded cluster of NEKs with G. muris having the largest with 104 members and the one in G. intestinalis having 79 members. ARPs show a similar evolutionary stability with 132 conserved 1:1 orthologs between species (Fig. S6B). G. muris shows a major species-specific expansion of 91 genes whereas the largest expanded clusters in G. intestinalis amounts to two groups of 15 genes each. The partly shared domain-structure of NEKs and ARPs prompted us to investigate their relationship by a network analysis employing reciprocal blastp (1e-05 cutoff). The two groups are not recovered as clearly separated clusters but form partially overlapping networks, indicating that there might be recombination or gene conversion in between (Fig. S6C). The larger numbers of genes in these multigene families in G. muris compared to G. intestinalis and their evolutionary dynamics are intriguing given the otherwise streamlined features of the G. muris genome, perhaps suggesting that they have unique roles in adaptation to their murine hosts.

Virulence factors in Giardia

G. intestinalis is not known to possess classical virulence factors, such as enterotoxins, but several genes are important for colonization of the host and thus for pathogenesis. These include genes for motility ${ }^{10}$, the adhesive disc for attachment ${ }^{9}$, secreted cysteine proteases that can degrade host defensive factors ${ }^{12,13}$, and cysteine-rich
surface protein like the VSPs ${ }^{51}$ and the HCMPs ${ }^{48}$ that undergo antigenic variation. The cytoskeletal protein repertoire in G. muris is very similar to G. intestinalis apart from several fragmented alpha-tubulins (3 complete genes with homologs in G. intestinalis and 9 incomplete gene fragments). The adhesive disc is a unique cytoskeletal structure of Giardia parasites essential for attachment of the trophozoite in the small intestine, but is missing in other fornicates ${ }^{9}$. The first detailed studies of the adhesive disc were performed on G. muris trophozoites ${ }^{24}$, but more recent work has mostly focused on G. intestinalis. The vast majority (82 of 85) of G. intestinalis disc proteins ${ }^{9}$ were also identified in G. muris (Table S1D); 12 were NEK kinases and 27 were ARP-1 proteins. Two of the three G. intestinalis disc proteins not found in G. muris (Table S1D) localize to a structure in the G. intestinalis disc on top of the ventral groove, but this structure is missing in the G. muris disc ${ }^{22}$, suggesting functional disc differences. Many of the disc proteins that are immunodominant during G. intestinalis infections (e.g. alpha-giardins, beta-giardin, SALP-1, alpha- and beta-tubulin ${ }^{52}$ are highly expressed (here defined as >500 FPKM) in G. muris trophozoites in the small intestine (Table S1B).

Proteases are important virulence factors in many pathogens and cysteine-protease activities have been suggested to play a role in Giardia virulence ${ }^{4,13}$. We identified 81 proteins classified as proteases in the G. muris genome, compared to 96 proteins identified in an identical search in G. intestinalis WB (Table S1E). The largest family of proteases in G. muris, with 15 members, are papain-like cysteine proteases (C1A family). This protein family is also the largest protease group in G. intestinalis with 21 members ${ }^{53,54}$. Several conserved groups of proteases were found to have been present in the ancestor to Giardia and Spironucleus, although we also found evidence for lineagespecific gene loss and expansion in G. muris (Fig. S7). The most highly expressed
cysteine protease of G. muris in vivo is the closest homolog to the highest expressed protease in G. intestinalis WB^{54}.

Metabolic pathways in G. muris

Our metabolic reconstruction identified 95 metabolic pathways in G. muris compared to 98 pathways detailed in G. intestinalis WB; four pathways were unique in G. muris and eight in G. intestinalis WB. Even though the overall metabolism is highly similar between G. muris and G. intestinalis WB , the genes for several specific enzymes and their putative reactions show distinct differences. Thus, 18 unique reactions (14 enzymes) were predicted in G. muris and 25 in G. intestinalis WB (10 enzymes) (Table 2). Several of these unique proteins showed moderate-high identity to prokaryotic proteins (Table S1F). Five of these prokaryote-like genes are present in the genome of assemblage B strain G. intestinalis GS.

The potential utilization of carbohydrate sources for glycolysis is different in G. muris compared to G. intestinalis. Fructokinase and mannose 6-phosphate isomerase enable G. muris to use fructose and mannose 6-phosphate unlike G. intestinalis. In both cases, the enzymes were acquired from bacteria via lateral gene transfer (Table S1F, Figure S8AB). Curiously, the G. muris gene for mannose 6-phosphate isomerase is found next to a bacterial transcriptional regulator/sugar kinase gene. Phylogenetic analyses show that G. muris mannose 6-phosphate isomerase and the transcriptional regulator/sugar kinase gene clusters deep in the Bacteroidetes group. This gene arrangement is observed in bacteria of the genus Alistipes, whose genomes harbor the most similar homologs, supporting the notion that a single event of lateral gene transfer best explains the origin of these genes in G. muris (Figure S8BC). Both genes have the Arich initiator that precedes the start codon in most G. muris genes and are expressed in G. muris trophozoites (Table S1B).

The utilization of glycerol for ATP synthesis via glycerol kinase has been suggested in G. intestinalis upon depletion of primary carbon sources ${ }^{55}$. This enzyme is found in both Spironucleus and Trichomonas but has been lost in G. muris. Another notable metabolic difference to G. intestinalis WB is the lack of pyrophosphatedependent pyruvate phosphate dikinase (PPDK) that leaves a single, less energy efficient, route from phosphoenol pyruvate to pyruvate via pyruvate kinase in G. muris.
G. muris is predicted to synthesize coenzyme A from pantothenate, employing a bifunctional phosphopantothenoyl decarboxylase-phosphopantothenate synthase. The same pathway is described in S. salmonicida ${ }^{35}$, but the complete pathway is missing in G. intestinalis (Table 2).

As in all other studied metamonads, G. muris encodes the arginine dihydrolase (ADH) pathway that enables the use of arginine as an energy source and at the same time, reduces the available free arginine in the environment, preventing nitric oxide (NO) production in host cells ${ }^{56}$. NO efficiently kills G. intestinalis trophozoites and the main scavenger enzyme for NO in G. intestinalis is Flavohemoprotein ${ }^{57}$, which is lacking in G. muris (Table 2). Arginine is an important modulator of virulence in many infectious organisms since it interferes with NO production ${ }^{58}$. G. muris encodes arginases which converts arginine directly to ornithine and urea. Arginases are present in G. intestinalis GS and T. vaginalis, representing an ancestral acquisition in Metamonada followed by subsequent losses in Spironucleus and G. intestinalis assemblage A and E (Table 2 and Fig. S8D).

