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Abstract 

 Community ecologists and macroecologists have long sought to evaluate the 

importance of environmental conditions in determining species composition across sites 

(hereafter species-environment relationship; SER). Different methods have been used to 

estimate SERs, but their differences and respective reliability remain poorly known. We 

compared the performance of four families of statistical methods in estimating the 

contribution of the environment to explain variation in the occurrence and abundance of co-

occurring species while accounting for spatial correlation. These methods included distance-

based regression (MRM), constrained ordination (RDA and CCA), generalised linear, mixed, 

and additive models (GLM, GLMM, GAM), and tree-based machine learning (regression 

trees, boosted regression trees, and random forests). We first used a simple process-based 

simulation model of community assembly to generate data with a known strength of (i) niche 

processes driven by environmental conditions and (ii) spatial processes driven by 

environmental autocorrelation and dispersal limitation. Then we applied the different methods 

to infer the spatially-explicit SER and compared their performance in partitioning the 

environmental and spatial fractions of variation. We found that machine learning methods, 

namely boosted regression trees and random forests, most accurately recreated the true trends 

of both occurrence and abundance data. GAM was also a reliable method, though likelihood 

optimisation did not converge for low sample sizes. The latter is a good option if a priori 

hypotheses on the functional type of individual species-environment relationships are 

considered. The remaining methods performed worse under virtually all simulated conditions. 

Our results suggest that tree-based machine learning is a robust and user-friendly approach 

that can be widely used for partitioning explained variation in species-by-site matrices. The 

appropriate use of methods to estimate SERs and assess the importance of drivers of 

community assembly and species distributions across studies, spatial scales, and disciplines 

will contribute towards synthesis in community ecology and biogeography. 
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Introduction 

 The environment is a major driver of species occurrence and abundance. The 

interaction of species with the environment shapes their ecological niche and influences many 

facets of biodiversity distribution, from fine-scale community composition to large-scale 

species distributions and co-occurrence (Chase and Leibold 2003). Thus, the environment is 

central in ecological theory, including coexistence theory (Chesson and Warner 1981, 

Chesson 2000), modern niche theory (Chase and Leibold 2003), metacommunity theory 

(Leibold et al. 2004), as well as biogeographical and macroecological theory (Townsend 

Peterson et al. 2011). Species-environment relationships (SERs) have been widely estimated 

to (i) characterise the species' niches and model species distributions, (ii) explore the 

importance of niche selection as an important biodiversity process, and (iii) correct for 

environmental effects when studying biotic interactions and other community assembly 

processes.  

 However, depending on the study objectives and ecological discipline, SERs have 

been estimated using different methods. In community ecology, a popular topic has been to 

disentangle the relative importance of environmentally driven (niche) processes from spatial 

processes often associated with neutral theory (Leibold and Chase 2017). In this context, 

SERs have most commonly been estimated using multivariate regression methods, usually 

constrained ordination such as CCA and RDA (Cottenie 2005, Peres-Neto et al. 2006, 

Soininen 2014). These methods became popular due to their ease of use, as well as their 

ability to account for spatial correlation and to partition the explained variation according to 

environmental and spatial effects. However, the ability of these methods to accurately 
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disentangle the contribution of environmental and spatial variables has been criticised (e.g. 

Gilbert and Bennett 2010, Smith and Lundholm 2010). A new approach has been proposed to 

deal with criticism, specifically on how to disentangle spatial correlation produced by 

autocorrelated environment from that produced by other processes such as dispersal limitation 

(Clappe et al. 2018), but the appropriateness of these methods to model non-linear species 

responses to the environment has been less explored. 

An alternative way to estimate SERs is to use generalised linear, additive, or mixed 

modelling (GLM, GAM, GLMM). Although these models are widely used to model 

univariate responses in the context of species distribution modelling, their ability to model 

multi-species responses is less explored. Even joint species distribution models (JSDM; 

Pollock et al. 2014, Ovaskainen et al. 2017) are relatively new, and more testing and 

exploration is needed before evaluating their effectiveness to model niche responses and 

partitioning sources of variation. Yet another alternative is to deploy machine learning 

methods such as Random Forest and Boosted Regression Trees (Elith and Graham 2009), and 

their multivariate versions (Nieto-Lugilde et al. 2018). Tree-based methods have several 

advantages over classical regression methods, particularly because they are usually bound by 

fewer statistical assumptions and are inherently suited to model complex interactions and 

non-linear relationships. Although thorough comparisons of different models to estimate 

species distributions have been made, mostly based on generalised linear models and machine 

learning models (see Norberg et al. 2019), for a comprehensive review and comparison of 

methods), these have not yet been widely used in community ecology, and as far as we are 

aware, never in variation partitioning analysis to evaluate SERs.  

