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Abstract

This study develops a nearly unbiased estimator of the ratio of the contemporary effec-
tive mother size to the census size in a population, as a proxy of the ratio of contemporary
effective size to census size (Ne/N). The proposed estimator is based on both known mother–
offspring (MO) and maternal-sibling (MS) relationships observed within the same cohort, in
which sampled individuals in the cohort probably share MO relationships with sampled moth-
ers. The rationale is that the frequency of MO and MS pairs contains information regarding the
contemporary effective mother size and the (mature) census size, respectively. Therefore, the
estimator can be obtained only from genetic data. Moreover, We also evaluate the performance
of the estimator by running an individual-based model. The results of this study provide the
following: i) parameter range for satisfying the unbiasedness, and ii) guidance for sample sizes
to ensure the required accuracy and precision, especially when the order of the ratio is avail-
able. Furthermore, the results demonstrate the usefulness of a sibship assignment method for
genetic monitoring, providing insights for interpreting environmental and/or anthropological
factors fluctuating Ne/N, especially in the context of conservation biology and wildlife man-
agement.
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1 INTRODUCTION

The Estimation of the ratio of the contemporary effective population size to the census size

(Ne/N) has attracted much research attention for providing information about a current population,

especially in the context of conservation biology and wildlife management (Frankham, Bradshaw,

& Brook, 2014; Palstra & Fraser, 2012). Small Ne/N demonstrates large variance in reproductive

success (Akita, 2019; Wang, Santiago, & Caballero, 2016; Waples, 2016), resulting from the vari-

ance of reproductive potential (e.g., the big old fat fecund female fish hypothesis; Hixon, Johnson,

& Sogard, 2014) or from the situation in which only some families successfully reproduce (re-

ferred to as the “Sweepstakes reproductive success” hypothesis, Hedgecock & Pudovkin, 2011).

Moreover, if Ne/N is invariant across years, then Ne may behave like an index of N, and vice versa

(Luikart, Ryman, Tallmon, Schwartz, & Allendorf, 2010). However, if Ne/N fluctuates across

years, the trends can clarify the interpretation of environmental and/or anthropological factors,

causing the variance of reproductive potential, family-correlated survivorship, or fluctuating pop-

ulation dynamics.

The estimation of Ne/N has been performed by utilizing the estimated values of contemporary

effective population size (Ne) and census size (N), unless complete pedigree data and/or full census

data are available. Additionally, there are numerous methods for estimating Ne from genetic mark-

ers (Wang et al., 2016, and the references contained therein). There are also numerous methods

for estimating N, such as a mark-recapture method or population dynamics modeling with survey

data (e.g., Kéry & Schaub, 2011; Methot & Wetzel, 2013; Quinn & Deriso, 1999; Seber, 1982). It

is known that there are large variations in both estimators; thus, their combination (i.e., the esti-

mator of Ne/N) also shows large variation (Marandel et al., 2018; Palstra & Fraser, 2012). There

is currently a little theoretical foundation for the estimator of Ne/N, indicating no guidance for a
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sample size to ensure the required accuracy and precision.

Close-kin mark-recapture (CKMR) is a recently developed method for estimating N that uti-

lizes the information about kinship in a sample. This was possible owing to the recent advances

in genetic methods for kinship determination (Bravington, Grewe, & Davies, 2016; Bravington,

Skaug, & Anderson, 2016; Hillary et al., 2018; Skaug, 2017) although similar methods have been

proposed in the beginning of the 21st century (Nielsen, Mattila, Clapham, & Palsbøll, 2001; Pearse,

Eckerman, Janzen, & Avise, 2001; Skaug, 2001). Besides, the rationale is that the presence of a

kinship pair in the sample is analogous to the recapture of a marked individual in mark-recapture.

Therefore, kinship pairs in the sample are less likely to be observed in larger populations; thus,

the number of kinship pairs may reflect N. Since the original CKMR is designed to estimate adult

abundance (i.e., N), the monitoring data for CKMR also produce the estimator of Ne by detect-

ing half-sibling (HS) pairs within the same cohort (Akita, 2019). Since kinship determination is

more accurate, this kinship-oriented estimation of Ne was presented in the context of the sibship

assignment method (Wang, 2009) and is expected to provide a much more accurate estimator.