We noticed that several of the bacterial derived genes that are shared with G. intestinalis $G S$ are clustered together on the chromosomes in G. muris in highly dynamic genomic regions. For example, arginase genes are found in a four-gene genomic region that is present in two adjacent copies in chromosome 2 , two on chromosome 1 and one on
chromosome 5 (dark grey filled arrows, Fig. 4A). Intact arginase genes are only found on chromosome 2 adjacent to the genes encoding 2,5-diketo-D-gluconic acid reductase. All the duplication events have occurred between ARPs (red arrows) and NEKs (dark red arrows). The homologous regions on the three chromosomes likely originated via two duplication events.

Nucleotide substitutions have accumulated since the duplication events and inframe stop codons (marked by red asterisk in Fig. 4A) have rendered three of the arginase genes pseudogenized. The small ORFs sitting at the other side of arginase are hypothetical proteins and have similar homologs in other parts of the genome, but the sequences of their duplicated homologs in those regions are pseudogenized (dotted light grey block in Fig. 4A). Both genes have their closest relatives in bacteria, even though the genes can be found in other eukaryotes (Fig. S13E). Phylogenetic analyses indicate the genes might have been transferred from different bacterial donors multiple times into different eukaryotic lineages (Fig. S13E).

A second, distantly related 2,5-diketo-D-gluconic acid reductase gene copy (Fig. 4B, Fig. S8F) in the genome is present in three different genomic locations together with two other enzymes, carboxymuconolactone decarboxylase (CMD) and ketosteroid isomerase-like protein. All three genes, constitute putative lateral gene transfers (Fig. S8GH). This three-gene region is close to $\psi \mathrm{VSPs}$ (orange arrows) and ARPs.

Interaction with the intestinal microbiota

Giardia trophozoites colonize the intestinal lumen where they can potentially interact with other intestinal microbes. Although little is functionally known about such interactions and their consequences for parasite survival, four proteins encoded in the G. muris genome could play a role in these interactions.

Bactericidal/permeability-increasing (BPI) proteins are innate immune defense proteins that bind to lipopolysaccharide and display potent killing activity against gramnegative bacteria by increasing membrane permeability. Beyond this basic function BPI proteins might also act as effectors in controlling mutualistic symbioses ${ }^{59}$. Homologs of BPI proteins are found in G. muris and G. intestinalis ${ }^{60}$, but it remains to be determined if they have anti-microbial activity.
G. muris encodes tryptophanase, an enzyme that metabolizes tryptophan to pyruvate with concomitant release of indole and ammonia. While pyruvate can be utilized in energy metabolism, indole and its metabolites have been shown to affect gut microbiota composition, possibly by interfering with quorum-sensing systems, and might be able to influence host health ${ }^{61}$. Phylogenetic analysis of this protein showed that this enzyme represents an ancestral acquisition in diplomonads with subsequent loss in G. intestinalis (Fig. S8I).

Two more proteins with potential importance for microbiota interactions are encoded in G. muris: Tae4 and quorum-quenching N-acyl-homoserine lactonase. The Tae4 proteins are wide-spread amidases that were first described in association with the T6SS system effector Tae4 in Salmonella Typhimurium ${ }^{62}$. The Tae4 proteins degrade bacterial peptidoglycan by hydrolyzing the amide bond, γ-D-glutamyl-mDAP (DL-bond) of Gram-negative bacteria ${ }^{62}$, and is required for interbacterial antagonism and successful gut colonization by S. Typhimurium ${ }^{63}$. Quorum-quenching N -acyl-homoserine lactonase degrades N -acyl-homoserine lactone, a molecule used by both Gram-positive and Gramnegative bacteria, for quorum sensing ${ }^{64}$. Our phylogenetic analysis supports the lateral acquisition of both genes (Fig. S8JK). While Tae4 has been a recent acquisition in G. muris, quorum-quenching N -acyl-homoserine lactonase was present in the common
ancestor of G. muris and G. intestinalis and lost in G. intestinalis WB and P15 (Fig. S8K).

Discussion

Our data shows that G. muris has an even more compact genome than G. intestinalis, whose genome is already known to be highly streamlined ${ }^{32}$. Genome compaction via reduction of mobile or repetitive elements have been seen in other eukaryotic parasites ${ }^{1,65}$. G. muris appears to fall into this category as it encodes no known classes of mobile elements and repetitive elements are mostly confined to telomeric contexts. The shortness of intergenic regions in G. muris ranks among the most extreme recorded for any eukaryote, even shorter than Microsporidia which are known as the most compact and reduced eukaryotic genomes ${ }^{66}$. The global synteny map of G. muris to G. intestinalis indicates many frequent small-scale genome rearrangements that often favors a more efficient gene packing in G. muris thus allowing shorter intergenic regions. This evidence of gene shuffling and the fact that there is very little evidence of genome degradation would argue for optimization of growth as the driving force of G. muris genome streamlining.
G. muris trophozoites have not been grown axenically in vitro, which has hampered exploration of its genome, gene regulation and metabolism ${ }^{5,21}$, and has limited the use of G. muris as an in vitro model system for the human parasite G. intestinalis and other intestinal protozoan parasites ${ }^{5}$. We identified several metabolic differences between G. muris and G. intestinalis that might indicate avenues to successful strain axenization. Most of these differences are represented by instances of lateral gene transfer of metabolic genes or losses thereof in either G. intestinalis or G. muris. G. intestinalis isolates are typically poor at infecting mice. Despite this, the assemblage B isolate GS, which shares more metabolic enzymes with G. muris than
the assemblage A isolate WB , is better able to establish infection in mice than WB. This suggests that the shared metabolic capacity of G. muris and G. intestinalis GS enables survival in the murine intestinal tract. Additionally, G. muris might be able to interact or interfere with intestinal Gram-positive and Gram-negative bacteria and this could be a key to establish successful infections. G. intestinalis, which lacks some of the putative microbiome modulators, such as Tryptophanase and Tae4, is dependent on reduction of the small intestinal microbiota in order to efficiently infect mice ${ }^{67} . G$. muris is cleared from the murine host by secretory $\operatorname{Ig} \mathrm{A}^{26}$, whereas the role of IgA in anti-giardial defense is less clear for G. intestinalis $\mathrm{GS}^{26,68}$. We speculate that G. muris is more resistant to elimination by innate factors such as competition with the normal microbiota, or host production of reactive oxygen species and/or NO, whereas GS is more sensitive to innate factors and eliminated much faster within 1-3 weeks (while G. muris clearance requires 4-8 weeks). Future insights into the importance of innate factors in G. muris infection should be facilitated by the availability of the complete genome sequence.