 Another challenge with the estimation of the SER is that species occurrence and 

abundance may be autocorrelated due to spatial dependence caused by dispersal limitation 

and/or environmental autocorrelation. Many methods exist to model spatial structures and 

account for autocorrelation in the response variable (Dormann et al. 2007, Bivand et al. 2013), 
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but the appropriateness of each method depends on the ecological question and statistical 

approach used to estimate the SER (more details provided in Methods).  

 Our aim was to compare the performance of different methods in estimating SERs and 

partitioning explained variation in species-by-site matrices. To this end, we assessed the 

performance of each method in quantifying the proportion of variation attributed to spatially 

correlated and uncorrelated environment, as well as the proportion of variation exclusively 

attributed to space. We applied the different methods with the single purpose of estimating the 

relative contributions of environment and space to explaining the occurrence or abundance of 

multiple species sampled in a given area. Explanation, rather than prediction, has been the 

goal of numerous studies in community ecology and biogeography, in which the most popular 

method has been constrained ordination, such as CCA and RDA. However, many other 

methods based also on regression sensu lato, in which the minimisation of a loss or risk 

function such as mean square error (MSE) or likelihood is used for model fitting, can also be 

used for partitioning the sources of variation in species-by-sites matrices according to 

goodness-of-fit measures, namely R2 or pseudo-R2.  

 

Methods 

 The general methodological approach consisted of (1) generating species-by-site 

matrices using a spatially explicit process-based simulation of community assembly, (2) 

estimating the SERs according to the different statistical methods (Table 1), and (3) 

comparing the performance of the different methods to perform variation partitioning. All the 

computer code is available in https://github.com/duarte-viana/iVarPart.  

 

Simulations of community structure 

 We used a simple simulation that allowed us to know the true contributions of 

environment and space to explaining variation in multi-species occurrence and abundance 
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underlying community structure (largely following Gilbert and Bennett 2010). A 

metacommunity was simulated on a grid where species abundance or occurrence were defined 

by the additive effect of an environmental and a spatial component. The environment 

consisted of two environmental gradients, one that was spatially correlated and the other that 

was randomly distributed. The spatial component was created by simulating independent 

species distributions and weighting all cells of the grid by a dispersal kernel. Both 

components produce spatial autocorrelation in the species data, either through the response to 

the spatially correlated environment or through the pure spatial effect caused by the dispersal 

limitation. The environmental and spatial components were given different weights (We and 

Ws, respectively; We + Ws = 1) to control their relative contribution to the final species data 

(abundance or binary occurrence). Thus, these weights represented the true trend in the 

variation fractions. See the detailed description of the simulation model in Appendix S1. 

  

Statistical methods 

 We considered four families of statistical methods: distance-based regression, 

constrained ordination, generalised linear, additive, and mixed models, and tree-based 

machine learning (Table 1). Note that constrained ordination methods are strictly multivariate, 

while generalised linear models and tree-based methods stack the predictions for each species. 

These methods can fit the species-environment, and especially species-space relationships, in 

a variety of ways, and for some methods more than one approach can be used. Because 

considering all the possible variations within methods would quickly result in a huge list of 

methods, we opted for using the most popular and widely used approaches for the sake of 

tractability (detailed in Table 1 and described below). Independently of how the 

environmental and spatial components of the models were estimated, we could always 

partition their contribution for explained variation and compare it with the true contribution to 

assess the performance.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 11, 2019. ; https://doi.org/10.1101/871251doi: bioRxiv preprint 

https://doi.org/10.1101/871251
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 

Distance-based regression  

 Modelling compositional distance (i.e. pairwise beta-diversity) has been used to 

investigate the relative importance of environment and space in determining community 

assembly patterns by converting species-by-site abundance or occurrence into compositional 

distances between sites (Tuomisto and Ruokolainen 2006). We acknowledge that this method 

does not directly compare to the other methods considered here, as the response variable 

consists of compositional distances between communities rather than raw species' abundance 

or occurrence. Still, since this method is often considered suitable for disentangling sources of 

variation (see Legendre et al. 2005, and the discussion that followed in, e.g., Laliberté 2008, 

Tuomisto and Ruokolainen 2008, Legendre et al. 2008), we also assessed its performance. 

The most common distance-based regression method is the Multiple Regression on distance 

Matrices (MRM), which is simply the adaptation of the Mantel regression to multiple 

regression analysis (Lichstein 2007). It consists in regressing ecological distances (i.e. 

compositional dissimilarities between sites; the response matrix) against the matrices of 

environmental and geographical distances (the predictor matrices). We used Bray-Curtis 

dissimilarities for both species’ abundance and occurrence data (according to the metrics used 

in the R package vegan; Oksanen et al. 2017) and Euclidean distances for the predictors. A 

simple linear regression was performed on the pairwise distances using function ‘lm’ of the R 

stats package (R Development Core Team 2017).  

