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Abstract1

Calcium imaging is a powerful tool for capturing the simultaneous activity of large2

populations of neurons. Here we determine the extent to which our inferences of neu-3

ral population activity, correlations, and coding depend on our choice of whether and4

how we deconvolve the calcium time-series into spike-driven events. To this end, we5

use a range of deconvolution algorithms to create nine versions of the same calcium6

imaging data obtained from barrel cortex during a pole-detection task. Seeking suit-7

able values for the deconvolution algorithms’ parameters, we optimise them against8

ground-truth data, and find those parameters both vary by up to two orders of mag-9

nitude between neurons and are sensitive to small changes in their values. Applied to10

the barrel cortex data, we show that a substantial fraction of the processing methods11

fail to recover simple features of population activity in barrel cortex already estab-12

lished by electrophysiological recordings. Raw calcium time-series contain an order of13

magnitude more neurons tuned to features of the pole task; yet there is also qualitative14

disagreement between deconvolution methods on which neurons are tuned to the task.15

Finally, we show that raw and processed calcium time-series qualitatively disagree on16

the structure of correlations within the population and the dimensionality of its joint17

activity. Collectively, our results show that properties of neural activity, correlations,18

and coding inferred from calcium imaging are sensitive to the choice of if and how19

spike-evoked events are recovered. We suggest that quantitative results obtained from20

population calcium-imaging be verified across multiple processed forms of the calcium21

time-series.22

1 Introduction23

Calcium imaging is a wonderful tool for high yield recordings of large neural populations24

(Harris et al., 2016; Stringer et al., 2019a; Ahrens et al., 2013; Portugues et al., 2014).25

Many pipelines are available for moving from pixel intensity across frames of video to a26

time-series of calcium fluorescence in the soma of identified neurons (Mukamel et al., 2009;27

Vogelstein et al., 2010; Kaifosh et al., 2014; Pachitariu et al., 2016; Deneux et al., 2016;28

Pnevmatikakis et al., 2016; Friedrich et al., 2017; Keemink et al., 2018; Giovannucci et al.,29

2019). As somatic calcium is proportional to the release of spikes, so we wish to use these30

fluorescence time-series as a proxy for spiking activity in large, identified populations of31

neurons. But raw calcium fluorescence is slow on the time-scale of spikes, nonlinearly32

related to spiking, and contains noise from a range of sources.33

These issues have inspired a wide range of deconvolution algorithms (Theis et al., 2016;34

Berens et al., 2018; Stringer and Pachitariu, 2018), which attempt to turn raw somatic cal-35
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cium into something more closely approximating spikes. Deconvolution algorithms them-36

selves range in complexity from simple deconvolution with a fixed kernel of the calcium37

response (Yaksi and Friedrich, 2006), through detecting spike-evoked calcium events (Jew-38

ell and Witten, 2018; Pachitariu et al., 2016), to directly inferring spike times (Vogelstein39

et al., 2010; Lütcke et al., 2013; Deneux et al., 2016). This continuum of options raises40

the further question of the extent to which we should process the raw calcium signals. We41

address here the question facing any systems neuroscientist using calcium imaging: do we42

use the raw calcium, or attempt to clean it up? Thus our aim is to understand if our43

choice matters: to what extent do our inferences about neural activity, correlations, and44

coding depend on our choice of raw or deconvolved calcium time-series.45

We proceed here in two stages. In order to use deconvolution algorithms, the data46

analyst needs to choose their parameters. We thus first address how good these algorithms47

can be in principle with optimised parameters, and how sensitive their results are to the48

choice of parameter values. To do so, we evaluate qualitatively different deconvolution49

algorithms by optimising their parameters against ground truth data with known spikes.50

With our understanding of their parameters in hand, we then turn to our main ques-51

tion, by analysing a large-scale population recording from the barrel cortex of a mouse52

performing a whisker-based decision task. We compare estimates of population coding and53

correlations obtained using either raw calcium signals, or a range of time-series derived54

from those calcium signals, covering simple deconvolution, event detection, and spikes.55

We find that a substantial fraction of the deconvolution methods used here fail to56

recover basic features of population activity in barrel cortex established from electro-57

physiology. The inferences we draw about coding qualitatively differ between raw and58

deconvolved calcium signals. In particular, coding analyses based on raw calcium sig-59

nals detect an order of magnitude more neurons tuned to task features. Yet there is also60

qualitative disagreement between deconvolution methods on which neurons are tuned.61

The inferences we draw about correlations between neurons do not distinguish between62

raw and deconvolved calcium signals, but can qualitatively differ between deconvolution63

methods. Our results thus suggest care is needed in drawing inferences from population64

recordings of somatic calcium, and that one solution is to replicate all results in both raw65

and deconvolved calcium signals.66

2 Results67

2.1 Performance of deconvolution algorithms on ground-truth data-sets68

We select here three deconvolution algorithms that infer discrete spike-like events, each69

an example of the state of the art in qualitatively different approaches to the problem:70

Suite2p (Pachitariu et al., 2016), a peeling algorithm that matches a scalable kernel to the71

calcium signal to detect spike-triggered calcium events; LZero (Jewell and Witten, 2018), a72

change-point detection algorithm, which finds as events the step-like changes in the calcium73

signal that imply spikes; and MLspike (Deneux et al., 2016), a forward model, which fits74

an explicit model of the spike-to-calcium dynamics in order to find spike-evoked changes75

in the calcium signal, and returns spike times. We emphasis that these methods were76

chosen as exemplars of their approaches, and are each innovative takes on the problem; we77

are not here critiquing individual methods, nor are we seeking a “best” method. Rather,78

we are using an array of methods to illustrate the problems and decisions facing the data79

analyst when using calcium imaging data.80

We first ask if these deconvolution methods work well in principle, by testing if there81
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exists parameter sets for which they each successfully recover known spike times from82

calcium traces. We fit the parameters of each method to a data-set of 21 ground-truth83

recordings (Chen et al., 2013), where the spiking activity of a neuron is recorded simulta-84

neously with a high-signal-to-noise cell-attached glass pipette and 60 Hz calcium imaging85

(Figure 1a). To fit the parameters for each recording, we sweep each method’s parameter86

space to find the parameter value(s) with the best match between the true and inferred87

spike train.88

The best-fit parameters depend strongly on how we evaluate the match between true89

and inferred spike trains. The Pearson correlation coefficient between the true and inferred90

spike train is a common choice (Brown et al., 2004; Paiva et al., 2010; Theis et al., 2016;91

Reynolds et al., 2018; Berens et al., 2018), typically with both trains convolved with a92

Gaussian kernel to allow for timing errors. However, we find that choosing parameters to93

maximise the correlation coefficient can create notable errors. The inferred spike trains94

from MLSpike have too many spikes on average (mean error over recordings: 31.72%),95

and the accuracy of recovered firing rates widely varies across recordings (Fig 1b, blue96

symbols). We attribute these errors to the noisy relationship between the correlation97

coefficient and the number of inferred spikes (Figure 1c): for many recordings, there is98

no well-defined maximum coefficient, especially for the amplitude parameter A, so that99

near-maximum correlation between true and inferred trains is consistent with a wide range100

of spike counts in the inferred trains. We see the same sensitivity for the event rates from101

recordings optimised using Suite2p (Figure 1e) and LZero (Figure 1f, top). If we compare102

their inferred event rates to true firing rates (Fig 1b), we see Suite2p estimates far more103

events than spikes (mean error 79.47%) and LZero fewer events than spikes (mean error: -104