Sub-telomeric regions in parasitic protozoa often contain arrays of expanded gene families that are under positive selection by the immune system ${ }^{65}$. The relaxed evolutionary pressure offered by keeping pseudogenized copies of surface antigens might be an advantage for G. muris that allows genetic drift and recombination to drive rapid and stealthy diversification, thus avoiding elimination by adaptive immune defenses. It was previously reported that G. muris is capable of antigenic variation and encodes VSP genes with high similarity and conserved structural features (CRGKA pentapeptide) to those G. intestinalis ${ }^{69}$. We failed to identify close homologs to the previously sequenced G. muris VSPs in our G. muris genome. The linear ψ VSP arrays in G. muris have previously been described in G. intestinalis ${ }^{70}$.

Our phylogenetic analyses of G. muris VSPs and $\psi \mathrm{VSPs}$ revealed evidence of recombination or segmental gene conversion, as previously demonstrated in G. intestinalis ${ }^{70}$. However, we recognized two clear differences in the VSP repertoire in G. muris and G. intestinalis. First, G. muris encodes a low number of intact VSP loci that are located internally on the chromosomes. Second, the ψ VSP arrays are almost exclusively telomere adjacent, as opposed to G. intestinalis where this tendency is not apparent ${ }^{70}$. These aspects of the G. muris VSP repertoire resemble the antigenic variation systems of Pneumocystis spp. and Trypanosoma brucei ${ }^{71,72}$. Despite clear mechanistic differences, all these systems have converged on having large reservoirs of mostly telomeric positioned, arrayed genes that are transcriptionally silent and are sources for recombination and gene conversion into expression sites.

The function of ankyrin repeat proteins and NEK kinases remains mostly unknown. They represent, together with VSPs, the most dynamic protein families in the Giardia genomes ${ }^{50}$. The Giardia NEK kinases lack transmembrane domains and have been suggested to target and localize to different intracellular structures with their ankyrin repeats ${ }^{50}$ and many of the G. intestinalis NEK kinases localize to cytoskeletal structures, including the flagella and adhesive disc ${ }^{9}$. Rearrangements and duplications in the G. muris genome are frequently associated with these large gene families (Fig. 2A and Fig. 4), indicating they might serve as anchoring-points for recombination.

Lateral gene transfer is an important shaping factor in the evolution of metabolism in protists ${ }^{73}$. The origins of laterally transferred genes in G. muris are here inferred to be by prokaryotic sources that are members of the gastrointestinal flora, in agreement to previous observations ${ }^{74}$. Most of the putative differences in metabolic potential in the Giardia genomes are attributable to lateral gene transfers, either by
lineage specific gene gain or loss. For example, the ability to utilize mannose has been introduced from bacteria of the genus Alistipes via lateral gene transfer. This event is supported by phylogenetic reconstruction, shows a high degree of sequence conservation ($>70 \%$ at the amino acid level) and displays maintained gene order to the one seen in the closest related bacterial lineages (Figure S8B). Interestingly, several lateral gene transfers were found clustered in amplified areas of the G. muris chromosome. Curiously, G. intestinalis assemblage B also maintains clustered copies of arginase and 2,5-diketo-D-gluconic acid reductase, while these genes have both been lost in the G. intestinalis assemblage A and E lineages.

Anti-microbial peptides of several classes, such as defensins and trefoil-factor 3, are up-regulated in the small intestine of G. muris infected mice ${ }^{29}$. Secreted cysteine proteases from G. intestinalis have been shown to be able to degrade defensins ${ }^{12}$. We detected prominent expression of several cysteine proteases in G. muris. The protease with the highest expression is suggested to have a role in encystation and excystation ${ }^{54}$. Its G. intestinalis homolog is up-regulated and secreted during interactions with human intestinal epithelial cells ${ }^{8}$ and it cleaves chemokines, tight junction proteins and defensins ${ }^{12,75}$. Thus, this is most likely also an important virulence factor in G. muris.

Our results from this study are summarized in a model of the evolution of Giardia's virulence traits in Figure 5. A number of characters important for Giardia's ability to infect the intestine of mammals are pre-parasitic inventions (such as modified mitochondria and differentiation into transmissive cysts, Fig. 5) and some are found in all diplomonad parasites (e.g. loss of metabolic functions, streamlined microtubular cytoskeleton, expansion of gene families like ankyrins and cysteine proteases and loss of introns, Fig. 5). Giardia specific innovations include the adhesive disc for attachment, VSPs and High Cysteine Membrane Proteins for
antigenic variation and mitosomes involved in Fe-S complex synthesis (Fig. 5). Whereas some are only found in G. muris (e.g. metabolic genes involved in microbiota interactions, Fig. 5), suggesting adaptation to the intestinal environment of mice. Our data shows that the environment in the host's intestine, most of all the immune system and the microbiota, apply selective pressure for changes in the genome, metabolic potential and the parasite surface proteome.

Methods

Cell preparation and nucleic acid extraction.

4.5×10^{7} muris trophozoites (day 7 post infection) were collected from small intestines of three C57 mice, washed once in PBS and pellet frozen at $-80^{\circ} \mathrm{C}$ (Biosample SAMN11231832). Viable cysts of G. muris isolate Roberts-Thomson passaged through mice were obtained from Waterborne Inc. These cysts had been purified from fecal material using Percoll and sucrose gradients (Biosample SAMN11231833). DNA and RNA were extracted from 1×10^{7} cysts using standard methods. 1×10^{8} cysts were excysted according to the procedure in Feely et al. ${ }^{76}$ (Biosample SAMN11231834). RNA was purified from cell material equivalent to 1×10^{7} cysts. DNA for long-read sequencing was prepared from the remaining cysts as described in Supplementary Methods.