 

Constrained ordination 

 We used Canonical Correspondence Analysis (CCA; Ter Braak 1986, Legendre and 

Legendre 2012), Redundancy Discriminant Analysis (RDA; van den Wollenberg 1977) and 

its variant, the distance-based RDA (dbRDA; Legendre and Anderson 1999). Ordination 

analyses summarise the variation of a multidimensional object, such as a species-by-site 
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matrix, into a smaller number of dimensions (or axes) to detect general patterns that cannot be 

uncovered by single-species analyses (Zuur et al. 2007). These ordinations can be constrained 

by independent explanatory variables such as environmental and spatial variables. 

Constrained ordination looks for linear combinations of predictors that best explain the 

variation of the species-by-site matrix (Legendre and Legendre 2012). In RDA, the response 

variables are modelled with ordinary linear regression, whereas the modern implementation of 

CCA relies on weighted linear regression on the Chi-square-transformed species matrix 

(Legendre and Legendre 2012). Although RDA can yield similar results to CCA depending 

on data transformations (Blanchet et al. 2014), we decided to compare the most widely used 

version – RDA on Hellinger-transformed species abundance and occurrence data. This 

transformation downweighs the effect of double species absences (double-zeros) and 

minimizes arch effects (Legendre and Gallagher 2001). For dbRDA we used the Bray-Curtis 

dissimilarity measure for both abundance and occurrence data, another widely used distance 

metric (and the default in the vegan R package). The only difference to RDA is that the 

response matrix is not the species-by-site matrix but a matrix composed of principal 

components resulting from a principal coordinates analysis (PCoA) of the distance matrix. 

We used the R functions ‘lm’ from the R stats package to perform RDA, ‘cca’ to perform 

CCA, and ‘capscale’ to perform dbRDA, the latter two from package vegan (Oksanen et al. 

2017, R Development Core Team 2017). 

 

Generalised linear, additive, and mixed models 

 Generalised linear models allow for more flexible distributions of response data than 

constrained ordination (but see more flexible ordination methods in Yee 2015), in particular 

Poisson and binomial distributions typical of abundance (count) and binary occurrence data. 

Further, the inclusion of quadratic terms for environmental predictors in Poisson and binomial 

models can accommodate narrow niche unimodal responses that typically contain many 
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absences (i.e. many zeros) (Fig. 1a). This is not possible when fitting Gaussian regression 

models with identity link function, which may also run into risk of predicting negative 

abundances (Fig. 1b). We estimated three types of models: (i) simple generalised linear 

models with a quasi-Poisson error distribution (GLM-qP) and a log link function for 

abundance data, and a binomial distribution with a logit link for occurrence data (using the 

stats R package; R Development Core Team 2017); (ii) generalised linear mixed models with 

a Poisson distribution for abundance data, either with a correction for overdispersion 

(GLMM-overP) or not (GLMM-P), and a binomial distribution for occurrence data, 

estimating a random intercept and slope for species (using the R package HMSC; Ovaskainen 

et al. 2017); and (iii) generalised additive models (GAM) with a Poisson error distribution for 

abundance data and a binomial distribution for occurrence data (using the R package mgcv; 

Wood 2017). For all these methods, we fitted a second-degree polynomial for the 

environmental variables (i.e. their linear and quadratic effects). The spatial effects were 

modelled with MEMs (see below), except for GAM, in which thin plate regression splines 

were fitted to the spatial coordinates of the sites. All models were fitted as single models to 

each species and the predictions were then stacked into a matrix of predicted species 

abundances, except GLMM, in which the (random) estimates for each species were bounded 

by a normal distribution, which makes this model a type of joint species distribution model 

(Ovaskainen et al. 2017). GLM and GAM were fitted by maximum-likelihood estimation, 

whereas GLMM was fitted using Bayesian estimation. As a side note, we also tried to use 

GLM with Poisson and negative binomial error distributions for abundance data, but these 

models often had convergence issues due to the high number of spatial predictors (MEMs; see 

below) in relation to sample sizes. We excluded these models from the comparison, although 

we recognise that these can be appropriate if convergence is achieved. 

 

Machine learning: tree-based methods 
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 Tree-based methods (Hastie et al. 2009) recursively split the response along a set of 

predictor variables, resulting in one tree or multiple trees (i.e. a "forest"). In contrast to the 

previous methods, tree-based machine learning makes no assumption regarding the functional 

form of the species-environment relationship; instead, the relationship is learned entirely from 

the data (see model specifications and settings in Table 1).  

 

Multivariate Regression Trees (MVRT). This method fits a single multivariate regression tree 

(De’ath 2002) to explain the abundance or occurrence data. We used its implementation in R 

function ‘mvpart’ (package mvpart). We compared two variants of MVRT. In one, we fitted a 

tree with the minimum number of observations in any terminal (“leaf”) node fixed to 5. In the 

other, we used cross-validation to identify the most parsimonious tree. We first fitted a 

sequence of trees of size ranging from 1 to 20 splits, and identified the tree size with lowest 

out-of-sample predictive error using 5-fold cross-validation, and we noted its complexity 

parameter (CP). We then pruned the full tree with 20 splits until it reached the CP value of the 

best cross-validated tree. 