In this study, we propose a new method for estimating the ratio of contemporary effective

mother size to the census size (Ne,m/Nm) in a population, as a proxy of Ne/N. Assuming that kin-

ships are genetically detected without any error, this method is based on the numbers of maternal-

sibling (MS) and mother–offspring (MO) pairs in a sample. Thus, sampling is completed at a

single breeding time; sampling offspring within the same cohort and mothers probably shares MO

relationship with sampled offspring. Our model provides a nearly unbiased estimator of Ne,m/Nm

that explicitly incorporates two types of overdispersed reproduction (i.e., parental and nonparental

variations; Akita, 2019), making it possible to target a species that shows iteroparity (i.e., multiple

reproductive cycles during the lifetime) and/or sweepstakes reproductive success. First, we explain

the modeling assumption and sampling scheme. Then, we analytically determine (nearly) the un-
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biased estimators of Ne,m, 1/Nm, and Ne,m/Nm, which are based on the numbers of MS and/or MO

pairs. Finally, by running an individual-based model, we investigate the performance of the estima-

tor and provide a guide for a sample size. Moreover, it is noteworthy that our modeling framework

can be applied to diverse animal species. However, the description of the model focuses on fish

species, which are presently the best candidate target of our proposed method.

2 THEORY

The main symbols used in this paper are summarized in Table 1.

2.1 Hypothetical population

We suppose that there is a hypothetical population comprising Nm mothers and there is also

no population subdivision or spatial structure. In this study, a mature female is called a mother

even if she does not produce offspring. For mathematical tractability, we assume that only one

spawning ground exists in which the mothers remain for the entire spawning season. Following

Akita (2019), our modeling framework employs two types of overdispersed reproduction: parental

and nonparental variations. Thus, the former indicates a variation caused by the mother’s covari-

ates, such as age, weight, and residence time on the spawning ground, while the latter indicates a

variation caused by non-random stochastic events during a series of reproductive episodes, which

are independent of the mother’s covariates, such as family-correlated survivorship or the mating

behavior effects (e.g., competition for males/females and correlation between mating opportuni-

ties of the mother and the number of her offspring). Figure 1 illustrates a schematic diagram of

the effects of parental and nonparental variations exemplified by age-dependent reproduction and

family-correlated survival on kinship relationships in a population. Detailed definitions of parental
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and nonparental variations are stated in Akita (2019).

Let ki denote the number of surviving offspring of mother i (i = 1,2, . . . ,Nm) during sampling.

It is noteworthy that ki is assumed to be observed at the sampling, as explained in the next sub-

section. Following Akita (2019) and giving the expected number of the surviving offspring per

mother during the sample timing, λi (> 0), ki is assumed to follow a negative binomial distribution

through a conventional parametrization:

Pr[ki|λi] =
Γ[ki +φ ]

ki!Γ[φ ]

(
λi

φ +λi

)ki
(

φ

φ +λi

)φ

, (1)

where φ (> 0) denotes the overdispersion parameter that describes the degree of the nonparental

variation. Presently, φ is assumed to be constant across mothers, whereas the expected number of

the surviving offspring (λi) varies across mothers. The mean and variance of this distribution are

denoted by λi and λi +λ 2
i /φ , respectively. In the limit of infinite φ , this distribution becomes a

Poisson distribution, which is given by Pr[ki|λi] = λ
ki
i e−λi/(ki!). We assumed that λi is independent

and identically distributed with the density function f (λ ), which produces a parental variation.

The shape of the density function is often complex, but it may be described by information, for

example, the mother’s weight composition in the population. The specific form of f (λ ) is given in

Supporting Information and is used for running an individual-based model.

2.2 Sampling

To obtain the estimator of Ne,m/Nm, we utilize the number of MS and MO pairs observed in a

sample. For the mathematical tractability, only one reproductive season is targeted for sampling.

Thus, whether the sampling method does not affect our modeling framework whether it is invasive

or noninvasive. In the population, nM mothers are randomly sampled immediately after the end of
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the reproductive season. Additionally, in the population, nO offspring are also randomly sampled

but allowed to die before sampling. The numbers of MS and MO pairs are determined by pairwise

comparison of all the sample individuals (nOC2 and nMnO comparisons, respectively). As depicted

in Fig 1, six offspring and three mothers are sampled and two MS and three MO pairs are observed.