21.14%). These further errors are problematic: there cannot be more spike-driven calcium105

events than spikes, and LZero’s underestimate is considerably larger than the fraction of106

frames with two or more spikes (< 0.002% frames).107

To address the weaknesses of the Pearson correlation coefficient, we instead optimise108

parameters using the error rate metric of Deneux et al. (2016). The error rate is derived109

from the proportions of missed and excess spikes (see Methods), and returns a normalised110

score between 0 for a perfect match between two spike trains, and 1 when all the spikes are111

missed. This comparison between inferred and true spike trains is most straightforward112

for algorithms like MLSpike that directly return spike times; for the other algorithms, we113

use here their event times as inferred spikes, a reasonable choice given the low firing rate114

and well separated spikes in the ground truth data. Choosing parameters to minimise the115

error rate between the true and inferred spike-trains results in excellent recovery of the116

true number of spikes for all three deconvolution methods (Fig 1b, green symbols), with117

mean errors in spike counts of 12% excess spikes for Suite2P, 7.3% for MLSpike, and 5%118

for LZero. As we show in Figure 1d-f, for all three deconvolution methods the error rate119

has a well-defined minimum for almost every recording. Consequently, all deconvolution120

methods can, in principle, accurately recover the true spike-trains given an appropriate121

choice of parameters.122

A potential caveat here is that the ground-truth data are single neurons imaged at a123

frame-rate of 60Hz, an order of magnitude greater than is typically achievable in population124

recordings (Peron et al., 2015a). Such a high frame-rate could allow for more accurate125

recovery of spikes than is possible in population recordings. To test this, we downsample126

the ground-truth data to a 7Hz frame-rate, and repeat the parameter sweeps for each127

deconvolution method applied to each recording. As we show in Figure 1g, optimising128

parameters using the minimum error rate still results in excellent recovery of the true spike129

rate (and interestingly for some recordings reduces the error when using the correlation130
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Figure 1: Deconvolution algorithms can accurately recover spiking events in principle
(a) Example simultaneous recording of somatic voltage (grey) and calcium activity (black) imaged
at 60Hz.
(b) Error in estimating the true firing rate when using optimised parameters, across all three
methods. One symbol per recording. We separately plot errors for parameters optimised to
maximise the correlation coefficient, and the errors for parameters optimised to minimise the
error rate. Horizontal black bars are means. Error is computed relative to the true firing rate:
(Ratetrue − Rateestimated/Ratetrue); and error of 1 thus corresponds to twice as many estimated
spikes as there are in the ground-truth data. For LZero and Suite2p, Rateestimated is computed
from event times.
(c) Dependence of MLspike’s deconvolution performance on the firing rate of the inferred spike
train. For each of MLSpike’s free parameters, we plot the correlation coefficient between true and
inferred spikes as a function of the firing rate estimated from the inferred spikes obtained at each
tested parameter value. One line per recording; colours are used solely to help distinguish the lines.
Parameters: A, calcium transient amplitude per spike (∆F/F ); τ , calcium decay time constant
(s); σ, background (photonic) noise level (∆F/F )
(d) as in (c), but using error rate between the true and inferred spikes.
(e) Dependence of Suite2p’s deconvolution performance on the firing rate of the inferred event
train as its detection threshold parameter is varied. Left: correlation coefficient; right: error rate.
(f) Dependence of LZero’s deconvolution performance on the firing rate of the inferred event train,
as its two parameters are varied: λ, sparsity of spike events; scale, the magnitude of a single spike-
induced fluorescence change.
(g) As for (b), but with the somatic calcium down-sampled to 7Hz before optimising parameters
for the deconvolution methods.
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coefficient). Lower frame-rates need not then be an impediment to using deconvolution131

methods.132

2.2 Parameters optimised on ground-truth are widely distributed and133

sensitive134

What might be an impediment to using deconvolution methods on population recordings is135

if the best parameter values vary widely between neurons. If so, then parameters optimised136

for one neuron would generalise poorly to the rest of the population.137

Figure 2a-b plots the best-fit parameter values for each single neuron recording across138

deconvolution methods and sampling rates. Each method has at least one parameter with139

substantial variability across recordings, varying by an order of magnitude or more. This140

suggests that the best parameters for one neuron may not apply to another. In turn, this141

parameter variation between neurons could mean that analysis of population recordings142

created from a single set of deconvolution parameters would potentially include many143

aberrant time-series.144

The problem of between-neuron variation in parameter values would be compensated145

somewhat if the quality of the inferred spike or event trains is robust to changes in those146

values. However, we find performance is highly sensitive to changes in some parameters.147

Figure 2c-e shows that for most recordings the quality of the inferred spike train abruptly148

worsens with small increases or decreases in the best parameter, regardless of the decon-149

volution method used. As we show in Figure 2f, the inferred spikes for a single neuron150

can vary dramatically as we change a parameter value, even when we restrict ourselves to151

just the range of optimised values across the recordings. That the parameters are sensitive152

and vary considerably across neurons has the significant implication that, unless ground153

truth data is available for every neuron being analysed, deconvolution algorithms could154

be substantially inaccurate.155

2.3 Deconvolution of population imaging in barrel cortex during a de-156

cision task157

We turn now to the core problem facing any analyst of population calcium imaging data:158

there are rarely ground truth data, and never for every neuron. In the absence of ground-159

truth data, there is no way of selecting a “best” deconvolution algorithm or a “best”160

set of parameters for analysing a population recording. Yet the above results imply that161

the insights we gain about population activity would indeed depend crucially on which162

deconvolution method we use. We now test the extent of this dependence by applying163

8 different deconvolution methods to the same raw calcium time-series, and compare the164

resulting statistics of neural activity, properties of neural coding, and the extent and165

structure of correlations between neurons.166

The data we use are two-photon calcium imaging time-series from a head-fixed mouse167

performing a whisker-based two-alternative decision task (Fig. 3a-b), from the study of168

Peron et al. (2015b). We analyse here a single session with 1552 simultaneously recorded169

pyramidal neurons in L2/3 of a single barrel in somatosensory cortex, imaged at 7 Hz for170

just over 56 minutes, giving 23559 frames in total across 335 trials of the task.171

Our primary goal is to understand how the choices of deconvolving these calcium-172

imaging data alter the scientific inferences we can draw. As our baseline, we use the173

“raw” ∆F/F time-series of changes in calcium indicator fluorescence. We use the above174

three discrete deconvolution methods to extract spike counts (MLSpike), event occurrence175
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Figure 2: Variation in best-fit spike deconvolution parameters across ground-truth
recordings.
(a) Distributions of optimised parameter values across recordings. For each parameter (a column),
the bottom panel plots the found parameter values on the x-axis against the recording ID on the
y-axis (in an arbitrary but consistent order); the top panel plots the marginal distribution of the
parameter value over all recordings. We plot for each recording the optimised parameter value
found using correlation coefficient and error rate. Lines join recordings from the same neuron.
(b) As for panel (a), fits to the same ground-truth data down-sampled to 7 Hz.
(c) Change in error rate as a function of the change away from a parameter’s optimum value, for
each of MLSpike’s free parameters. One line per recording, at 60 Hz frame rate.
(d) As for panel (c), for changes in Suite2p’s threshold parameter.
(e) As for panel (c), for changes in LZero’s two parameters.
(f) Example of the range of inferred spike event trains possible when applying plausible but wrong
parameter values to a recording. For one recording, we plot in red the inferred spike events detected
using its optimised threshold parameter for Suite2p. Alongside we plot the inferred trains of spike
events that result if we vary the threshold parameter across the range of optimised values found
within the set of 21 recordings (values in panel (a), optimised using error rate).