 

Univariate Random Forest (UniRF). This fits a univariate random forest (Breiman 2001, 

Hastie et al. 2009) to each species individually, using ‘randomForest’ R function (package 

randomForest). A random forest consists of a set of regression trees fitted to bootstrapped 

(i.e. sampled with replacement) data, each tree fitted to a random fraction of predictors. 

Predictions of the individual trees are then averaged to get the overall prediction. The UniRF 

method is identical to the method called Gradient Forest implemented in package 

gradientForest (Ellis et al. 2012). We used the default settings of the ‘randomForest’ 

function, as we expect the defaults to be most often adopted by users – specifically, the 

random forest consists of 500 regression trees, each with the minimum number of 

observations in any terminal (“leaf”) node set to 5, each fitted to data resampled randomly 
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with replacement, using a random subset (1/3) of the predictors. The predictions of these trees 

are then averaged to make the overall predictions.  

 

Multivariate Random Forest (MVRF). Similarly to the univariate version, this “multivariate” 

version fits a regression tree to each species, but now all happens within a single function call, 

and the split rule is the composite normalized mean-squared error (CNMSE), where each 

component (species) of the composite is normalized so that the mean abundance of the 

species does not influence the split rule. We used the implementation in R function ‘rfsrc’ 

(package randomForestSRC; Ishwaran et al. 2019). We compared two variants of MVRF. In 

one, as in MVRT, we used the minimum number of observations in any terminal (“leaf”) 

node fixed to 5. In the other, we used cross-validation to find the most parsimonious size of 

the terminal node – we fitted a sequence of random forests with terminal node size going from 

2 to 15, and we chose the tree with the lowest out-of-bag CNMSE. In both cases we followed 

the default settings of the R function so that each tree in the forest was fitted to data 

resampled randomly with replacement, and the number of randomly chosen predictors in each 

tree was sqrt(p), rounded up, where p is their total number.  

 

Multivariate Boosted Regression Trees (BRT). This method uses a gradient boosting 

algorithm of Friedman (2001) which fits, to each species separately, a sequence of regression 

trees, where each new tree is applied to the residuals from the previous tree (Miller et al. 

2016). Unlike the univariate version, this implementation allows to explain species covariance 

once the model has been fitted (though we did not do it, and thus we just fitted a series of 

univariate boosted regression trees to each species). We used the implementation in R 

function ‘mvtb’ (package mvtboost), and fitted four variants of the algorithm with two tree 

depths (i.e. interaction depths) and with or without cross-validation to identify the total 

number of trees. All four variants used learning rate (shrinkage) of 0.01. The tree depths that 
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we examined were 1, which is a single split, also known as “regression stump”, and 3, which 

allows for a three-way interaction between the predictors. The variant without cross-

validation used a fixed number of 1000 trees. In the cross-validated variant, we used a 5-fold 

cross-validation to identify the most parsimonious number of trees, from 1 up to 1000. We 

chose the BRT model with number of trees giving the lowest multivariate out-of-sample 

prediction error.  

 

Spatial component (spatial correlation) 

 Space has been incorporated in statistical models in various ways to deal with 

autocorrelation. When spatial prediction and interpolation is the goal, geostatistical techniques 

such as kriging are typically used (Bivand et al. 2011). But often the objective is simply to 

control for spatial autocorrelation in the residuals, for which autoregressive models and 

mixed-effects models are commonly used (e.g. Dormann et al. 2007). These models usually 

assume a simple autocorrelation error structure such as an exponential decay as a function of 

distance, which might be overall simplistic for complex habitat configurations. Other, more 

complex, techniques have been used to model space while capturing multiple spatial scales, 

including high-order polynomials of spatial coordinates (or trend-surface analysis) and 

eigenvector-based spatial variables (namely Moran's eigenvector maps, MEM; for a more 

complete overview of spatial methods, see Bivand et al. 2011). The latter has been considered 

more effective to model multi-scale patterns (Dray et al. 2006, 2012). As such, we used 

distance-based MEM variables, calculated using the R package adespatial (Dray et al. 2016), 

as spatial predictors in constrained ordination and generalised linear models (but not GAM). 

For tree-based methods and GAM, that are able to model complex non-linear relationships, it 

would be redundant to use MEM instead of taking advantage of the non-linear modelling 

capabilities of the methods. Therefore, for these methods we simply used the spatial 
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coordinates as spatial predictors (see an example of a non-linear spatial surface fitted to 

abundance data in Appendix S2, Fig. S2.1). 