In our modeling framework, if an MS pair also shares a paternal-sibling (PS) relationship, we count

it as an MS pair and ignore the existing full-sibling (FS) relationship.

2.3 Effective mother size (Ne,m) and the ratio to census size (Ne,m/Nm)

Akita (2019) derived the approximate probability showing that two offspring share an MS

relationship with an arbitrary mother (denoted by πMS) as follows:

πMS ≈
c

Nm + c−1
, (2)

where

c = (1+φ
−1)

E[λ 2]

E[λ ]2
.

Without both parental and nonparental variations (i.e., λ is constant among mothers and φ → ∞),

πMS converges to 1/N, corresponding to the Poisson variance for all mothers in a population.

Moreover, the effect of the two factors causing a deviation from the Poisson variance can be com-

bined as parameter c (≥ 1). In the sequel, we refer to “overdispersion” as the distribution of the

offspring number that results from this combined effect. By applying the combined effect, the
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variance of the offspring number can be given by

V[k] = E[V[k|λ ]]+V[E[k|λ ]]

= E[λ +λ
2/φ ]+V[λ ]

= E[λ ]+E[λ ]2(c−1), (3)

suggesting that the variance substantially increases with c.

Akita (2019) defined the contemporary effective mother size as follows:

Ne,m =
1

πMS
. (4)

Besides, this definition is related to the inbreeding effective population size (Nordborg & Krone,

2002; Wang, 2009). When sampling from a single cohort in a population with overlapping gener-

ations, the effective mother size in our definition corresponds to the effective breeding mother size

that produces a single cohort. We obtain the ratio of the effective mother size to census size using

Eqs. 2 and 4 (Akita, 2019), and it is given by

Ne,m

Nm
=

1
πMS

1
Nm

≈ 1
c
, (5)

where Nm� 1 is assumed for approximation.
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2.4 Estimator of Ne,m/Nm

This subsection proposes the estimator of Ne,m/Nm as follows:

(̂
Ne,m

Nm

)
= N̂e,m

(̂
1

Nm

)
. (6)

A “hat” denotes the estimator of a variable in this study. The requisite condition that satisfies Eq. 6

is independent of N̂e,m and 1̂/Nm. This property will be shown later in this subsection. Akita

(2019) derived the nearly unbiased estimator of Ne,m, which is given by

N̂e,m =

(̂
1

πMS

)
=

(nO
2

)
+1

Hobs
MS +1

, (7)

where Hobs
MS denotes the observed number of MS pairs in a sample. This estimator works well

unless nO is very small. Akita (2018) obtained a probability in which a randomly sampled mother

and her offspring shares an MO relationship, which is given by

πMO =
1

Nm
. (8)

This indicates that πMO is independent of the distribution of the offspring number. By definition of

πMO, we can set its estimator by Hobs
MO/(nMnO), where Hobs

MO denotes the observed number of MO

pairs in a sample. Thus, the estimator of 1/Nm can be determined as follows:

(̂
1

Nm

)
=

Hobs
MO

nMnO
. (9)
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Finally, substituting N̂e,m (Eq. 7) and 1̂/Nm (Eq. 9) into Eq. 6, we obtain the estimator of Ne,m/Nm

as follows: (̂
Ne,m

Nm

)
=

(nO
2

)
+1

Hobs
MS +1

Hobs
MO

nMnO
. (10)

Let both nM and nO be given. We numerically confirmed that there is no correlation between

Hobs
MO and Hobs

MS (results are not shown). To intuitively explain this independency, we consider three

mothers (i = 1,2,3) and their offspring, and assume that (k1,k2,k3) = (3,1,1) and (nM,nO) =

(1,3). Moreover, when the three offspring born to the first mother are sampled (i.e., Hobs
MS = 3), the

expected number of MO relationship is one (= 1/3× 3+ 1/3× 0+ 1/3× 0). Meanwhile, when

an offspring is sampled from each mother’s offspring (i.e., Hobs
MS = 0), the expected number of MO

relationship is also one (= 1/3× 1+ 1/3× 1+ 1/3× 1). Therefore, we conclude that both N̂e,m

and 1̂/Nm are independent, and ̂Ne,m/Nm is expected to work well (see details in the RESULTS

section).