Sequencing, assembly and annotation

Total genomic DNA was sequenced using both Illumina MiSeq and PacBio RS II sequencers. The stranded transcriptome mRNA and the miRNA libraries were sequenced with Illumina HiSeq 2000 system. The RNA samples extracted from excysted cells and cysts prior excystation were prepared using the TruSeq stranded mRNA sample preparation kit and sequenced by HiSeq 2500. PacBio long reads were assembled de novo using the SMRT Analysis (v2.3.0) pipeline. A detailed description of genome sequencing, assembly, annotation, synteny analyses and RNA-Seq is available in Supplementary Methods.

Pathway analysis

The metabolic pathways of G. muris and G. intestinalis WB were predicted with a combination of BlastKOALA ${ }^{77}$ implemented in KEGG 78, Pathway Tools v21.5 ${ }^{79}$ and GiardiaDB ${ }^{80}$. The different predictions were combined and manually curated under

Pathway Tools ${ }^{79}$. Pathway Tools function pathway hole filler ${ }^{81}$ was used to further complete the pathway, and transport inference parser ${ }^{82}$ was used to infer transport reaction(s) for transporters which were then verified with Conserved Domain databases ${ }^{83}$.

Phylogenetic analysis

G. muris sequences were used as queries to retrieve at least 5000 hits with e-value <0.001, using BLASTP against the nr database and the organism-specific proteomes. The datasets were aligned in the forward and reverse orientation using MAFFT v6.603b ${ }^{84}$ and PROBCONS v1.12 ${ }^{85}$. The four resulting alignments were combined with T-COFFEE ${ }^{86}$ and trimmed by BMGE v1.12 ${ }^{87}$. Maximum Likelihood (ML) trees were computed using IQtree v1.6.5 5^{88} under LG4X substitution model ${ }^{89}$. Branch supports were assessed using ultrafast bootstrap approximation (UFboot) ${ }^{90}$ with 1,000 bootstrap replicates and 1,000 replicates for SH-like approximate likelihood ratio test (SH-aLRT) ${ }^{91}$. A detailed description of the phylogenetic analyses is available in Supplementary Methods.

Figures

Figure 1. Circular representation of the G. muris chromosomes. From outside inward: five chromosomes, GC percent, unique genes (grey) including unique metabolic genes in Table 2 (red), ARPs (greenblue) / NEKs (pink), VSPs (orange) / $\psi \mathrm{VSPs}$ (blue) / HCMPs (purple), Coding percent / 5 kbp (green if <=0.5), \# SNPs /
$\mathrm{kbp}>=5$ (red), BLASTN matches with >95\% identity and > 1000 bp in size. Circular plot was drawn with circlize ${ }^{92}$.

Figure 2. Examples of synteny between G. muris and G. intestinalis. A) A 50 kbp region on chromosome 3 which share synteny to a 58 kbp region on chromosome 5 in WB. Synteny plot was plotted using genoplotR ${ }^{93}$. Shades of red and blue represent forward and inverted matches between orthologs. Genes are drawn as arrows in blue. ARPs in red, NEKs in dark red, and VSPs in orange. Dark grey filled genes are unique genes to that genome in comparison to the other. B) A 14 kbp region on chromosome 1 which shares synteny to a 16 kbp region on chromosome 5 in G. intestinalis. It uses the same color scheme as in A. C) Violin plots of intergenic sizes of neighboring positional orthologs of G. muris and G. intestinalis, and the grey vertical line represents the median intergenic size of G. muris. D) Violin plots of positional orthologs sizes of G. muris and G. intestinalis, and the grey vertical line represents the median ortholog size of G. muris. E) Histogram of the positional ortholog size difference between G. muris and G. intestinalis.

Figure 3. Gene regulation and organization of VSPs in G. muris. A) Promoter motifs shared by encystation-related genes. Motif 1 (gold in B) represents the general promotor motif positioned directly adjacent to the start codon. Motif 2 (teal in B) resembles the encystation-regulated promoter previously identified in G. intestinalis (52). B) The distribution and position of motif 1 (gold) and motif 2 (teal) in chosen genes regulated during encystation. C) Giardia cyst wall proteins. Cyst wall protein 3 is missing in G. muris. Signal peptide (pink). Acidic LRR-domain (grey). C-terminal basic extension (green).

Figure 4. Synteny plot of two duplicated regions in the genome. A, B) Shades of red and blue represent forward and inverted matches between neighboring sequences.

ARPs are drawn in red, NEKs in dark red and VSPs in orange. Pseudogenized genes are drawn in dashed lines. Dark grey filled genes are unique genes to G. muris in comparison with G. intestinalis. Point mutation in arginase is marked in red asterisk. Homologous sequences that are not annotated in the genome are drawn in dashed box on sides of the backbone grey line. Genes discussed in the paper: 21985 and 21992 encode the intact arginase genes, 21986 and 21992 encode the enzyme 2,5-diketo-Dgluconic acid reductase, whereas 21984 and 21994 are hypothetical proteins in A; 14480 encodes 2,5-diketo-D-gluconic acid reductase, 24746 encodes CMD and 24745 encodes ketosteroid isomerase-like protein in B.

Figure 5. Model of the evolution of virulence traits in Giardia parasites. A set of important diplomonad evolutionary innovations and their chronology is depicted at relevant phylogenetic nodes. A) Free-living fornicate ancestor. B) Diplomonad ancestor. C) Giardia ancestor. D) Giardia muris.

Figure S1. A) G. muris cells propagate as trophozoites in the mice small intestine. The cell trophozoites undergo encystation into cysts and are shed in the feces. The cysts are prompted to excyst as they encounter the conditions of the digestive tract. The excyzoites transition into the vegetative trophozoites. Cell material for genomic DNA was harvested from G. muris cysts from infected mice. B) Sub-telomeric regions in G. muris. Sequence motifs in the 10 unitigs terminating in (TAGGG) ${ }^{n}$ telomeric sequences (purple). Ribosomal DNA sequences (black). Satellite-like repeated sequences (green).

Figure S2. Chromosome-scale synteny between G. muris and G. intestinalis WB.
G. muris chromosomes are color coded. The links between the two genomes
representing sequence similarity identified by MUMmer promer ${ }^{94}$, are colored after the G. muris chromosomal color. Circular plot was drawn with circlize ${ }^{92}$.

Figure S3. Sequence logo around start codon (A) and stop codon (B) in G. muris. C) G. muris gene expression from in vivo trophozoites. Genes showing top-ranked FPKM ratios $(\log 2($ Trophs/Cysts) $)$ between in vivo derived trophozoites and cysts (cut-off value ≥ 4). The value is indicated in the teal circle. An orange dot indicates that the ortholog of this gene is upregulated (>2 fold) in G. intestinalis at $7 \mathrm{hrs}, 12 \mathrm{hrs}$ or 22 hrs into encystation ${ }^{39}$.

