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Abstract 
Recent next generation sequencing and single molecule methodologies provide functional insights into gene regulatory 
networks beyond Boolean interactions, including the number, binding modes and kinetic rates of transcription factors 
and the kinetics of gene bursting. We report CaiNet, a fast computer aided interactive network simulation environment 
to set up and simulate arbitrary gene regulatory networks. CaiNet automatically compiles a network laid out in a graph-
ical user interface into a fast hybrid stochastic-deterministic simulation framework without further mathematical 
knowledge or input by the user. Stochastic noise can optionally be omitted for simplified deterministic solutions. We 
validate CaiNet by comparison with Gillespie simulations using an auto feedback motive. We apply CaiNet to the circa-
dian clock and find that temporally modulated external input signals allow regulating the periodicity of oscillations in a 
nested network topology. We further use CaiNet to simulate the temporal behavior of the pluripotency network, using 
published kinetic parameters where possible, as it transits from the naïve state to germ layer lineages upon changes in 
signal inputs. 
 
 

Introduction 
Dynamics and progression of many fundamental pro-
cesses in cells and organisms, including metabolism 1, 2 
the cell cycle 3, the circadian clock 4, differentiation  5-7 
and development 8 are governed by gene regulatory 
networks. These networks generally control the activity 
of genes by regulatory motifs such as feedback or feed 
forward loops 9, 10, which ensure spatially and temporally 
controlled gene expression. The structure of gene regu-
latory networks commonly is inferred from large scale 
gene expression 11, 12 and transcription factor target site 
13 analysis by comparing different network conditions, 
e.g. at different time points or before and after knock-
down of genes. Regulatory networks have been investi-
gated with logic1, 14-16, continuous17 and inference ap-
proaches dedicated to gene regulatory networks18. Such 
models yield basic dynamic descriptions of networks, yet 
neglect details associated with the stochastic behavior of 
biomolecules on the single molecule level such as noise 
in gene expression19-21. 
 
Since recent years, novel experimental approaches are 
emerging that enable obtaining detailed molecular and 
kinetic information about biological processes underly-
ing gene regulatory networks. They reveal whether tran-
scription factors bind simultaneously to promoters or 
enhancers22, the kinetics of gene bursting 23-25, elonga-
tion 26-28, transcription 29-31 and translation rates 32, 33, 
mRNA 34 and protein abundances 35-38, degradation rates 

of mRNA 31, 39, 40 and proteins41, 42 and transcription fac-
tor-chromatin 43-48 and protein-protein interaction rates 
49, 50. In developing animals, complete cell lineage trees 
can be reconstructed 51. Such information in principle 
allows describing gene regulatory networks at full mo-
lecular detail 52-55. Indeed, besides basic network motives 
10, 56-60, larger systems have been described at a detailed 
molecular level, including the pluripotency network 61, 62, 
the cell cycle 63 and the circadian clock 64. Since a com-
plete Gillespie simulation 65 of large networks is compu-
tationally too time-expensive, networks including micro-
scopic stochastic elements have been treated by kinetic 
coarse-graining 66 , kinetically separating stochastic and 
deterministic building blocks 67 or piecewise determinis-
tic Markov processes 68. However, implementing a simu-
lation environment for a gene regulatory network includ-
ing molecular details requires complex mathematics and 
thus is limited to a few specialized groups and network-
specific realizations.  
 
Here, we report a computer aided interactive gene net-
work simulation tool (CaiNet), which is generally appli-
cable by users with little mathematical knowledge to 
model the dynamic behavior of gene regulatory net-
works at full molecular detail including stochastic kinet-
ics, delays and noise. We validate the similarity in dy-
namics and noise of CaiNet to full Gillespie simulations 
using an auto feedback motive. We apply CaiNet to the 
circadian clock and find that external input modulating
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Figure 1: Working principle and validation of CaiNet. (a) Gene Regulatory Networks (GRNs) in CaiNet may comprise extracellular 
input signals, signal transduction pathways and interactions in a network of genes. These connected building blocks of the regulatory 
network can be implemented in CaiNet via a GUI, which automatically applies mathematical models for all building blocks of the 
network. The functions and parameters of these building blocks can be manipulated to emulate experimental conditions such as 
knockdown experiments. (b) CaiNet uses a half-analytical algorithm to simulate the GRN. Switching between on/off states of genes in 
simulated with the Gillespie algorithm. The switching trajectory is sampled by analytical solutions of the birth and death processes of 
the gene products. Chemical reactions such as dimerization and signaling pathways are calculated analytically in time intervals of Δt. 
At the end of this time interval all calculated numbers of species are synchronized. (c) Network for verification of CaiNet. The net-
work consists of a single transcription factor that forms homodimers to activate its own expression. Such an auto regulatory motif 
may switch to a high stable expression level. We induce the switching process by applying a pulse of an external activating transcrip-
tion factor. (d)  Time trajectories of the expression level calculated with CaiNet using the Noise add-on and the ODE45 solver of 
Matlab. (e) Dependency of the switching probability on the pulse duration. Gillespie and CaiNet results overlap well, while the de-
terministic ODE-approach overlooks stochastic features. 