The bias of ̂Ne,m/Nm is defined by b, which is approximately given by (see APPENDIX for

the derivation)

b = E

[(̂
Ne,m

Nm

)]
−
(

Ne,m

Nm

)

≈ −
(

Ne,m

Nm

)(
1− 1

Ne,m

)(nO
2 )+1

. (11)

It is noteworthy that ̂Ne,m/Nm is downwardly biased, especially when nO is very small. However,

this bias may be ignored for a wide range of parameters (see details in the RESULTS section). The-

oretically, b asymptotically converges to zero as nO increases, making ̂Ne,m/Nm a nearly unbiased

estimator. Moreover, as demonstrated in the RESULTS section, it is observed that an extremely

skewed reproduction breaks down the unbiasedness (e.g., in the case that c = 20 and 100 in the
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results).

2.5 Individual-based model

We developed an individual-based model that tracks kinship relationships to evaluate the es-

timator’s performance (e.g., ̂Ne,m/Nm). The population structure was assumed to be identical to

that in the development of the estimators. In addition, the population comprised mothers and their

offspring, and it was assumed to follow a Poisson or negative binomial reproduction. The expected

number of the surviving offspring of a mother followed the density distribution f (λ ) (see Sup-

porting Information for details). We calculated overdispersion parameter (c) from φ and f (λ ), as

well as confirmed numerically that the value of c gives the same statistics of the estimators even if

the combination of φ and f (λ ) differs (results are not shown). Therefore, each offspring retained

the mother’s ID, making it possible to trace an MS and MO relationship.

Let a parameter set (nO, nM, Nm, φ , and parameters that determine f (λ )) be given. We sim-

ulated a population history in which Nm mothers generated offspring; this process was repeated

100 times. The sampling process for each history was repeated 10,000 times, acquiring 1,000,000

data points that were utilized to construct the distribution of the estimators for each parameter set.

Furthermore, true value of Ne,m was calculated from Nm and c (Eqs. 2 and 4).

3 RESULT

We numerically evaluated the performance of ̂Ne,m/Nm for the case in which the number of

mothers, Nm, and the combined effect of deviation from the Poisson, c, were unknown. Moreover,

we changed the parameter values for Nm (103 and 104) and c (1, 10, 20, and 100). In addition,

based on a given parameter set (Nm and c), we mainly addressed the number of samples (nM and
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nO) required to obtain adequate accuracy and precision. In this study, we evaluated the performance

of ̂Ne,m/Nm for specific ranges of the sample sizes (50-200 when Nm = 103, and 200-1000 when

Nm = 104). Meanwhile, other estimators (i.e., N̂e,m and 1̂/Nm) are also evaluated and provided in

Supporting Information.

First, we evaluated the accuracy of estimators based on their relative bias calculated by ap-

plying the individual-based model, which is defined as follows: “(averaged estimator − true

value)/true value.” For a given combination of Nm and c, the value of the relative error of ̂Ne,m/Nm

is represented on a heatmap as a function of nM and nO, as dpicted in Fig. 2. For most of the

investigated parameter sets, we observed that their relative error is less than 10%. As expected,

the relative error is not affected by nM since 1̂/Nm is exactly an unbiased estimator of 1/Nm (see

Eq. A2 in APPENDIX and also Fig. S2 in Supporting Information). Meanwhile, N̂e,m is down-

wardly biased when nO is relatively small to true Ne,m (e.g., see c = 1 in Fig. 2 and also Fig. S1

in Supporting Information), as presented in Akita (2019); thus, ̂Ne,m/Nm is downwardly biased.

Contrary to the theoretical prediction for the direction of the bias (Eq. 11), relatively strong overdis-

persion results in an upwardly bias for ̂Ne,m/Nm when c is relatively large (e.g., c = 20 and 100 in

Fig. 2a). This inconsistency may be caused by the breakdown of the approximation for deriving

N̂e,m (Eq. S14 in Akita, 2019). Thus, as described in Eq. 3, extremely large c results in a large

variance of offspring number, generating a situation in which the behavior of random variable HMS

far deviates from the binomial distribution.