Figure S4. Trans- and cis-introns in G. muris. A) Aligned trans- and cis-splice junctions in G. muris. B) Splice-site associated motifs in trans-spliced exons. Basepairing stems are underlined. Bases in red denote the predicted cleavage motif. C) Consensus alignment of the cleavage motifs in G. muris. D-E) Predicted secondary structures of D) cis-spliced and E) trans-spliced genes. The secondary structure was predicted using the mfold webserver using default settings and manually curated. GU-rich stretches and cleavage motifs are boxed.

Figure S5. A) Conservation of the VSP C-terminal in G. muris and G. intestinalis. Sequence logos of conserved motifs in the C-terminal of VSPs in G. muris $(\mathrm{n}=25)$ (upper panel) and G. intestinalis WB ($\mathrm{n}=183$) (lower panel) were generated using MEME v5.0.5. Transmembrane and cytosolic pentapeptides were predicted by the Phobius webserver. B) VSP and ψ VSP evolutionary dynamics. A) The ψ VSP arrays (defined as $>3 \psi \mathrm{VSP}$ genes arrayed) in the G. muris genome arranged by chromosome, termini arranged to the right. Arrays of ψ VSPs without chromosomal context are shown below as orphan arrays. C) VSP cluster mostly together in a phylogeny whereas most ψ VSP gene arrays show relaxed clustering. Intact VSP genes are colored red, while $\psi \mathrm{VSP}$ genes are colored according to their resident
ψ VSP array in panel A. Genes with black label are not found in arrays. D)
Expression measurements of VSP and ψ VSP in \boldsymbol{G}. muris. VSP and ψ VSP RNAseq read counts (FPKM) from trophozoites, cysts and excyzoites. Size of the circle corresponds to expression level.

Figure S6. A) Phylogenetic tree of G. muris and G. intestinalis NEKs. B) Phylogenetic tree of G. muris and G. intestinalis ARPs. C) Network analysis of G. muris and G. intestinalis NEKs and ARPs. G. muris genes are represented in circle whereas G. intestinalis genes are shown in triangle. Blue indicates NEK and pink as ARP. Edges are weighted and scaled by reciprocal BLAST scores with evalue $1 \mathrm{e}-05$ as the cutoff.

Figure S7. Phylogenetic tree of C1 family cysteine proteases in diplomonads. Black: G. muris, Red: S. salmonicida, Cyan: G. intestinalis GS/M, Green: G. intestinalis P15, Purple: G. intestinalis WB.

Figure S8. Phylogenetic analyses of HGT genes. A) Fructokinase. B) Mannose-6phosphate isomerase. C) Transcriptional regulator/sugar kinase. D) Arginase. E) 2,5-diketo-D-gluconic acid reductase 1. F) 2,5-diketo-D-gluconic acid reductase 2. G) Carboxymuconolactone decarboxylase. H) Ketosteroid isomerase. I) Tryptophanase. J) Tae4. K) Quorum-quenching N -acyl-homoserine lactonase.

Supplementary Methods: Additional methods section

Declarations

Ethics approval and consent to participate

All animal studies were approved by the Institutional Animal Care and Use
Committees of the University of California, San Diego, USA.

Consent for publication

No applicable.

Availability of data and material

Raw DNA and RNA sequence reads are archived at NCBI Sequence Read Archive (SRA) under accession number SRR8858297-SRR8858305.

This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession PRJNA524057. The version described in this paper is version VDLU00000000.1. The datasets generated and analyzed in this project are also available via GiardiaDB.

Competing interests

The authors declare that they have no competing interests.

Funding

The project was supported by funding from Vetenskapsrådet-M (2017-02918) to SGS.
LE was supported by NIH grant DK120515.

Authors' contributions

SGS, LE, JA and JJH conceived the study. JJH and EE performed RNA and DNA extractions. FX assembled the genome. FX, AJG, JJH, AA, DP, JA, SGS and EE annotated the genome. FX, JJH, AJG and SGS analyzed the data. All authors wrote the paper.

Acknowledgements

Elaine Hanson is acknowledged for technical support performing trophozoite purifications from infected mice.

Phylogenetic analyses were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX).

667 Tables and additional files

Species	G. muris	G. intestinalis	S. salmonicida	K. bialata
Genome size (Mbp)	9.8	12.6	12.9	51.0
Chromosomes	5 (59)	5 (35)	9 (233)	ND
(scaffolds)				$(11,564)$
G+C \%	54.7	46.3	33.4	49.4
Number of protein	4653	4963	8067	17,389
encoding genes				
Mean / Median	$578 / 428$	$635 / 457$	373	333
protein size (aa)				
*Mean / Median	264 / 37	470 / 81	421	597
intergenic size (bp)				
§Coding density \%	84.5 / 88.6	81.5 / 84.7	72.1	ND
Number of introns	3 cis, 5 trans	8 cis, 5 trans	3 cis	124,912
tRNA genes	68	65	145	ND
ASH \%	0.016	0.028	0.15	ND
References	This study	Ref^{32}	Ref ${ }^{95}$	Ref^{31}

[^0]677 Table 2 - Lateral gene transfers in G. muris (Gm), G. intestinalis (Gi WB, Gi GS, Gi P15),
S. salmonicida (Ss), Trepomonas spp. (Trep), K. bialata (Kb) and T. vaginalis (Tv).