(LZero), or event magnitude (Suite2p) per frame. Given the above-demonstrated depen-176

dence of these algorithms on their parameters, we use Yaksi and Friedrich (2006)’s simple177

deconvolution of the raw calcium with a fixed kernel of the GCaMP6s response to a single178

spike, whose only free parameters are fixed from data. For comparison, we use Peron et al.179
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Figure 3: Experimental data from Peron et al. (2015b).
(a) Schematic of task set-up. A pole was raised within range of the single right-side whisker; the
pole’s position, forward (red circle) or backward (blue circles) indicated whether reward would be
available from the left or right lick-port.
(b) Schematic of trial events. The pole was raised and lowered during the sample period; a auditory
cue indicated the start of the response period.
(c) All deconvolution methods applied to one raw calcium signal from the same neuron.

(2015b)’s own version of denoised calcium time-series, which they created using a custom180

version of the peeling algorithm (Lütcke et al., 2013), a greedy template-fitting event-181

detection algorithm with variable rise and decay time constants across events. The Peron182

time-series are then the detected spike-events convolved with a kernel of the detected rise183

and decay time. And finally, for comparison with the Peron time-series, we create equiva-184

lent versions for our three discrete-deconvolution methods, by convolving their recovered185

spikes/events with a fixed GCaMP6s spike-response kernel. Figure 3c show an example186

raw calcium time-series for one neuron, and the result of applying each of these 8 process-187

ing methods. We thus repeat all analyses on 9 different sets of time-series extracted from188

the same population recording.189

We choose the algorithm parameters as follows. Simple deconvolution (Yaksi and190

Friedrich, 2006) uses a parameterised kernel of the GCaMP6s response to a single spike.191

For the three discrete deconvolution methods, we choose the modal values of the best-fit192

parameters that optimised the error rate over the ground-truth recordings. This seems193

a reasonably consistent way obtaining comparable results between methods, by using194

the most consistently performing values obtained from comparable data: neurons in the195

same layer (L2/3) in the same species (mouse), in another primary sensory area (V1).196

Most importantly for our purposes, choosing the modal values means we avoid extreme197

and potentially pathological regions of the parameter space. Again this recapitulates the198

problem facing any analyst of population calcium imaging data, of how to choose the199

parameters for a deconvolution algorithm in the absence of any ground-truth recordings.200

2.4 Deconvolution methods disagree on estimates of simple neural statis-201

tics202

We first check how well each approach recovers the basic statistics of neural activity203

event rates in L2/3 of barrel cortex. Electrophysiological recordings have shown that the204

distribution of firing rates across neurons in a population is consistently long-tailed, and205

often log-normal, all across rodent cortex (Wohrer et al., 2013). Cell-attached recordings206

of L2/3 neurons in barrel cortex are no different (O’Connor et al., 2010), with median207

firing rates less than 1 Hz, and a long right-hand tail of rarer high-firing neurons. We thus208

test if the calcium event rates or spike rates from our time-series follow such a distribution.209

(Event rates for raw calcium, Peron, Yaksi and the continuous (kernel) versions of the data210

7

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2020. ; https://doi.org/10.1101/871137doi: bioRxiv preprint 

https://doi.org/10.1101/871137
http://creativecommons.org/licenses/by-nc/4.0/


< 1%

100%
8%

92%
< 1%

100%
< 1%

100%
< 1%

100%
9%

91%
< 1%

100%
< 1%

100%

26%

74%

a b

0 1 2 3 4
0

500

Calcium

0 1 2 3 4
0

500

Peron

0 1 2 3 4
0

100

200

Yaksi

0 1 2 3 4
0

200

400

Suite2P
kernel

0 1 2 3 4
0

50

MLSpike
kernel

0 1 2 3 4
0

100

200

LZero
kernel

0 1 2 3 4
0

500
Suite2P

events

0 1 2 3 4
0

50

100

MLSpike
events

0 1 2 3 4
Event rate (Hz)

0

500
LZero

events

N
u

m
b

e
r 

o
f 

n
e

u
ro

n
s

Figure 4: Estimates of population-wide event rates vary qualitatively across decon-
volution methods.
(a) The distribution of event rate per neuron across the recorded population, according to each
deconvolution method. For raw calcium and the five continuous versions of the time-series (upper
6 panels), events are detected as fluorescence transients greater in magnitude than three stan-
dard deviations of background noise. The discrete deconvolution methods (lower 3 panels) return
per frame: a spike count (MLSpike), a binary event detection (LZero), or an event magnitude
(Suite2p); these time-series were thus sparse, with most frames empty.
(b) Proportion of active (gray) and silent (black) neurons for each method. Silent neurons are
defined following (Peron et al., 2015b) as those with an event rate less than 0.0083Hz.
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was obtained by thresholding the calcium time-series)211

Figure 4a shows that the raw calcium and two of the discrete deconvolution methods212

(Suite2pevents, LZeroevents) qualitatively match the expected distributions of event rates213

(median near zero, long right-hand tails). The Peron time-series also have the correct214

distribution of event rates. All other methods give wrong distributions , whether of spike215

rates (MLSpike) or event rates (all other methods). There is also little overlap in the216

distributions of spike rates between the three discrete deconvolution methods. Applying a217

kernel to their inferred spikes/events shifts rather than smooths the firing rate distributions218

(Suite2Pkernel, MLSpikekernel, LZerokernel), suggesting noise in the deconvolution process219

is amplified through the additional steps of convolving with a kernel and thresholding.220

Cell-attached recordings in barrel cortex have shown that ∼26% of L2/3 pyramidal221

neurons are silent during a similar pole localisation task, with silence defined as emitting222

fewer than one spike every two minutes (O’Connor et al., 2010). For the nine approaches223

we test here, six estimated the proportion of silent neurons to be less than 1%, including224

two of the discrete deconvolution methods (Figure 4b). For raw calcium and methods225

returning continuous time-series, raising the threshold for defining events will lead to more226

silent neurons, but at the cost of further shifting the event rate distributions towards zero.227

Even for simple firing statistics of neural activity, the choice of deconvolution method gives228

widely differing, and sometimes wrong, results.229

2.5 Inferences of single neuron tuning differ widely between raw calcium230

and deconvolved methods231

In any paradigm where one records the responses of neurons as an animal performs some232

task, a basic question is what fraction of neurons in a target brain region are selective to233

some aspect of the task. Here we ask how the detection of task-tuned neurons depends on234

our choice of processing method for the raw calcium time-series.235

The decision task facing the mouse (Fig. 3a) requires that it moves its whisker back-236

and-forth to detect the position of the pole, delay for a second after the pole is withdrawn,237

and then make a choice of the left or right lick-port based on the pole’s position (Fig. 3b).238