 
 Per/Cry expression levels enables regulating the peri-
odicity of circadian oscillations. We further use CaiNet 
to simulate the time course of germ line differentiation 
starting from the pluripotent state. 

Results 
Functionality and validation of CaiNet 
Genetic networks commonly comprise several ele-
ments: external signaling inputs, biochemical reactions, 
signaling motives including several genes and network-
specific signaling outputs (Figure 1a, upper panel). We 
designed a graphical user interface (GUI) for CaiNet to 
facilitate setting up complex genetic networks (Figure 
1a, second panel), inspired by the NetBuilder project 69, 

70. With this GUI, icons representing the network ele-
ments ‘input’, ‘biochemical reaction’ and ‘gene’ can be 
connected intuitively using activating or inhibiting links 
represented by wires. For each network element, rele-
vant structural and kinetic parameters can be defined 

(Figure 1a, third panel and Supplementary Table 1). 
Inputs are associated with a time course, e.g. sinusoi-
dal or rectangular (Supplementary Figure 1). We prede-
fined several biochemical reactions, which include 
reaction rates such as association or dissociation, and 
provide analytical solutions to the corresponding ordi-
nary differential equations (ODEs) (Supplementary 
Figure 2). For genes, the structure of the promoter, e.g. 
the number of transcription factor binding sites (Sup-
plementary Figure 3), and kinetic parameters such as 
residence times of transcription factors, transcription 
and degradation rates can be defined. Genes are de-
scribed by two states, an on-state that is initiated by 
association of a transcription factor and leads to pro-
duction of RNA and an off-state that is assumed upon 
dissociation of the transcription factor. In addition, we 
implemented means to manipulate a genetic network 
by knocking down one or more genes (Figure 1a, lower 
panel). 
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To simulate a genetic network using CaiNet, the net-
work laid out in the GUI is automatically transferred to 
a simulation job based on a hybrid stochastic analytical 
algorithm (Figure 1b and Methods). Inputs define the 
initial and boundary conditions of the network. Appro-
priate analytical solutions are assigned to the biochem-
ical reactions (Supplementary Information Section 1.3). 
Transitions of genes between on and off states are 
treated with a Gillespie approach that yields stochasti-
cally distributed switching times (Methods). At fixed 
time points every t, analytical and stochastic network 
elements are synchronized and the momentary simula-
tion output, that is the momentary number of all mo-
lecular species including protein and RNA molecules, is 
tabulated. For synchronization, analytical solutions are 
directly calculated for each synchronization time point 
using interval t. For stochastic network elements, the 
Gillespie simulation employs numbers of molecular 
species determined at the previous synchronization 
time point. The number of molecular species for the 
following synchronization time point is obtained by 
analytical continuation using Equation (8) (Methods). A 
delay within a stochastic process, e.g. translation of a 
gene product, can be realized by shifting the synchro-
nization time point of this process with respect to the 
remaining genetic network (Figure 1b).  

The modular design of our hybrid stochastic analytical 
approach readily enables simulations of increasing 
complexity (Methods): (i) initial solutions of an ODE 
solver use average on-times for genes instead of full 
gene switching kinetics. (ii) ODE solutions can be en-
hanced by including gene switching kinetics calculated 
by the Gillepsie approach. (iii) Additional noise in ex-
pression levels can be included, drawn from a Poisson 
distribution.  

We validated the hybrid algorithm underlying CaiNet 
with the network motive of an auto feedback loop that 
is activated by both a dimer of its gene product and an 
additional external stimulating input pulse (Figure 1c 
and Supplementary Table 2). Similar network motifs 
have been shown to exhibit complex emergent behav-
ior depending on noise 58. We compared the behavior 
of this network motive using a full kinetic simulation 
with the Gillespie algorithm (Supplementary Infor-
mation Section 2.1.1), simulations using CaiNet in the 
presence and absence of fluctuations in gene product 
due to birth and death processes (Methods), and a 
numerical solution of the corresponding ordinary dif-
ferential equations (Methods). An immediate ad-
vantage of our hybrid stochastic analytical approach 
compared to Gillespie and ODEs are ca. 100-fold faster 

simulation times. At a short input pulse of 5 min, the 
expression level returns to zero for all considered cases 
(Figure 1d, left panel). At a long input pulse of 100 min, 
expression levels switch to a high state (Figure 1d, right 
panel), as expected for the positive auto feedback loop 
58. At intermediate pulse durations, simulations using 
Gillespie or CaiNet reveal stochastic transitions be-
tween the two expression levels, while the ODE solu-
tion assumes the outcome predicted by the initial con-
dition. We quantified the switching probability of the 
auto feedback loop in dependence of the pulse dura-
tion by counting the times the expression level in-
creased above a certain threshold in 500 simulation 
runs for each pulse duration (Figure 1e). As expected, 
the ODE approach exhibits a binary switching behavior 
with clearly defined switching pulse duration. In con-
trast, the Gillespie approach exhibits a sigmoidal 
switching probability. The switching probabilities of 
both CaiNet approaches with and without gene prod-
uct fluctuations are comparable to the Gillespie ap-
proach. 