Species	Gm	$\begin{gathered} G i \\ W B \\ \hline \end{gathered}$	$\begin{gathered} G i \\ G S \\ \hline \end{gathered}$	$\begin{gathered} G i \\ P 15 \\ \hline \end{gathered}$	Ss	Trep	$\boldsymbol{K b}$	$T v$
2.5-diketo-D-gluconic acid reductase	X		X				X	X
Arginase	X		X					X
Carboxymuconolactone decarboxylase	X		X					
Ferritin-like	X							X
Fructokinase	X							
Ketosteroid isomerase	X							
L-ascorbate-6phosphate lactonase	X		X					
Maltose-Oacetyltransferase	X				X	X		
Mannose-6-phosphate isomerase	X				X			
Phosphopantothenatecysteine ligase	X				X			
Quorum-quenching \mathbf{N} -acyl-homoserine lactonase	X		X					
Ribonuclease 3	X						X	X
Tae4	X							
Tryptophanase	X				X	X		
β-phosphoglucomutase		X	X	X	X	X		
Extracellular nuclease		X	X	X	X	X	X	X

Flavohemoprotein	X	X	X				
Glycerol kinase	X	X	X	X	X		
Inositol-3-phosphate synthase	X	X	X				
Methyltransferase	X	X	X				
NADPH- ferrihemoprotein	X	X	X	X	X		
Purine nucleoside phosphorylase	X	X	X	X	X	X	X
Pyruvate phosphate dikinase	X	X	X		X		
Sugar/H symporter	X	X	X				
Threonine dehydratase	X	X	X	X			

	G. intestinalis *	G. muris *
NEK	$184(26)$	$216(23)$
ARP-1	$269(5)$	$298(6)$
ARP-2	33	$86(16)$
ARP-3	8	33
VSP	133	26
$\boldsymbol{\psi}$ VSP	208	239

* Values in () indicate the number of pseudogenized copies.

Table 4 - Arrangement of VSP genes in the G. muris genome.

Chr	Geneid $\mathbf{1}$	Geneid $\mathbf{2}$	Arrangement	Gene size (aa)	Distan ce (bp)	Genes in between
1	20512	13275	$-><-$	596	2025	ψ ARP-2

1	21145	21149	-> <-	594	1658	ψ ARP-2
1	13124	21374	-> <-	620	8400	ψ ARP-2, alphatubulin
2	16008	21957	<-->	624	8794	NEK, ARP-2
2	22301	22304	-> <-	523	1656	ψ ARP-2
2	12920	$\begin{aligned} & 22758 \\ & (22764, \\ & 22769) \end{aligned}$	<-->	515	$\begin{aligned} & 10612 \\ & (6824, \\ & 8428) \end{aligned}$	NEK, TRP, Zinc
4	24220	24228	-> <-	623	8303	ψ ARP-2, alphatubulin
5	24787	24792	<-->	619	7158	NEK, Zinc, ARP-2

Table S1 A) One-to-one ortholog list between G. muris and G. intestinalis WB. Orthologs inferred by OrthoMCL. B) RNA-Seq expression values in excel file. Sorted according to FPKM values. C) VSP and ψV VSP gene metadata. ' - ' in the pentapeptide motif represents lack of the 3' end sequence. D) List of ventral disc proteins in G. muris. E) Proteases detected in G. muris and G. intestinalis. F) Detailed information about hits of unique genes in G. muris.