As the imaged barrel corresponds to the single spared whisker (on the contralateral side239

of the face), so the captured population activity during each trial likely contains neurons240

tuned to different aspects of the task.241

Following Peron et al. 2015a, we define a task-tuned neuron as one for which the peak242

in its trial-averaged activity exceeds the predicted upper limit from shuffled data (Fig. 5a).243

When we apply this definition to the raw calcium time-series, close to half the neurons are244

tuned (734/1552; Fig.5b). This is more than double the proportion of tuned neurons we245

find for the next nearest method (Yaksi’s simple deconvolution), and at least a factor of246

5 greater than the proportion of tuned neurons resulting from any discrete deconvolution247

method (“events”), which each report less than 10% of the neurons are tuned.248

The wide variation in numbers reflects little consistent agreement between the nine249

sets of time-series about which neurons are tuned. A substantial fraction of the neurons250

are found tuned in only one time-series of the nine (Fig.5c). And that time-series is251

overwhelmingly the raw calcium: of the 734 tuned neurons in the raw calcium time-series,252

half (364, 49.5%) are unique, detected only in those time-series. By contrast, across all 8253

deconvolution methods only 6 neurons are found tuned by one method alone. Thus either254

the raw calcium time-series contains many erroneously-detected tuned neurons, or the 8255

deconvolution methods combined miss many tuned neurons, or both.256

One likely source of this broad disagreement is that the raw calcium time-series allows a257

generous definition of “tuned”. Spike-evoked changes to the somatic calcium concentration258
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Figure 5: Inferences of single neuron tuning show poor agreement between raw
calcium and deconvolution methods, and between methods.
(a) Examples of a tuned (left) and non-tuned (right) neuron from the raw calcium time-series.
Black: trial-averaged calcium fluorescence. Grey shading: full range of ∆F/F from the shuffled
data. Red line: 95th percentile of the peak ∆F/F value across the shuffled data.
(b) Number of tuned neurons per deconvolution method. Error bars are 95% Jeffreys confidence
intervals for binomial data (Brown et al., 2001).
(c) Agreement between methods. For each neuron, we count the number of methods (including
raw calcium) for which it is labelled as tuned. Bars show the number of neurons classified as tuned
by exactly N methods.
(d) Similar to (c), but breaking down the neurons into: agreement between methods (including raw
calcium) resulting in continuous signals (left panel); and agreement between discrete deconvolution
methods (right panel).
(e-h) Identifying robust neuron tuning. Panel groups (e) to (h) show neurons classed as tuned
by increasing numbers of deconvolution methods. Each panel within a group plots one neuron’s
normalised (z-scored) trial-average histogram per row, ordered by the time of peak activity. The
first panel in a group of 9 shows histograms from raw calcium signals; each of the 8 subsequent
panels shows trial-average histograms for the same neurons, but following processing by each of
the eight deconvolution methods.
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are slow on the time-scale of spikes, and the calcium sensors are slower still: the GCaMP6s259

sensor’s response to a single spike has a rise-to-maximum time of around 0.2 seconds, and260

a half-width decay time of at least 0.5 seconds (Chen et al., 2013; Dana et al., 2014). This261

creates a strong low-pass filtering of the underlying spike train, leading to weak correlation262

between the timing of the spikes and the timing of the calcium changes (see also Sabatini263

(2019)). Consequently, in the raw calcium time-series a neuron could emit a spike on each264

trial that are over a second apart between trials, yet each would still contribute to a “peak”265

in the trial-averaged signal. (Indeed in Fig.5b we see this low-pass filtering effect in the266

convolved versions of our discrete-deconvolution time-series: we always get more tuned267

neurons in the “kernel” versions despite them having identical underlying spike-events to268

the “event” versions.) Finding a tuned neuron in the raw calcium time-series tells us only269

that the neuron was active during the trial, not that its spikes were specifically tuned to270

some event in the world.271

Indeed, the need to correct the low correlation between raw calcium time-series and272

behaviour or events in the world is a major reason why deconvolution methods have been273

developed. Simply convolving the raw calcium signal with a fixed-parameter kernel as in274

the Yaksi method immediately halves the number of apparently tuned neurons, potentially275

because the immediate rise time and fixed decay time of the kernel reduce the low-pass276

filtering of the spike train. And when recovering discrete spike-events a neuron can only be277

“tuned” if those spike-events align in time across trials, leading to far fewer tuned neurons.278

We can see then our choice of time-series processing creates a continuum of definitions of279

neuron tuning in this analysis.280

But the implicit definition of tuning is not the only source of disagreement between281

the 9 time-series. Of the neurons found tuned in more than one time-series, the agreement282

is still poor. Just 21 (1.35%) are labelled as tuned in all nine (Fig.5c). Even separately283

considering the continuous and spike-event time-series, we find only 38 (2.4%) neurons are284

tuned across all six continuous methods, and 25 (1.6%) neurons for all three spike-event285

deconvolution methods (Fig.5d). Even between time-series with similar implicit definitions286

of “tuned”, there is inconsistency about which neurons fit that definition.287

An approach for the consistent detection of tuned neurons is to find those agreed288

between the raw calcium time-series and more than one deconvolution method. In Figure289

5e-h, we show how increasing the number of methods required to agree on a neuron’s tuned290

status creates clear agreement between time-series processed with all methods, even if a291

particular method did not reach significance for that neuron. Even requiring agreement292

between the raw calcium and just two other methods is enough to see tuning of many293

neurons. More reliable identification of task-tuned neurons could potentially be achieved294

by triangulating the raw calcium with the output of multiple deconvolution methods.295

In the pole detection task considered here, neurons tuned to pole contact are potentially296

crucial to understanding the sensory information used to make a decision. Touch onset is297

known to drive a subset of neurons in barrel cortex to spike with short latency and low298

jitter (O’Connor et al., 2010; Hires et al., 2015). Detecting such rapid, precise responses299

in the slow kinetics of calcium imaging is challenging, suggesting discrete-deconvolution300

methods might be necessary to detect touch-tuned neurons. To test this, in each of the301

9 sets of time-series we identify touch-tuned neurons by a significant peak in their touch-302

triggered activity (Fig 6a). Figure 6b shows that, while all data-sets have touch-tuned303

neurons, the number of such neurons differs substantially between them. And rather than304

being essential to detecting fast responding touch-tuned neurons, discrete deconvolution305

methods disagree strongly on touch-tuning, with LZero (events) finding more touch-tuned306

neurons than in the raw calcium, but MLSpike (events) finding less than half that number.307
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Figure 6: Touch-triggered neuron responses.
(a) Touch-triggered average activity from one neuron, across all deconvolution methods. The
dotted line is the imaging frame in which the whisker touched the pole.
(b) Number of touch-tuned neurons across deconvolution methods. A neuron is classed as touch-
tuned if its peak touch-triggered activity is significantly greater than randomly resampled data.
Error bars are 95% Jeffreys confidence intervals for binomial data.