 

Variation partitioning 

 We performed variation partitioning to estimate the fractions of variation explained 

(i.e. R2) by the exclusive and shared contributions of environment and space. Traditionally, 

the shared fraction was exclusively attributed to the effect of spatially correlated environment 

(Borcard et al. 1992, Peres-Neto et al. 2006). However, because spatial autocorrelation in 

species data is caused by both spatially correlated environment and dispersal limitation, 

spurious correlations between species distributions and environment can arise (Smith and 

Lundholm 2010, Clappe et al. 2018). To correct for spurious correlations and avoid inflated 

fractions of variation explained by the environment, we used the method developed in Clappe 

et al. (2018). This method partials out spurious correlations by randomising the environmental 

variables while keeping their spatial structure intact, a method known as Moran Spectral 

Randomisation (MSR; Wagner and Dray 2015), and then accounting for their contribution in 

the variation partitioning procedure. As such, we can attribute the exclusive fraction of the 

environment to spatially uncorrelated environment and the shared fraction to spatially 

correlated environment. These two fractions were summed up to obtain a global environment 

fraction [E]. Fraction [S] was the exclusive contribution of space. In some circumstances, 

when either [E] or [S] are virtually null, their values can be slightly negative. In this case we 

set negative values to zero. For each method we used an appropriate R2 or pseudo-R2 metric 

to perform the variation partitioning, preferably choosing the metric used in the R package 

where the method was implemented; however, because different metrics have been used for 

the same method, we also compared the performance of alternative metrics (see the metrics 

used in Table 1 and their definitions in Appendix S1). The R2 metrics used here were 

categorised as a eigenvalue-based metric (R2-mv; used for constrained ordination methods), a 
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classical MSE-based metric (R2-cla for abundance data and R2-Efr for binary data), a 

deviance-based metric (R2-McF), and a discrimination metric for binary data (R2-Tju). 

 

Performance of the different methods 

 To evaluate the performance of each method, we calculated the root mean squared 

error (RMSE) and the Kendall rank correlation coefficient (t) between the expected (true) and 

estimated values of [E] (as a proportion of total variation explained, i.e., [E]/([E]+[S]). The 

RMSE provides a measure of how far the estimation is from the true trend (the lower the 

better). The rank correlation is a measure of discrimination, i.e. how well the method 

discriminates community matrices with low or high [E], relatively to other matrices, but 

irrespectively of the absolute values of [E]. To calculate a combined index of performance 

index (hereafter just "performance"), we rescaled the RMSE and rank correlation to range 

between 0 and 0.5, inverted the rescaled RMSE (now the higher the better), and summed both 

components. Thus, performance ranged from 0 (worst) to 1 (best). The combined index was 

consistent with the visual evaluation of method performance.  

 In addition, because the methods considered here are more or less prone to overfitting 

(e.g. machine learning methods have been criticised for overfitting; Wenger and Olden 2012), 

we compared the true (simulated) with the estimated amount of explained variation (i.e. R2). 

The true R2 was estimated by using the true (simulated) abundance as the predicted values 

and the abundance sampled randomly from a Poisson distribution with means corresponding 

to true abundance as the observed values (i.e. the data that was used to fit the different models 

with the different methods; see Appendix S1); and the R2 for each method was calculated as 

the sum of all explained variation fractions (i.e. [E] + [S]). We used the same R2-metric for 

both the true and estimated values (see Appendix S1 for the calculation of the different R2 

metrics).  If overfitting had been observed, we expected the estimated values to be 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 11, 2019. ; https://doi.org/10.1101/871251doi: bioRxiv preprint 

https://doi.org/10.1101/871251
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

systematically higher than true values, meaning that the model could be fitting random noise 

produced by the random sampling. 

 

Empirical evaluation 

To explore the impacts of method choice on empirical cases, we compared the traditional 

ordination method RDA and dbRDA as the traditional used methods, with BRT and MVRF as 

the best performing methods, by performing variation partitioning in nine empirical datasets 

publicly available. Each empirical dataset consisted of a species abundance matrix, some 

environmental variables and the geographical coordinates of the sampled sites (see Appendix 

S3 for dataset details and sources).  

 

Results 

 The performance of the different methods varied considerably, and was generally 

better for abundance data compared to binary occurrence data (Fig. 2; Appendix S2, Fig. S2.2 

for all tested variants of the different methods). Tree-based machine-learning methods had the 

best performance across the different scenarios for both binary and abundance data (Fig. 2). 

These were followed by GAM, which had slightly worse performance. However, the GAM 

likelihood optimization did not converge for the lowest sample size (N=25) and performed 

considerably worse for the simulations with narrowest species’ responses to the environment 

(niche breadth = 0.002) (Fig. 3; Appendix S2, Fig. S2.3 for all methods). The remaining 

methods performed worse (Fig. 2), among which MRM (the distance-based regression) had 

the worst performance. None of the methods overfitted the data, as the respective total R2 was 

virtually always below the true R2 (Fig. 4). 

The good performance of machine learning was generally consistent among its 

different methods, with BRT consistently performing well for both abundance and binary 

data, together with MVRF for abundance data and UniRF for binary data (Fig. 2). An 
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interaction depth of 3 in the BRT algorithm was better for abundance data, whereas an 

interaction depth of 1 (a single “stump”) was better for binary data (Appendix S2, Fig. S2.2). 