Next, we evaluated the precision of estimators based on their coefficient of variation. As

demonstrated in Fig. 3, the value of the coefficient of variation of ̂Ne,m/Nm is also represented

on a heatmap as a function of nM and nO. For the investigated parameter sets, the degree of

the coefficient of variation strongly depends on the sample sizes. As shown in Figs. S3 and S4

in Supporting Information, the dependency results from the combined effects of variation of
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both 1̂/Nm and N̂e,m. As c increases, it is noteworthy that the parameter space of sample sizes

demonstrating large variation of 1̂/Nm (e.g., CV > 30%) expands; however, when c is small (e.g.,

c = 1), relatively small nO results in large variation of N̂e,m because of a relatively large Ne,m.

4 DISCUSSION

We theoretically developed a nearly unbiased estimator of the ratio of contemporary effec-

tive mother size to the census size (Ne,m/Nm) in a population (Eq. 10). The proposed estimator

is based on known MO relationship and MS relationships observed within the same cohort, in

which sampled individuals in the cohort probably share MO relationships with sampled mothers

(Fig 1). Moreover, the performance of the estimator (accuracy and precision) was quantitatively

evaluated by running an individual-based model (Figs. 2 and 3). Meanwhile, the bias is analyt-

ically provided (Eq. 11). Our modeling framework utilizes two types of reproductive variations

(Akita, 2019): variance of the average offspring number per mother (parental variation, denoted

by f (λ )), and variance of the offspring number across mothers with the same reproductive po-

tential (nonparental variation, denoted by φ ). Additionally, these two effects result in a skewed

distribution of offspring number and are summarized into one parameter (c) in the framework.

Thus, our estimator can be calculated from sample sizes of mother and offspring (nM and nO, re-

spectively) and the observed numbers of MS and MO pairs (Hobs
MS and Hobs

MO, respectively), and it

does not require other parameters. The rationale for this is the following: i) the frequency of MS

and MO pairs contains information about Ne,m and Nm, respectively; ii) the estimators of Ne,m and

1/Nm are independently determined based on a pedigree structure in the population and sample

sizes, generating the estimator of Ne,m/Nm by multiplying both estimators (N̂e,m and 1̂/Nm). In

this study, although ̂Ne,m/Nm is considered as a proxy of N̂e/N, our theoretical results can easily
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be extended to the estimator of the ratio of contemporary effective father size to the census size if

fathers are also sampled. The comparison of both ratios could clarify the underlying processes that

differentiate between the sexes in the context of reproductive ecology.

The novelty of this study is that ̂Ne,m/Nm can be obtained only from the genetic data, and there

are numerous advantages in using the proposed estimator instead of separately estimating Ne (via

genetical method) and N (via non-genetical method). First, sampling and analyzing designs have

become substantially simplified. Moreover, requirements for the proposed estimator are sampling

of mothers and (potentially) their offspring in an appropriate time, and the extraction of their

DNA that satisfies an adequate number of markers for kinship detection. In addition, both MO

and MS pairs can be detected by a applying unified framework of genetic analyzes (there are

many algorithms to detect kinship pairs from single nucleotide polymorphisms (SNPs) or short

tandem repeats (STRs)), although an MS pair involves many more DNA markers (e.g., several

thousands of SNPs are required for detection) than an MO pair (e.g., several hundreds of SNPs are

required for detection). Second, our theoretical results guide sample sizes (nM and nO) to ensure

the required accuracy and precision, especially if the order of the number of effective mothers is

approximately known. This is due to the simple formulation of the estimator determined only by

the observed values (Eq. 10). Third, the proposed estimator directly reflects the amounts of Ne,m

and Nm at the same timing (i.e., immediately after the end of the reproductive season), leading to a

clear interpretation of the results, especially for genetic monitoring. For example, when the strong

cohort is added to the spawning population in the beginning of the year, the estimator of Ne without

reflecting this addition may results in an inappropriate estimation of Ne/N (details of the temporal

scale relevant to estimated Ne for each method were discussed in Wang et al., 2016).