Thus our inferences of the coding of task-wide or specific sensory events crucially depends308

on both whether we deconvolve the raw calcium time-series or not, and on which algorithm309

we choose to do so.310

2.6 Inconsistent recovery of population correlation structure across de-311

convolution approaches312

The high yield of neurons from calcium imaging is ideal for studying the dynamics and313

coding of neural populations (Harvey et al., 2012; Huber et al., 2012; Kato et al., 2015).314

Many analyses of a population’s dynamics or coding start from pairwise correlations be-315

tween its neurons, whether as measures of a population’s synchrony or joint activity, or as316

a basis for further analyses like clustering and dimension reduction (Cunningham and Yu,317

2014; Humphries, 2017; Stringer et al., 2019b). Consequently, differences in correlation318

estimates will play out as different inferences of population dynamics or population cod-319

ing. For example, weak correlations between neurons in primary visual cortex would be320

evidence of sparse coding of visual information (Stringer et al., 2019a; Rumyantsev et al.,321

2020) . We now ask how our inferences of population correlation structure in the barrel322

cortex data also depend on the choice of deconvolution method.323

Figure 7a shows that the distributions of pairwise correlations qualitatively differ be-324

tween the sets of time-series we derived from the same calcium imaging data. The con-325

siderably narrower distributions from the discrete deconvolution time-series compared to326

the others is expected, as these time-series are sparse. Nonetheless, there are qualitative327

differences within the sets of discrete and continuous time-series. Some distributions are328

approximately symmetric, with broad tails; some asymmetric with narrow tails; the corre-329

lation distribution from the Peron method time-series is the only one with a median below330

zero. These qualitative differences are not due to noisy estimates of the pairwise correla-331

tions: for all our sets of time-series the correlations computed on a sub-set of time-points332

in the session agree well with the correlations computed on the whole session (Figure 7b).333

(Although we note that, as expected, the three spike-event time-series require far more334

time-points to obtain stable correlation estimates, because of their sparse events). Thus335

pairwise correlation estimates for each method are stable, but their distributions differ336

between methods.337

Looking in detail at the full correlation matrix shows that even for methods with similar338

distributions, their agreement on correlation structure is poor. Some neuron pairs that ap-339

12

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2020. ; https://doi.org/10.1101/871137doi: bioRxiv preprint 

https://doi.org/10.1101/871137
http://creativecommons.org/licenses/by-nc/4.0/


Calc
ium

Per
on

Yak
si

Suit
e2

P ke
rn

el

M
LS

pik
e ke

rn
el

LZ
er

o ke
rn

el

Suit
e2

P ev
en

ts

M
LS

pik
e ev

en
ts

Per
on

Yak
si

Suit
e2

P ke
rn

el

M
LS

pik
e ke

rn
el

LZ
er

o ke
rn

el

Suit
e2

P ev
en

ts

M
LS

pik
e ev

en
ts

LZ
er

o ev
en

ts 0

0.2

0.4

0.6

0.8

Suit
e2

P ev
en

ts

M
LS

pik
e ev

en
ts

M
LS

pik
e ev

en
ts

LZ
er

o ev
en

ts

Per
on

Yak
si

Suit
e2

P ke
rn

el

M
LS

pik
e ke

rn
el

LZ
er

o ke
rn

el

Calc
ium

Per
on

Yak
si

Suit
e2

P ke
rn

el

M
LS

pik
e ke

rn
el

0

0.2

0.4

0.6

0.8

a

b

c d

e

Calcium Peron Yaksi

Suite2P
kernel

MLSpike
kernel

LZero
kernel

Suite2P
events

MLSpike
events

LZero
events

0

0.5

1

P
ai

rw
is

e 
co

rr
el

at
io

n
 (

P
ea

rs
on

)

0

0.2

Figure 7: Effects of deconvolution on pairwise correlations between neurons.
(a) Distributions of pairwise correlations between all neurons, for each deconvolution method (one
dot per neuron pair, x-axis jitter added for clarity). Solid black lines are 5th, 50th and 95th
percentiles.
(b) Stability of correlation structure in the population. We quantify here the stability of the
pairwise correlation estimates, by comparing the correlation matrix constructed on the full data
(Cxytotal) to the same matrix constructed on a subset of the data (Cxysubset). Each data-point is
the mean correlation between Cxytotal and Cxysubset; one line per deconvolution method. Shaded
error bars are one standard deviation of the mean across 100 random subsets.
(c) Examples of qualitatively differing correlation structure across methods. Each panel plots the
pairwise correlations for the same 50 neurons on the same colour scale. As examples, we highlight
two pairs of neurons: one consistently correlated across different methods (green boxes); the other
not (yellow boxes).
(d) Comparison of pairwise correlation matrices between deconvolution methods. Each square is
the Spearman’s rank correlation between the full-data correlation matrix for that pair of methods.
We use rank correlation to compare the ordering of pairwise correlations, not their absolute values.
(e) as in (d), but split to show continuous methods (left) or discrete deconvolution methods (right).
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pear correlated from time-series processed by one deconvolution method are uncorrelated340

when processed with another method (Figure 7c). Over the whole population, the cor-341

relation structure obtained from the raw calcium, Yaksi and Suite2p (kernel) time-series342

all closely agree, but nothing else does (Figure 7d): the correlation structure obtained343

from LZero agrees with nothing else; and the discrete deconvolution methods all generate344

dissimilar correlation structures (Figure 7e). Our inferences about the extent and identity345

of correlations within the population will differ qualitatively depending on our choice of346

deconvolution method.347

2.7 Deconvolution methods show the same population activity is both348

low and high dimensional349

Dimensionality reduction techniques, like principal components analysis (PCA), allow re-350

searchers to make sense of large scale neuroscience data (Chapin and Nicolelis, 1999;351

Briggman et al., 2005; Churchland et al., 2012; Harvey et al., 2012; Cunningham and Yu,352

2014; Kobak et al., 2016), by reducing the data from N neurons to d < N dimensions. Key353

to such analyses is the choice of d dimensions, a choice guided by how much of the origi-354

nal data we can capture. Differences in dimensionality imply different computations: for355

example, low-dimensional activity implies a sensory population uses a redundancy code,356

while high-dimensional activity implies the population uses a sparse code (Wohrer et al.,357

2013). To assess such inferences of population dimensionality, we apply PCA to our 9 sets358

of imaging time-series to estimate the dimensionality of the imaging data (which for PCA359

is the variance explained by each eigenvector of the data’s covariance matrix).360

Figure 8a plots for each deconvolution method the cumulative variance explained when361

increasing the number of retained dimensions. Most deconvolution methods qualitatively362

disagree with the raw calcium data-set on the relationship between dimensions and vari-363

ance. This relationship is also inconsistent across deconvolution methods; indeed the364

discrete deconvolution methods result in the shallowest (MLSpikeevents) and amongst the365

steepest (LZeroevents) relationships between increasing dimensions and variance explained.366

The number of dimensions required to explain 80% of the variance in the data ranges367

from d = 125 (Peron) to d = 1081 (MLSpikeevents), a jump from 8% to 70% of all pos-368

sible dimensions (Fig 8b). Thus we could equally infer that the same L2/3 population369

activity is low dimensional (<10% dimensions required to explain 80% of the variance)370

or high-dimensional (>50% of dimensions required) depending on our choice of imaging371

time-series.372
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Figure 8: Dimensionality of population activity.
(a) Cumulative variance explained by each dimension of the data’s covariance matrix, one line per
deconvolution method. Dashed line is the 80% threshold used in panel (b).
(b) Proportion of dimensions required to explain 80% of the variance in the data.