References

1. Poulin, R. \& Randhawa, H. S. Evolution of parasitism along convergent lines: from ecology to genomics. Parasitology 142, S6-S15 (2015).
2. Hupalo, D. N., Bradic, M. \& Carlton, J. M. The impact of genomics on population genetics of parasitic diseases. Current Opinion in Microbiology 23, 49-54 (2015).
3. Jackson, A. P. et al. Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism. Current Biology 26, 161-172 (2016).
4. Einarsson, E., Ma'ayeh, S. \& Svärd, S. G. An up-date on Giardia and giardiasis. Current Opinion in Microbiology 34, 47-52 (2016).
5. Cacciò, S. M., Lalle, M. \& Svärd, S. G. Host specificity in the Giardia duodenalis species complex. Infect. Genet. Evol. 66, 335-345 (2018).
6. Fink, M. Y. \& Singer, S. M. The Intersection of Immune Responses, Microbiota, and Pathogenesis in Giardiasis. Trends in Parasitology 33, 901-913 (2017).
7. Ma'ayeh, S. Y. et al. Responses of the Differentiated Intestinal Epithelial Cell Line Caco-2 to Infection With the Giardia intestinalis GS Isolate. Front Cell Infect Microbiol 8, 244 (2018).
8. Ma'ayeh, S. Y. et al. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: The impact on host cells. PLoS Negl Trop Dis 11, e0006120 (2017).
9. Nosala, C., Hagen, K. D. \& Dawson, S. C. 'Disc-o-Fever': Getting Down with Giardia's Groovy Microtubule Organelle. Trends in Cell Biology 28, 99-112 (2018).
10. Nosala, C. \& Dawson, S. C. The Critical Role of the Cytoskeleton in the Pathogenesis of Giardia. Current Clinical Microbiology Reports 2, 155-162 (2015).
11. McInally, S. G. \& Dawson, S. C. Eight unique basal bodies in the multi-flagellated diplomonad Giardia lamblia. Cilia 5, (2016).
12. Liu, J. et al. Secreted Giardia intestinalis cysteine proteases disrupt intestinal epithelial cell junctional complexes and degrade chemokines. Virulence 9, 879-894 (2018).
13. Ortega-Pierres, G. et al. Giardipain-1, a protease secreted by Giardia duodenalis trophozoites, causes junctional, barrier and apoptotic damage in epithelial cell monolayers. International Journal for Parasitology 48, 621-639 (2018).
14. Amat, C. B. et al. Cysteine Protease-Dependent Mucous Disruptions and Differential Mucin Gene Expression in Giardia duodenalis Infection. The American Journal of Pathology 187, 2486-2498 (2017).
15. Cotton, J. A. et al. Giardia duodenalis Cathepsin B Proteases Degrade Intestinal Epithelial Interleukin-8 and Attenuate Interleukin-8-Induced Neutrophil Chemotaxis. Infection and Immunity 82, 2772-2787 (2014).
16. Cotton, J. A. et al. Giardia duodenalis Infection Reduces Granulocyte Infiltration in an In Vivo Model of Bacterial Toxin-Induced Colitis and Attenuates Inflammation in Human Intestinal Tissue. PLoS ONE 9, e109087 (2014).
17. Allain, T., Amat, C. B., Motta, J.-P., Manko, A. \& Buret, A. G. Interactions of Giardia sp. with the intestinal barrier: Epithelium, mucus, and microbiota. Tissue Barriers 5, e1274354 (2017).
18. Mendez, T. L. et al. Sphingolipids, Lipid Rafts, and Giardial Encystation: The Show Must Go On. Current Tropical Medicine Reports 2, 136-143 (2015).
19. Stadelmann, B., Merino, M. C., Persson, L. \& Svärd, S. G. Arginine Consumption by the Intestinal Parasite Giardia intestinalis Reduces Proliferation of Intestinal Epithelial Cells. PLoS ONE 7, (2012).
20. Eckmann, L. et al. Nitric Oxide Production by Human Intestinal Epithelial Cells and Competition for Arginine as Potential Determinants of Host Defense Against the Lumen-Dwelling Pathogen Giardia lamblia. The Journal of Immunology 164, 14781487 (2000).
21. Helmy, Y. A. et al. Occurrence and distribution of Giardia species in wild rodents in Germany. Parasites \& Vectors 11, (2018).
22. Friend, D. S. The fine structure of Giardia muris. The Journal of Cell Biology 29, 317-332 (1966).
23. Dann, S. M., Le, C. H. Y., Hanson, E. M., Ross, M. C. \& Eckmann, L. Giardia Infection of the Small Intestine Induces Chronic Colitis in Genetically Susceptible Hosts. The Journal of Immunology 201, 548-559 (2018).
24. Holberton, D. V. Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris. J. Cell. Sci. 13, 11-41 (1973).
25. Schaefer, F. W., Rice, E. W. \& Hoff, J. C. Factors promoting in vitro excystation of Giardia muris cysts. Trans. R. Soc. Trop. Med. Hyg. 78, 795-800 (1984).
26. Langford, T. D. et al. Central importance of immunoglobulin A in host defense against Giardia spp. Infect. Immun. 70, 11-18 (2002).
27. Davids, B. J. et al. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. J. Immunol. 177, 6281-6290 (2006).
28. Dreesen, L. et al. Giardia muris infection in mice is associated with a protective interleukin 17A response and induction of peroxisome proliferator-activated receptor alpha. Infect. Immun. 82, 3333-3340 (2014).
29. Manko, A. et al. Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. PLOS ONE 12, e0178647 (2017).
30. Saghaug, C. S. et al. Human Memory CD4+ T Cell Immune Responses against Giardia lamblia. Clinical and Vaccine Immunology 23, 11-18 (2016).
31. Tanifuji, G. et al. The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLOS ONE 13, e0194487 (2018).
32. Morrison, H. G. et al. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317, 1921-1926 (2007).
33. Franzén, O. et al. Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog. 5, e1000560 (2009).
34. Jerlström-Hultqvist, J. et al. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics 11, 543 (2010).
35. Xu, F. et al. The Genome of Spironucleus salmonicida Highlights a Fish Pathogen Adapted to Fluctuating Environments. PLoS Genetics 10, (2014).
36. Campbell, S. R., van Keulen, H., Erlandsen, S. L., Senturia, J. B. \& Jarroll, E. L. Giardia sp.: Comparison of electrophoretic karyotypes. Experimental Parasitology 71, 470-482 (1990).
37. Prabhu, A., Morrison, H. G., Martinez, C. R. \& Adam, R. D. Characterisation of the subtelomeric regions of Giardia lamblia genome isolate WBC6. Int. J. Parasitol. 37, 503-513 (2007).
38. Franzén, O. et al. Transcriptome Profiling of Giardia intestinalis Using Strandspecific RNA-Seq. PLoS Computational Biology 9, e1003000 (2013).
39. Einarsson, E. et al. Coordinated Changes in Gene Expression Throughout Encystation of Giardia intestinalis. PLOS Neglected Tropical Diseases 10, e0004571 (2016)
40. Morf, L. et al. The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes. Eukaryotic Cell 9, 1566-1576 (2010).
41. Barash, N. R. et al. Giardia Colonizes and Encysts in High-Density Foci in the Murine Small Intestine. mSphere 2, (2017).
42. Pham, J. K. et al. Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine. Frontiers in Cellular and Infection Microbiology 7, (2017).
43. Hudson, A. J. et al. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia. Nucleic Acids Research 40, 10995-11008 (2012).
44. Kamikawa, R., Inagaki, Y., Tokoro, M., Roger, A. J. \& Hashimoto, T. Split Introns in the Genome of Giardia intestinalis Are Excised by Spliceosome-Mediated transSplicing. Current Biology 21, 311-315 (2011).
45. William Roy, S. Transcriptomic analysis of diplomonad parasites reveals a transspliced intron in a helicase gene in Giardia. PeerJ 5, e2861 (2017).
46. Touz, M. C., Conrad, J. T. \& Nash, T. E. A novel palmitoyl acyl transferase controls surface protein palmitoylation and cytotoxicity in Giardia lamblia VSP palmitoylation. Molecular Microbiology 58, 999-1011 (2005).
47. Touz, M. C. et al. Arginine deiminase has multiple regulatory roles in the biology of Giardia lamblia. Journal of Cell Science 121, 2930-2938 (2008).
48. Davids, B. J. et al. A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS ONE 1, e44 (2006).
49. Ringqvist, E., Avesson, L., Söderbom, F. \& Svärd, S. G. Transcriptional changes in Giardia during host-parasite interactions. Int. J. Parasitol. 41, 277-285 (2011).