Our modeling framework is presented by combining the context of the sibship assignment

method (for estimating Ne,m) and the CKMR method (for estimating 1/Nm), which defines a
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kinship-oriented estimation of effective/census population size. Therefore, improvements to these

methods directly contribute to the estimation of Ne/N. Furthermore, the original theory of the

sibship assignment method requires HS and FS pairs but does not require a distinction between

the MS and PS pairs. This is a significant advantage due to the difficulty of the distinction from

genetic data. However, the limitation of using MS or PS pair enables us to employ a nearly unbi-

ased estimator of Ne for particular sex (Akita, 2019), which greatly improves the accuracy of the

estimation of the Ne,m in this study and thus that of Ne,m/Nm. It is noteworthy that the estimator of

1/N is given by (̂
1
N

)
=

Hobs
PO

2nPnO
, (12)

where nP and Hobs
PO denotes the sample size of the parent and the observed number of parent–

offspring (PO) pairs in a sample, respectively (Bravington, Skaug, & Anderson, 2016). The devel-

opment of the unbiased estimator of Ne without a distinction between MS and PS pairs that could

provide an unbiased estimator of Ne/N coupled with Eq. 12, is a study for the future. Furthermore,

using cross-cohort HS pairs, the CKMR method also provides the estimator of N (Bravington,

Skaug, & Anderson, 2016) that does not require the sampling of the parent, which probably pro-

vides the estimator of Ne/N only from unmatured samples. This perspective of the study will also

be conducted in the future.
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Table 1: The list of mathematical symbols employed in the main text

nM Sample number of mother

nO Sample number of offspring

Nm Number of mothers in the population when sampled
offspring are born

Ne,m Effective number of mothers in the population

φ Overdispersion parameter under negative binomial
reproduction

λi Expected number of surviving offspring of mother i
at sampling

f (λ ) Frequency of λ for all mothers.

c Combined effect of deviation from the Poisson
(= (1+φ−1)E[λ 2]/E[λ ]2)

ki Number of surviving offspring born to mother i

HMO Number of mother–offspring pairs observed in samples

HMS Number of maternal-sibling pairs observed in samples

πMO Probability that a randomly selected pair (mother and offspring)
shares a mother-offspring relationship

πMS Probability that a randomly selected pair (two offspring)
shares a maternal-sibling relationship

b Bias of ̂Ne,m/Nm
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x x x x x x x x x xx x x x x x x x x x{Family-correlated
survivourship

{Age-dependent
reproduction

FIGURE 1 Example of relationships between mothers and their offspring number. The open,
gray, and black circles represent mothers, their eggs, and their offspring, respectively. The area of
an open circle indicates the degree of reproductive potential of each mother (i.e., λi). The dotted
and thin arrows denote mother–egg and egg–offspring relationships, respectively. The symbol x
denotes a failure to survive at sampling. Sampled individuals are denoted with a bold line.
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(a)

(b)

FIGURE 2 Heatmap showing the relative error of ̂Ne,m/Nm as a function of both nM and nO: (a)
Nm = 1,000, (b) Nm = 10,000.
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(a)

(b)

FIGURE 3 Heatmap showing the coefficient of variation of ̂Ne,m/Nm as a function of both nM and
nO: (a) Nm = 1,000, (b) Nm = 10,000.
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APPENDIX

Derivation of the bias of ̂Ne,m/Nm

For calculation of the bias of ̂Ne,m/Nm, we require an expectation of the estimator given by

E

[(̂
Ne,m

Nm

)]
= COV

[(̂
1

Nm

)
, N̂e,m

]
+E

[(̂
1

Nm

)]
E
[
N̂e,m

]
. (A1)

As stated in the main text, both N̂e,m and 1̂/Nm are independent. Thus, the first term in the right-

hand side of Eq. A1 can be ignored. The expectation of 1̂/Nm is given by

E

[(̂
1

Nm

)]
=

E [HMO]

nMnO

=
1

Nm
. (A2)