3 Discussion373

Imaging of somatic calcium is a remarkable tool for capturing the simultaneous activity of374

hundreds to thousands of neurons. But the time-series of each neuron’s calcium fluores-375

cence is inherently noisy and non-linearly related to its spiking. We sought here to address376

how our choice of corrections to these time-series – to use them raw, deconvolve them into377

continuous time-series, or deconvolve them into discrete events – affect the quality and378

reliability of the scientific inferences drawn. Our approach was to replicate the process of379

a typical population calcium-imaging study: choose an algorithm, choose its parameters380

using some reasonable heuristics, and analyse the resulting time-series.381

Our results show the choice of processing qualitatively changes the potential scientific382

inferences we draw about the activity, coding, and correlation structure of a neural popula-383

tion in barrel cortex. Only the raw calcium and two of the processed time-series correctly384

capture the expected long-tailed distribution of spiking activity across the population.385

Neurons identified as being tuned to any feature of a pole-detection task differ widely be-386

tween processing methods. Few methods agree on the pairwise correlation structure of the387

population. Moreover, the apparent dimensionality of the population activity can differ by388

an order of magnitude across the processing methods. Across all analyses, we consistently389

observe that the results differ sharply between the raw calcium and most, if not all, of the390

processed time-series. However, the deconvolved time-series also consistently disagreed391

with each other, even between methods of the same broad class (continuous or discrete392

time-series).393

3.1 Accurate discrete deconvolution is possible, but sensitive394

We find much that is encouraging. In fitting discrete deconvolution methods to ground-395

truth data, we found they can in principle accurately recover known spike-times from raw396

calcium time-series. A caveat here is that the choice of metric for evaluation and fitting397

of parameters is of critical importance. The widely-used Pearson correlation coefficient is398

a poor choice of metric as it returns inconsistent results with small changes in algorithm399

parameters, and leads to poor estimates of simple measures such as firing rate when used400

across methods and sampling rates. By contrast, the Error Rate metric (Deneux et al.,401
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2016; Victor and Purpura, 1996) resulted in excellent recovery of ground-truth spike trains.402

Other recently developed methods for comparing spike-trains based on information theory403

(Theis et al., 2016) or fuzzy set theory (Reynolds et al., 2018), may also be appropriate.404

However, while good estimates of ground-truth spike times can be achieved with mod-405

ern discrete deconvolution methods (Berens et al., 2018; Pachitariu et al., 2018), the best406

parameters vary substantially between cells, and small changes in parameter values result407

in poor performance. This variation and sensitivity of parameters played out as widely-408

differing results between the three discrete deconvolution methods in analyses of neural409

activity, coding, and correlation structure.410

3.2 Choosing parameters for deconvolution methods411

A potential limitation of our study is that we use a single set of parameter values for412

each discrete deconvolution method applied to the population imaging data from barrel413

cortex. But then our situation is the same as that facing any data analyst: in the absence414

of ground-truth, how do we set the parameters? Our solution here was to use the modal415

parameter values from ground-truth fitting. We also felt these were a reasonable choice for416

the population imaging data from barrel cortex, given that the ground-truth recordings417

came from the same species (mouse) in the same layer (2/3) of a different bit of primary418

sensory cortex (V1). It would be instructive in future work to quantify the dependence419

of analyses of neural activity, coding, and correlation on varying the parameters of each420

deconvolution method.421

3.3 Ways forward422

How then to solve the problem of the wide disagreements we report here, both between the423

raw calcium and the deconvolved time-series, and between the outputs of the deconvolution424

methods?425

The simplest approach is to side-step the issue, and just use the raw calcium time-426

series. Many studies use the raw calcium signal as the basis for all their analyses (Harvey427

et al., 2012; Huber et al., 2012; Chu et al., 2016), perhaps assuming this is the least biased428

approach. Our results suggest caution: the discrepancy between the raw and deconvolved429

calcium on single neuron coding suggests an extraordinary range of possible results, from430

about half of all neurons tuned to the task down to less 5 percent. The qualitative431

conclusion – there is coding – is not satisfactory. Moreover, as noted by (Sabatini, 2019),432

the raw calcium fluorescence signal is a low-pass filtered version of the underlying spike433

train, which places strong limits on the maximum correlation between the raw signal434

and underlying spikes, and hence on any correlations between the raw signal and the435

behavioural variables related to those spikes. Indeed, the desire for better recovery of the436

spikes and their correlations with behaviour is one of the principle reasons for developing437

deconvolution methods.438

A natural step then is to improve deconvolution methods with better forward models,439

like MLSpike, for the link from spiking to calcium fluorescence (Greenberg et al., 2018).440

Indeed, as sensors with faster kinetics (though fundamentally limited by kinetics of calcium441

release itself) and higher signal-to-noise ratios are developed (Badura et al., 2014; Dana442

et al., 2016, 2019), so the accuracy and robustness of de-noising and deconvolution should443

improve; and as the neuron yield continues to increase (Ahrens et al., 2013; Stringer et al.,444

2019a), so the potential for insights from inferred spikes or spike-driven events grows.445

Developing further advanced deconvolution algorithms will harness these advances, but446

are potentially always limited by the lack of ground-truth to fit their parameters (Wei447
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et al., 2019). Worse, no matter how good the forward model for a single neuron, our448

results suggest the wide variation in the model parameters needed for each neuron would449

make population analyses challenging to interpret.450

A simple alternative approach to the inconsistencies between different forms of decon-451

volved time-series is to triangulate them, and take the consensus across their results. For452

example, our finding of a set of tuned neurons across multiple methods is strong evidence453

that neurons in L2/3 of barrel cortex are responsive across the stages of the decision task.454

Further examples of such triangulation in the literature are rare; Klaus and colleagues455

(Klaus et al., 2017) used two different pipelines to derive raw ∆F/F of individual neurons456

from one-photon fibre-optic recordings in the striatum, and replicated all analyses using457

the output of both pipelines. Our results encourage the further use of triangulation to458

create robust inference: obtaining the same result in the face of wide variation increases459

our belief in its reliability (Munafò and Davey Smith, 2018).460

There are caveats to triangulating by using a full consensus across three or more461

versions of the time series. For single neuron analyses, such a full consensus inevitably462

comes at the price of reducing the yield of neurons to which we can confidently assign roles.463

There is also an assumption that all contributions to the consensus contain useful data:464

if one deconvolution method returns time-series with no relation to the underlying spike465

events, then including its outputs in the consensus would inevitably worsen the results.466