The total variation explained by the BRT models was higher compared to other tree-based 

methods and constrained ordination, and similar to GAM (Fig. 3), but we did not observe 

overfitting (Fig. 4). When cross-validation was used in BRT, MVRF, and MVRT, the 

performance decreased considerably (Appendix S2, Fig. S2.2) due to underestimation of [S] 

and consequent overestimation of [E] (Appendix S2, Fig. S2.4). 

Ordination methods (CCA, RDA, dbRDA) performed consistently worse than other 

methods for abundance data (Fig. 2 and 3). However, for binary data, ordination methods 

performed similarly to GLM, but worse than GAM and the tree-based methods MVRF and 

MVRT (Fig. 2). Ordination methods were not able to reliably model [E], as observed by the 

general underperformance when true [E] was high (Fig.  3).  

 Notwithstanding the good performance of GAM, the parametric regression models 

(GLM, GLMM) had intermediate performances (Fig. 2). This family of methods had 

acceptable performances under wider niche breadths and larger sample sizes, but the 

performance considerably dropped when niche breadth was lowest (sharp abundance peaks at 

given environments and many absences) and sometimes failed to converge under low sample 

sizes. GLMM had high rank correlation with true fractions (Fig. 2) but the variation 

partitioning was biased towards higher spatial fractions [S], especially for binary data (Fig. 3). 

This is probably due to overfitting caused by MEM variables and the lack of an adjustment 

procedure for the R2 of this kind of models. In fact, GLM-qP, whose variation fractions were 

adjusted for the number of predictors, were less biased in general (lower RMSE), but also had 

lower discriminatory power (Fig. 2). 

  In general, the type of R2 metric had a minor impact on results for abundance data, 

which can be visualised by the clustering of methods in the general ranking, although 

deviance-based pseudo-R2 (R2-McF) tended to provide better performance (Appendix S2, 
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Fig. S2.2). However, for binary data the R2 metric resulted to be important for some methods. 

For example, uniRF was the best performing method with R2-Tju, whereas its performance 

with R2-Efr and R2-McF was amongst the worst. In general, the Tjur pseudo-R2 showed the 

best results for binary data, except for constrained ordination, for which only the R2-mv was 

calculated.  

When applied to empirical data, the choice of method had a clear influence on the 

results of the variation partitioning. We fitted dbRDA as an example of a widely used method 

together with RDA, as a potentially mis-specified model, and BRT and MVRF, as the best 

performing methods. We also tried GAM and GLM, but these did not converge for some 

datasets with low sample sizes or a large number of environmental predictors. We thus 

excluded the latter from further comparisons. The variation partitioning results were quite 

similar between dbRDA and RDA, and between BRT and MVRF, but were substantially 

different between ordination and tree-based methods (Fig. 5).  

 

Discussion 

 Our goal was to find the best method to estimate the relative importance of the 

environment to explaining variation in species-by-site matrices, over other processes that 

cause spatial structure in the geographic distribution of species. Clearly, as far as our 

simulations could tell, the best performing methods were tree-based machine learning 

methods and GAM – both flexible methods that are entirely or partly non-parametric, 

respectively. However, GAM failed to converge for low sample sizes and had poorer 

performance when species responses to the environment were narrowest (a summary of 

general results and recommendations is provided in Appendix S4).  

Tree-based machine learning has several advantages, in that it is able to fit a variety of 

responses to the environment, including narrow niche responses and potential interactions 

between different environmental variables, while simultaneously modelling space at various 
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levels of complexity by using only the spatial coordinates of the sampling locations. These 

methods also dealt better with narrow niche breadth in comparison with the remaining 

methods. Typically, as spatial extent increases, the size of the environmental gradients also 

increases beyond the range of values where species occur, causing niche responses to narrow. 

Tree-based methods are, therefore, an effective tool that can be used across scales. However, 

machine learning has also been criticised, especially for overfitting (e.g. Wenger and Olden 

2012). Our analysis, nevertheless, did not show any significant overfitting, and even if some 

overfitting had been observed, there are no reasons to believe that the relative contributions of 

environment and space to explained variation could be biased.  

Tree-based methods, however, cannot be used when specific hypotheses about SERs 

are considered. One may need to test an a priori hypothesis and, to that end, it may be 

instrumental to use parametric models rather than learning algorithms. For example, if we 

want to test for unimodal, Gaussian-like responses, assuming that more complex responses 

could be caused by other processes such as biotic interactions, it might be better to limit the 

scope of the analysis to linear and quadratic responses. Our results indicate that generalised 

linear models can be used if sample size is sufficient for the models to converge and if the 

niche responses are not too narrow (see also Appendix S4), which is something that can be 

guessed in an exploratory data analysis prior to the actual model fitting. In case MEMs are 

intended to be used and cause convergence issues, GAM with smooth splines for spatial 

coordinates can be used to avoid loss of degrees of freedom, as overfitting is inherently 

penalised (Wood 2017). We also note that the environmental component can be modelled 

with splines when using GAM, though sample size is a limitation and the parametric 

advantage of GAM is lost.  