50. Manning, G. et al. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biology 12, R66 (2011).
51. Gargantini, P. R., Serradell, M. del C., Ríos, D. N., Tenaglia, A. H. \& Luján, H. D. Antigenic variation in the intestinal parasite Giardia lamblia. Current Opinion in Microbiology 32, 52-58 (2016).
52. Palm, J. E. D., Weiland, M. E.-L., Griffiths, W. J., Ljungström, I. \& Svärd, S. G. Identification of immunoreactive proteins during acute human giardiasis. J. Infect. Dis. 187, 1849-1859 (2003).
53. Liu, J., Svärd, S. G. \& Klotz, C. Giardia intestinalis cystatin is a potent inhibitor of papain, parasite cysteine proteases and, to a lesser extent, human cathepsin B. FEBS Letters 593, 1313-1325 (2019).
54. DuBois, K. N. et al. Identification of the major cysteine protease of Giardia and its role in encystation. J. Biol. Chem. 283, 18024-18031 (2008).
55. Ansell, B. R. E. et al. Time-Dependent Transcriptional Changes in Axenic Giardia duodenalis Trophozoites. PLoS Neglected Tropical Diseases 9, 1-24 (2015).
56. Stadelmann, B., Merino, M. C., Persson, L. \& Svärd, S. G. Arginine Consumption by the Intestinal Parasite Giardia intestinalis Reduces Proliferation of Intestinal Epithelial Cells. PLoS ONE 7, e45325 (2012).
57. Mastronicola, D. et al. Flavohemoglobin and nitric oxide detoxification in the human protozoan parasite Giardia intestinalis. Biochem. Biophys. Res. Commun. 399, 654658 (2010).
58. Das, P., Lahiri, A., Lahiri, A. \& Chakravortty, D. Modulation of the arginase pathway in the context of microbial pathogenesis: A metabolic enzyme moonlighting as an immune modulator. PLoS Pathogens 6, (2010).
59. Krasity, B. C., Troll, J. V., Weiss, J. P. \& McFall-Ngai, M. J. LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochemical Society Transactions 39, 1039-1044 (2011).
60. Ankarklev, J. et al. Comparative genomic analyses of freshly isolated Giardia intestinalis assemblage A isolates. BMC Genomics 16, (2015).
61. Lee, J.-H., Wood, T. K. \& Lee, J. Roles of Indole as an Interspecies and Interkingdom Signaling Molecule. Trends in Microbiology 23, 707-718 (2015).
62. Russell, A. B. et al. A Widespread Bacterial Type VI Secretion Effector Superfamily Identified Using a Heuristic Approach. Cell Host \& Microbe 11, 538-549 (2012).
63. Sana, T. G. et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proceedings of the National Academy of Sciences 113, E5044-E5051 (2016).
64. Kim, M. H. et al. The molecular structure and catalytic mechanism of a quorumquenching N -acyl-L-homoserine lactone hydrolase. Proceedings of the National Academy of Sciences 102, 17606-17611 (2005).
65. Leckenby, A. \& Hall, N. Genomic changes during evolution of animal parasitism in eukaryotes. Current Opinion in Genetics \& Development 35, 86-92 (2015).
66. Peyretaillade, E. et al. Exploiting the architecture and the features of the microsporidian genomes to investigate diversity and impact of these parasites on ecosystems. Heredity (Edinb) 114, 441-449 (2015).
67. Singer, S. M. \& Nash, T. E. The Role of Normal Flora in Giardia lamblia Infections in Mice. The Journal of Infectious Diseases 181, 1510-1512 (2000).
68. Singer, S. M. \& Nash, T. E. T-Cell-Dependent Control of Acute Giardia lamblia Infections in Mice. Infection and Immunity 68, 170-175 (2000).
69. Ropolo, A. S., Saura, A., Carranza, P. G. \& Lujan, H. D. Identification of VariantSpecific Surface Proteins in Giardia muris Trophozoites. Infection and Immunity 73, 5208-5211 (2005).
70. Adam, R. D. et al. The Giardia lamblia vsp gene repertoire: characteristics, genomic organization, and evolution. BMC Genomics 11, 424 (2010).
71. Schmid-Siegert, E. et al. Mechanisms of Surface Antigenic Variation in the Human Pathogenic Fungus Pneumocystis jirovecii. mBio 8, (2017).
72. Mugnier, M. R., Stebbins, C. E. \& Papavasiliou, F. N. Masters of Disguise: Antigenic Variation and the VSG Coat in Trypanosoma brucei. PLoS Pathog. 12, e1005784 (2016).
73. Husnik, F. \& McCutcheon, J. P. Functional horizontal gene transfer from bacteria to eukaryotes. Nature Reviews Microbiology 16, 67-79 (2018).
74. Alsmark, C. et al. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biology 14, R19 (2013).
75. Liu, J., Fu, Z., Hellman, L. \& Svärd, S. G. Cleavage specificity of recombinant Giardia intestinalis cysteine proteases: Degradation of immunoglobulins and defensins. Molecular and Biochemical Parasitology 227, 29-38 (2019).
76. Feely, D. E., Gardner, M. D. \& Hardin, E. L. Excystation of Giardia muris induced by a phosphate-bicarbonate medium: localization of acid phosphatase. J. Parasitol. 77, 441-448 (1991).
77. Kanehisa, M., Sato, Y. \& Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of Molecular Biology 428, 726-731 (2016).
78. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. \& Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research 45, D353-D361 (2017).
79. Karp, P. D. et al. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Briefings in Bioinformatics 17, 877-890 (2016).
80. Aurrecoechea, C. et al. GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Research 37, D526-D530 (2009).
81. Green, M. L. \& Karp, P. D. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5, 76 (2004).
82. Lee, T. J., Paulsen, I. \& Karp, P. Annotation-based inference of transporter function. Bioinformatics 24, i259-267 (2008).
83. Marchler-Bauer, A. \& Bryant, S. H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327-331 (2004).
84. Katoh, K., Misawa, K., Kuma, K. \& Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic acids research 30, 3059-3066 (2002).
85. Do, C. B., Mahabhashyam, M. S. P., Brudno, M. \& Batzoglou, S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome research 15, 330-40 (2005).
86. Notredame, C., Higgins, D. G. \& Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217 (2000).
87. Criscuolo, A. \& Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
88. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. \& Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32, 268-274 (2015).
89. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. \& Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587 (2017).
90. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. \& Vinh, L. S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution 35, 518-522 (2018).
91. Guindon, S. et al. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59, 307321 (2010).
92. Gu, Z., Gu, L., Eils, R., Schlesner, M. \& Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811-2812 (2014).
93. Guy, L., Kultima, J. R. \& Andersson, S. G. E. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334-2335 (2010).
94. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
95. Xu, F. et al. The Genome of Spironucleus salmonicida Highlights a Fish Pathogen Adapted to Fluctuating Environments. PLOS Genetics 10, e1004053 (2014).

A

B

C

D

Motif 1: General promoter motif

Motif 2: Encystation box

B

Upreg
8.85

GMRT_10774 Cyst Wall Protein 1

GMRT_13400 TMP-1 protein

GMRT_13283 SacB
GMRT 15542 Oxidoreductase

GMRT_10283 Synaptic glycoprotein SC2

GMRT_11019 MYB

GMRT_14284 Hypothetical protein

GMRT_15202 UDP-N-acteylglucosamine pyrophōsphorylase
3.65

N/A
3.07
8.76

Promoter motifs
\square Motif 1

- Motif 2
 \qquad
$8.78 \quad+\square \square \square$

$6.69 \pm \xrightarrow{+}$

50 bp

C

G. muris Cyst wall proteins

A

B

chr2
chr4

Diplomonad adaptations

Metabolic adaptation : gene loss / gain via HGT
Cysteine-rich gene families

[^0]: * Mean/Median intergenic distance is based on all RNAs (mRNAs, tRNAs, rRNAs), but not pseudogenized genes.
 § Coding density: First value is based on all RNAs (mRNAs, tRNAs, rRNAs), but not pseudogenized genes; Second value is based on all RNAs including ψ VSP.