An alternative version of triangulation partially circumventing these problems would be467

to separately take the consensus between the raw calcium time-series and each of two468

or more spike-event deconvolution methods, and then combine the results. Future work469

on triangulation approaches would also need to look at how to combine more complex470

analyses than single neuron properties, such as pairwise correlations.471

Another approach, little explored to date, would be to use data constraints to tune472

the deconvolution algorithm parameters. One option would be to use known properties473

of neural activity in a recorded population as constraints. We showed, for example, that474

some deconvolution methods did not recover the expected population-wide distribution of475

activity in layer 2/3 of barrel cortex; so constraining all algorithms to reproduce the long-476

tailed activity distribution may improve agreement between them in measures of coding477

and correlation. Another option would be to tune deconvolution parameters to maximise478

consistency within the deconvolved data. For example, Pachitariu et al. (2018) recently479

proposed maximising the correlation between deconvolved traces from the same neuron480

obtained between trials of the same visual stimulus. Such an approach needs a suitable481

task design to ensure consistent conditions within which to compare responses of the same482

neuron (such as identical duration repeats of identical visual stimuli) – and which therefore483

could not be applied to the pole-detection task considered here. It would also require that484

the known variations in a neuron’s response between repeats of the same task condition485

or stimulus is not large enough to prevent meaningful correlations between repeats.486

Our results provide impetus for different directions of research, not just to improving487

our modelling of the relationship between spikes and the somatic calcium signal, but488

also focussing on how we can verify results across the output of different deconvolution489

algorithms, and thus provide robust scientific inferences about neural populations.490
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4 Methods491

Ground truth data492

Ground truth data were accessed from crcns.org (Svoboda, 2015), and the experiments493

have been described previously (Chen et al., 2013). Briefly, mouse visual cortical neu-494

rons expressing the fluorescent calcium reporter protein GCaMP6s were imaged with two-495

photon microscopy at 60Hz. Loose-seal cell-attached recordings were performed simul-496

taneously at 10kHz. Recordings were made in awake mice during 5 trials (4s blank, 4s497

stimulus) of the optimal moving grating stimulus (1 of 8 directions) for the cell-attached498

neuron. The data-set contains twenty one recordings from nine neurons.499

Neuropil subtraction was performed as described in Chen et al. (2013), based on ex-500

ample code provided alongside the data at crcns.org. Neuropil signals – defined as the501

average fluorescence from all pixels within a 20 µm radius from each cell centre excluding502

the region of interest (ROI) – were subtracted from cell fluorescence in a weighted fashion,503

Fcorrected = Fcell − 0.7Fneuropil.504

Population imaging data description505

Population imaging data was accessed from crcns.org and have been described previ-506

ously (Peron et al., 2015b). Briefly, volumetric two photon calcium imaging of primary507

somatosensory cortex (S1) was performed in awake head-fixed mice performing a whisker-508

based object localisation task. In the task a metal pole was presented in one of two loca-509

tions and mice were motivated with fluid reward to lick at one of two lick ports depending510

on the location of the pole following a brief delay. Two photon imaging of GCaMP6s511

expressing neurons in superficial S1 was performed at 7Hz. Images were motion corrected512

and aligned, before regions of interest were manually set and neuropil-subtracted. A single513

recording from this dataset was used for population analysis. The example session had514

1552 neurons recorded for a total of 23559 frames (56 minutes).515

List of deconvolution methods516

MLSpike517

MLSpike (Deneux et al., 2016) was accessed from https://github.com/mlspike. MLSpike518

uses a model-based probabilistic approach to recover spike trains in calcium imaging data519

by taking baseline fluctuations and cellular properties into account. Briefly, MLSpike520

implements a model of measured calcium fluorescence as a combination of spike-induced521

transients, background (photonic) noise and drifting baseline fluctuations. A maximum522

likelihood approach determines the probability of the observed calcium at each time step523

given an inferred spike train generated through a particular set of model parameters.524

MLSpike returns a maximum a posteriori spike train (as used here), or a spike probability525

per time step.526

MLSpike has a number of free parameters, of which we optimise three: A, the mag-527

nitude of fluorescence transients caused by a single spike; tau, calcium fluorescence decay528

time; sigma, background (photonic) noise level. MLSpike also has parameters for different529

calcium sensor kinetics (for OBG, GCaMP3, GCaMP6 and so on) which we fix to default530

values for GCaMP6.531

For our analysis of event rate MLSpike’s spike train was counted (mean event count532

per second), and for subsequent analyses was converted to a dense array of spike counts533

per imaging frame.534

18

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2020. ; https://doi.org/10.1101/871137doi: bioRxiv preprint 

http://crcns.org/data-sets/methods/cai-1
https://crcns.org/data-sets/ssc/ssc-2
https://github.com/mlspike
https://doi.org/10.1101/871137
http://creativecommons.org/licenses/by-nc/4.0/


Suite2P535

Suite2P (Pachitariu et al., 2016, 2018) was accessed from https://github.com/cortex-536

lab/Suite2P. Suite2P was developed as a complete end-to-end processing pipeline for537

large scale 2-photon imaging analysis - from image registration to spike extraction and538

visualization - of which we only use the spike extraction step. The spike deconvolution539

of Suite2P uses a sparse non-negative deconvolution algorithm, greedily identifying and540

removing calcium transients to minimise the cost function541

C = ‖F − s ∗ k‖2,

where the cost C is the squared norm of fluorescence F minus a reconstruction of that542

signal comprising a sparse array of spiking events s multiplied by a parameterised calcium543

kernel k. The kernel was parameterised following defaults for GCaMP6s (exponential544

decay of 2 seconds, though it has been shown the precise value of this parameter does not545

affect performance for this method (Pachitariu et al., 2018)).546

Suite2P has a further free parameter which sets the minimum spike event size, the547

Threshold, which determines the stopping criteria for the algorithm.548

Elements of s are of varying amplitude corresponding to the amplitude of the calcium549

transients at that time. For ground truth firing rate analysis we are interested in each550

algorithm’s ability to recover spike trains, therefore we treat each event as a ‘spike’ and551

optimise the algorithm appropriately. For our analysis of event rate Suite2P’s event train552

was counted (mean event count per second), and for subsequent analyses was converted553

to a dense array of varying amplitude events (i.e. s) per imaging frame.554

LZero555

The method we refer to as LZero was written in Matlab based on an implementation556

in R accessed at https://github.com/jewellsean/LZeroSpikeInference. A full description is557

available in the paper of Jewell and Witten (2018). Briefly, in LZero spike detection is cast558

as a change-point detection problem, which could be solved with an l0 optimization algo-559

rithm. Working backwards from the last time point the algorithm finds time points where560

the calcium dynamics abruptly change from a smooth exponential rise. These change561

points correspond to spike event times. Spike inference accuracy is assessed similarly to562

Suite2P by measuring the fit between observed fluorescence and a reconstruction based563

on inferred spike times and a fixed calcium kernel.564

LZero has two free parameters - lambda, a tuning parameter that controls the trade-off565

between the sparsity of the estimated spike event train and the fit of the estimated calcium566

to the observed fluorescence; and scale, the magnitude of a single spike induced change in567

fluorescence.568

For our analysis of event rate LZero’s spike train was counted (mean event count per569

second), and for subsequent analyses was converted to a dense array of spikes per imaging570

frame (maximum one spike per imaging frame due to limitations of the algorithm).571