Even though the ordination methods were based on different data transformations, the 

results of CCA, dbRDA, and RDA, were largely similar (Appendix S2, Fig. S2.2 and S2.3). 

The worse performance of these methods is due to the general underestimation of the 
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environmental component, arguably because of model misspecification. We also note that the 

distance-based regression (MRM) had a poor performance (Appendix S2, Fig. S2.2, S2.3), 

thus we recommend to avoid this method if the goal is to estimate the relative importance of 

environment and space to explaining variation in species-by-site matrices. 

 While we have pointed to some better, and some worse, methods for disentangling 

SERs, none of the methods assessed here is perfect, and thus there is margin for future 

improvement. Machine learning methods are diverse, and many more methods can be tested 

and even developed specifically for the purposes here outlined (e.g. D’Amen et al. 2017, 

Nieto-Lugilde et al. 2018). Other avenues for improvement might include the refinement of 

R2-like indices. For example, one obvious limitation of GLMM (which are widely used in 

joint species distribution models) was the failure to penalise overfitting caused by the spatial 

variables (MEMs). Adjustment procedures such as information criteria penalizing complexity 

or "adjusted" R2 can be tested (Burnham and Anderson 2002). Cross-validation can also 

theoretically be used to avoid overfitting, but note that models based on MEMs have not been 

used with cross-validation (see also Roberts et al., 2017), and non-linear spatial surfaces such 

as those fitted with GAM and tree-based methods are hardly suited for extrapolation (outside 

the sampled area). Indeed, we found strong evidence that the worse performance of tree-based 

methods when using cross-validation is due to the poor predictive ability of the complex 

spatial effect (resulting in considerable underestimation of the spatial fraction of variation). 

We, therefore, recommend not to use cross-validation when the objective is to partition 

explained variation in species-by-sites matrices. 

 We here proposed and evaluated alternative methods that can be used to estimate the 

relative contribution of the environment to explain species composition while disentangling 

spatial dependence. The ecological interpretation of variation partitioning depends on the 

context of the study, and the integration of other drivers and/or types of information might be 

needed. For example, to conclude about the relative importance of niche selection and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 11, 2019. ; https://doi.org/10.1101/871251doi: bioRxiv preprint 

https://doi.org/10.1101/871251
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

environmental filtering, further information such as species traits might have to be integrated 

in the analysis (Cadotte and Tucker 2017). The SER is just the first step to quantify the 

contribution of measured environment to determine species abundance and co-occurrence 

while accounting for spatial correlation, regardless of other confounding effects, namely 

biotic interactions. We note that every method used here is valid and reliable whenever the 

models are correctly specified and assumptions are met. We were only interested in assessing 

their relative performance for this particular aim of using SERs to perform variation 

partitioning.  

 We showed that the popular ordination methods CCA and RDA, which are widely 

used to partition variation explained by environment and space rather than predicting species 

occurrence and abundance, fail to provide accurate estimates of variation fractions in many 

circumstances, and thus should not be used uncritically. We highlight tree-based machine 

learning as a flexible alternative that can be widely used with both abundance and occurrence 

data. If a priori hypotheses about SERs are considered, GAM as a semiparametric method is a 

good choice for performing variation partitioning. We also recommend the use of a deviance-

based (McFadden's) pseudo-R2 for abundance data and Tjur's pseudo-R2 for occurrence data. 

By choosing appropriate methods to model different species responses to the environment, 

from linear responses typically observed at smaller spatial scales to unimodal responses 

typically observed over larger scales, our recommendations can as well apply to both 

community ecology and macroecology studies.  
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Table 1. Overview of the methods compared in this study. See the description of the different R2 or pseudo-R2 metrics in Appendix S2. The bold R2 
metrics are those chosen as the most appropriate metrics and thus reported here (the results for the other R2 metrics can be found in Appendix S2, 
Fig. S2.2, and Appendix S4). 
 

Method family Method  
name 

Method full name Type* R2 metric 
for count 
data 

R2 metric 
for binary 
data 

Environmental  
response 

Spatial 
modelling  
(input: X and Y 
coordinates) 

Specific model settings 

Constrained 
ordination 

RDA Redundancy 
discriminant analysis 

P R2-mv R2-mv Linear MEM - R package: base, vegan 
- Species data: Hellinger-transformed 

dbRDA Distance-based 
redundancy 
discriminant analysis 

NP R2-mv R2-mv Any MEM - R package: vegan 
- Species data: raw 
- Dissimilarity index: Bray-Curtis 