From the first to the second line of Eq. A2 , we applied the relationship πMO =E[πMO] =E[HMO]/(nMnO)

and Eq. 8. Equation A2 indicates that 1̂/Nm is the unbiased estimator. The expectation of N̂e,m is

given by

E[N̂e,m] = Ne,m−Ne,m

(
1− 1

Ne,m

)(nO
2 )+1

, (A3)

which is illustrated in Appendix D of Akita (2019). Together with these relationships, we can

obtain the bias of ̂Ne,m/Nm described in Eq. 11.
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Supporting Information

Probability density function and its moment of λ

As stated in the main text, our modeling framework does not require the specific form of

f (λ ); it only requires the ratio of the second moment to the squared first moment (E[λ 2]/E[λ ]2)

instead. However, the specific form is required for evaluating the theoretical results (i.e., calculat-

ing the moment or running the individual-based model). Herein, we model an age-structured fish

population that serves as a representative example, demonstrating both parental and nonparental

variations. The following contents are almost the same as those of Akita (2019) except for the

parameter values that produce the setting c = 20 and 100.

Suppose that the mean fecundity of a mother depends on her age. Let λa denote the mean

fecundity, which is a function of age (denoted by a). The moment can be defined as E[λ m] =

∑
amax
a=0 λ m

a hmat(a), where hmat(a) is the frequency of mature mothers at a given age, and amax denotes

the maximum age. Thus, we can numerically obtain the moment by applying λa and hmat(a).

For marine species with a type-III survivorship curve, it is generally assumed that individual

fecundity is proportional to weight. By utilizing the von Bertalanffy growth equation for body

weight, λa is explicitly defined as a function of age as follows:

λa ∝ (1− exp[−κ(a−a0)])
β , (S1)

where κ , a0, and β are conventionally used parameters in the von Bertalanffy equation, and they

denote the growth rate, the adjuster of the equation for the initial size of the animal, and the

allometric growth parameter, respectively. To obtain a specific value of λ , a coefficient value of 10

multiplied by the right-hand side of Eq. S1 was used when running the individual-based model.
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The frequency of mature mothers at a given age can be given as the following:

hmat(a) ∝ h(a)Q(a), (S2)

satisfying ∑
amax
a=0 hmat(a) = 1, where h(a) and Q(a) denote the frequency and maturity at a given

age, respectively. Although f (a) is affected by historical population dynamics and age-dependent

survival, for simplicity, the mortality rate is assumed to be constant (i.e., age independent):

h(a) ∝


Sa

0

if a < amax

if a = amax

, (S3)

where S denotes a survival probability. The maturity at age (Q(a)) is assumed to be a knife-edge

function, which is given by

Q(a) =


1

0

if a≥ amat

otherwise
, (S4)

where amat denotes the mature age.

To calculate E[λ 2]/E[λ ]2, the required parameter set is (amax,κ,a0,β ,S,amat). In this study,

for the purpose of representation, we fixed the values of several parameters as follows: amax =

20, κ = 0.3, a0 = 0, S = 0.5 and amat = 0. In addition, we selected parameter value c (=

(1+φ−1)E[λ 2]/E[λ ]2) to be 1, 10, 20, and 100 for comparison with the results in the main text

that are derived from the parameter set (φ ,β ) = (1000,0.0009), (0.1302,0.9), (0.06111,0.9), and

(0.01165,0.9), respectively.

Finally, we provide specific forms of f (λ ); thus, when λa and hmat(a) are obtained, f (λ ) is
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given by

f (λ ) =


hmat(a)

0

if λ = λa

otherwise
. (S5)
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(a)

(b)

FIGURE S1 Heatmap showing the relative error of N̂e,m as a function of both nM and nO: (a)
Nm = 1,000, (b) Nm = 10,000.
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(a)

(b)

FIGURE S2 Heatmap showing the relative error of 1̂/Nm as a function of both nM and nO: (a)
Nm = 1,000, (b) Nm = 10,000.
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(a)

(b)

FIGURE S3 Heatmap showing the coefficient of variation of N̂e,m as a function of both nM and
nO: (a) Nm = 1,000, (b) Nm = 10,000.

28

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872168doi: bioRxiv preprint 

https://doi.org/10.1101/872168
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a)

(b)

FIGURE S4 Heatmap showing the coefficient of variation of 1̂/Nm as a function of both nM and
nO: (a) Nm = 1,000, (b) Nm = 10,000.
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