Yaksi572

Yaksi is an implementation of the deconvolution approach of Yaksi and Friedrich (2006).573

The fluorescence time series is low-pass filtered (4th order butterworth filter, 0.7Hz cutoff)574

to remove noise before having a calcium kernel (exponential decay of 2 seconds, as used575

in Suite2P and LZero above) linearly deconvolved out of the signal using Matlab’s deconv576
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function. The output of Yaksi is a continuous signal approximating spike density per unit577

time.578

Peron events579

Peron events refer to the de-noised calcium event traces detailed in the original Peron580

et al. (2015b) paper. Here a version of the ‘peeling’ algorithm (Lütcke et al., 2013) was581

developed, a template-fitting algorithm with variable decay time constants across events582

and neurons. The output for analysis is a continuous signal approximating de-noised583

calcium concentration per unit time.584

Events and kernel versions of spike inference methods585

Where a spike inference method returns spike counts per time point, these are plotted586

as Methodevents. To compare to other methods that return a de-noised dF/F or firing587

rate estimates, these event traces are convolved with a calcium kernel and plotted as588

Methodkernel. The kernel used is consistent with that used as a default for GCaMP6s589

in MLSpike, Suite2P and LZero, namely an exponential decay of two seconds duration590

normalised to have an integral of 1.591

Ground truth spike train metrics592

Pearson correlation coefficient was computed between the ground truth and inferred spikes593

(MLSpike) or events (Suite2P, LZero) following convolution of both with a gaussian kernel594

(61 samples wide, 1.02 seconds).595

Error Rate was computed between the ground truth and inferred spikes/events using596

the Deneux et al. (2016) implementation of normalised error rate, derived from Victor and597

Purpura (1996) – code available https://github.com/MLspike. Briefly, the error rate is 1598

- F1-score, where the F1-score is the harmonic mean of sensitivity and precision (Davis599

and Goadrich, 2006),600

sensitivity = 1− misses

total spikes
,

precision = 1− false detections

total detections
,

ErrorRate = 1− 2
sensitivity × precision
sensitivity + precision

.

Hits, misses and false detections were counted with a temporal precision of 0.5 seconds.601

For normalised estimation of errors in firing/event rate we compute,602

estimated rate− true rate
true rate

,

where spike/event rates are measured in Hz.603

Parameter fitting604

For each method the best parameters for each neuron were determined by brute force605

search over an appropriate range (i.e. at least two orders of magnitude encompassing606

full parameter ranges used in the original publications for each method). The parameter607

ranges were explored on a log scale as follows: MLSpike A (0.01:1, 21 values), tau (0.01:5,608
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21 values), sigma (0.01:1, 21 values); Suite2P Threshold (0.1:100, 13 values); LZero lambda609

(0.1:20, 23 values), scale (0.1:20, 23 values).610

The modal best parameters, as determined using Error Rate on downsampled data,611

were then fixed for the population imaging data analysis. These were: MLSpike A: 0.1995,612

tau: 1.9686, sigma: 0.0398; Suite2P Threshold: 1.7783; LZero sigma: 0.1; lambda: 3.1623.613

Downsampling614

Ground truth calcium data was downsampled from 60Hz to 7Hz in Matlab by up-sampling615

by 7 (interpolating the signal) and then downsampling the resultant 420Hz time-series of616

frames to 7 Hz by sampling every 60th frame.617

4.1 Event rate estimation618

Spike inference methods (Suite2Pevents,MLSpikeevents, LZeroevents) return estimated spike619

times (MLSpike), or event times (Suite2P/LZero) which were converted into mean event620

rates (Hz) per neuron.621

The event rate for continuous methods (Calcium, Peron, Yaksi, Suite2Pkernel, MLSpikekernel,622

LZerokernel) for each neuron was determined by counting activity/fluorescence transients623

greater than three standard deviations of the background noise. Background noise was624

calculated by subtracting a four-frame moving average of the fluorescence from the raw625

data to result in a ‘noise only’ trace. This operation was done separately for each neuron626

and each method. Event rate was then computed in Hz.627

Silent neurons were defined as neurons with event rates below 0.0083Hz (or fewer than628

one spike per two minutes of recording) as in O’Connor et al. (2010).629

4.2 Task-tuned neurons630

Task-tuning was determined for each neuron using the model-free approach of Peron et al.631

(2015b). Neurons were classed as task-tuned if their peak trial-average activity exceeded632

the 95th percentile of a distribution of trial-average peaks from shuffled data (10000 shuffles633

of time-series order). The shuffle test was done separately for correct lick-left and lick-right634

trials and neurons satisfying the tuning criteria in either case were counted as task-tuned.635

Tuned neuron agreement was calculated as the number of methods that agreed to the636

tuning status of a given neuron, for all methods and separately for continuous and spike637

inference methods.638

4.3 Touch-tuned responses639

Touch-tuned neurons were determined by first computing touch-triggered average activity640

for each neuron, then calculating whether the data distribution of peak touch-induced641

activity exceeds the expected activity of resampled data. In more detail, the time of first642

touch between the mouse’s whisker and the metal pole on each trial was recorded. For643

each neuron, one second of activity (seven data samples) was extracted before and after644

the frame closest to the first touch of each trial (15 frames total per trial); taking the645

mean touch-triggered activity over trials gave the average touch response for the neuron.646

To determine whether the neuron was touch tuned or not, we compared the neuron’s647

peak mean response rdata to a null distribution by taking a randomly sampled 15 frame648

segment of a trial, finding the peak mean response across trials rnull, and repeating this649

calculation for 10000 random samples. A p-value for the data peak response was calculated650
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as p = #{rnull < rdata}/10000. Over all neurons, a neuron was considered touch-tuned if651

p < 0.05 after Benjamini-Hochberg correction.652

4.4 Pairwise correlations653

Pairwise correlations (Pearson correlation coefficients, Fig. 7a) were calculated between654

all pairs of neurons at the data sampling rate (7Hz).655

Stability of correlation estimates (Fig. 7b) at the recording durations used was assessed656

by computed the similarity between correlation distributions for the the intact dataset to657

those from subsets of the dataset. For each deconvolution method, we computed the658

pairwise correlation matrix using the entire session’s data, as above. We also sampled a659

subset of time-points (1%-100%) of the full dataset at random without replacement and660

computed a matrix of pairwise correlations for this subset. We then compute the similarity661

between the total and subset matrices using Pearsons correlation coefficient. This process662

was repeated 100 times and the mean (line) and standard deviation (shading) of the 100663

repeats were plotted.664

4.5 Correlations between correlation matrices665

Correlations between correlation matrices (Fig. 7c-e) were computed using Spearman’s666

rank correlation between the unique pairwise correlations from each method (i.e. the667

upper triangular entries of the correlation matrix).668

4.6 Dimensionality669

To determine the dimensionality of each dataset we performed eigendecomposition of the670

covariance matrix of each dataset. The resultant eigenvalues were sorted into descending671

order λ1 ≥ λ2 ≥ . . . λN , and the cumulative variance explained by d dimensions computed672

as
∑d

i=1 λi/
∑N

i=1 λi.673
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