CCA Canonical 
correspondence 
analysis 

P R2-mv R2-mv Unimodal MEM - R package: vegan 
- Species data: raw 

Distance-based 
regression 

MRM Multiple regression 
on distance matrices 

NP
§
 R2-cla R2-cla Any/Linear

¶
 XY Euclidean 

distances 
- R package: base 
- Dissimilarity index: Bray-Curtis 

Generalized linear 
and additive 
models  

GLM Generalized linear 
model 

P R2-cla, R2-
mv, R2-McF 

R2-Tju, R2-
Efr, R2-McF 

Linear, 
quadratic 

MEM - R package: base 
- Species data: raw 
- Distribution: quasi-Poisson (abundance), 
binomial (binary) 

GLMM Generalized linear 
mixed model 

P R2-cla, R2-
mv, R2-McF 

R2-Tju, R2-
Efr, R2-McF 

Linear, 
quadratic 

MEM - R package: HMSC 
- Species data: raw 
- Distribution: Poisson w/ or w/o 
overdispersion (abundance), binomial 
(binary) 
- Iterations: 20,000 

GAM Generalized additive 
model 

NP R2-cla, R2-
mv, R2-McF 

R2-Tju, R2-
Efr, R2-McF 

Linear, 
quadratic 

Splines on XY 
coordinates 

- R package: mgvc 
- Species data: raw 
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(potentially 
any) 

- Distribution: Poisson (abundance), 
binomial (binary) 

Machine learning  
tree-based 
methods  

BRT Multivariate boosted 
regression trees 

NP R2-cla, R2-
mv, R2-McF 

R2-Tju, R2-
Efr, R2-McF 

Any Splines on XY 
coordinates 

- R package: mvtboost 
- Species data: raw 
- Distribution: Poisson (abundance), 
Bernoulli (binary) 
- #trees: 1000 
- Learning rate: 0.01 
- Interaction depth: 1 or 3 
- CV: no CV or 5-fold 

MVRT Multivariate 
regression tree 

NP R2-cla, R2-
mv, R2-McF 

R2-Tju, R2-
Efr, R2-McF 

Any Splines on XY 
coordinates 

- R package: mvpart 
- Species data: raw (abundance), numeric 
0/1 (binary) 
- Node size: 5 (no CV) 
- Interaction depth: 1-20 (CV) 
- CV: no CV or 5-fold 

UniRF Univariate random 
forest 

NP R2-cla, R2-
mv, R2-McF 

R2-Tju, R2-
Efr, R2-McF 

Any Splines on XY 
coordinates 

- R package: randomForest 
- Species data: raw (abundance), 
categorical 0/1 (binary) 
- #trees: 500 
- Node size: 5 

MVRF Multivariate random 
forest 

NP R2-cla, R2-
mv, R2-McF 

R2-Tju, R2-
Efr, R2-McF 

Any Splines on XY 
coordinates 

- R package: randomForestSRC 
- Species data: raw (abundance), 
categorical 0/1 (binary) 
- #trees: 500 
- Node size: 5 (no CV), 2-15 (CV) 
- CV: no CV or 1 per node size 

*P=parametric, NP=non-parametric 
§
Depending on the method used to model the link between biological and environmental distances  

¶
Depending on what is considered as the environmental response, either the raw data (Any) or the environmental distances (Linear) 

CV: cross-validation  
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Figure 1. Example of different models fitted to a Gaussian niche of one species. (a) Generalised 
linear model (GLM) fits with only linear or both linear and quadratic terms, as well as a 
univariate random forest fit, to Poisson distributed abundances. (b) Linear model (LM) fits with 
only linear or both linear and quadratic terms, as well as a univariate random forest fit, to 
Hellinger-transformed abundances. 
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Figure 2. Performance of the different methods for both abundance (left panels) and binary 
occurrence (right panels) data across the different scenarios: global performance (the higher the 
better; upper panel), RMSE (the lower the better, but note that the vertical axis is inverted to 
facilitate comparison; middle panel), and rank correlation coefficient (the higher the better; lower 
panel). Check the performance for other variants of each method in Appendix 2, Fig. S2.2. 
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Figure 3. Plots of true vs. estimated fractions of variation [E] (as a proportion of total variation 
explained; left panels) and the distribution of total variation explained (i.e. total R2; right panels) 
for abundance and binary data. The true variation fractions are given by the weights attributed to 
the environment (We) in the simulation model. The black line represents the 1:1 line, where 
points should fall if the performance of the method had been perfect. The reference scenario 
(black dots) is defined by N = 100, J = 30, R = 25 and σ = 0.02. The best method of each family 
of methods is represented (see Appendix S2, Fig. S2.3 to see all methods).  
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Figure 4. Plots of true vs. estimated total R2. Points above or below the 1:1 line indicate over or 
underfitting, respectively.  
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Figure 5. Comparison of the estimated fraction [E] among constrained ordination methods (RDA 
and dbRDA) and tree-based methods (BRT and MVRF) for each empirical dataset. The dashed 
line represents the 1:1 line. See Appendix S3 for references. 
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