Our hybrid algorithm leads to an error in the number of 
molecular species at the time point of synchronization 
actually seen by each element that increases with in-
creasing synchronization interval t. For the auto feed-
back loop we observed deviations in the switching 
probability between CaiNet and the full Gillespie simu-
lation only if t exceeded the gene production rate by 
a factor of 100 (Supplementary Figure 4). The correct 
outcome of the emergent kinetic feature of the switch-
ing probability in the CaiNet simulations indicates that 
CaiNet well approximates the full Gillespie simulation.  

Frequency modulations in the circadian clock 
As first application, we used CaiNet to study the tem-
poral behavior of the circadian clock. The circadian 
clock is a gene network that regulates the 24h day-
night rhythm in mammals 71-73. It consists of an internal 
incoherent feedback loop composed of the heterodi-
mer Bmal1/Clock that activates expression of Ror and 
Rev, which in turn activate respectively inhibit expres-
sion of Bmal1/Clock (Figure 2a)73, 74. In addition, the 
circadian clock comprises a negative feedback loop in 
which the Bmal1/Clock-activated heterodimer Per/Cry 
inhibits its own transcription directly and indirectly via 
inhibition of Ror and Rev (Figure 2a)73, 74. We allowed 
circadian genes to exhibit low leaky expression. The 
circadian clock is adjusted by external light and meta-
bolic signals acting on Per/Cry 75, 76 (Figure 2a). Why 
two functionally similar feedback loops are necessary 
to drive circadian clock oscillations is not clear.  
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Figure 2: Interplay of two nested loops modulates phase 
and frequency of circadian oscillations. (a) Simplified layout 
of the circadian clock network. The inner feedback loop 
consists of Bmal, clock, Ror and Rev. Ror is the positive and 
Rev is the negative feedback lobe for Bmal/Clock expression. 
Per and Cry are an additional negative feedback lobe that can 
be tuned by external signals. (b) Comparison of protein levels 
of ODE solutions and solutions including molecular noise. The 
circadian clock oscillates with a frequency of 24h. The oscilla-
tion of the inner loop runs autonomously. Per activity sup-
presses rising expression levels during an oscillation period. 
Activating Per every 24h during low expression levels of the 
inner loop does not impede its oscillations and helps to main-
tain coherence with a deterministic periodic 24h oscillation. 
(c) Prolonged Per activity also prolongs down-times of ex-
pression levels of Ror, Rev and Bmal/Clock, thereby decreas-
ing the native clock frequency of the circadian clock, even 
during a period of 10 days. Middle panel: comparison of ODE 
solutions. Lower panel: solutions including molecular noise.   

We first determined whether the internal feedback 
loop alone allows for circadian oscillations, as previous-
ly proposed 77, 78. We thus implemented the corre-
sponding network in the GUI of CaiNet (Supplementary 
Figure 5a). We next tested the existence of parameter 
sets ensuring oscillations by stability analysis of the fix 
point of the corresponding ODEs (Supplementary In-
formation Section 2.2)79. This revealed constraints for 
kinetic parameters (Equation (1.85) and (1.93) in Sup-
plementary Information) which indeed led to oscilla-
tions of the internal incoherent feedback loop when 
inserted into CaiNet (Supplementary Figure 5b). To 
restrict the period of oscillations to 24h, we transferred 
the ODEs to a Liennard equation and determined its 
eigenfrequency (Supplementary Information equation 
(1.87)). We thus found constraints for the degradation 
rates of Ror and Rev that ensured a circadian rhythm of 
the internal incoherent feedback loop (Supplementary 
Figure 5b and Supplementary Table 3).  

We next added the negative feedback loop of Per/Cry 
to the internal feedback loop, combined with a period-
ic input insuring degradation of the Per/Cry dimer (Fig-
ure 2a). Again, all components of the circadian clock 
network exhibited circadian oscillations in their expres-
sion levels comparable to experimental oscillations 
(Figure 2b)23. While ODE solutions led to a stable fre-
quency and amplitude of oscillations, the full kinetic 
description of the network reveals small variations of 
these parameters, similar to previous observations64. 
By modulating the time course of the input signal, a 
phase shift in the oscillations of the network can be 
introduced (Supplementary Figure 6a and b) and the 
frequency of the oscillations can be altered (Figure 2c). 
Similarly, an activating input by NFY to Bmal1/Clock 77 
introduced a phase shift to the network (Supplemen-
tary Figure 7c and d).  Our results for the circadian 
clock network demonstrate that temporally modulated 
external input signals acting on Per/Cry allow regulat-
ing the frequency and phase of circadian oscillations in 
a nested network topology.  

Time course of germ line differentiation 
As second application, we used CaiNet to study the 
temporal behavior of the pluripotency network 6, 80. In 
particular, we simulated the time course of differentia-
tion from the naïve state into germ layer cell types 
upon certain culture conditions 81. We implemented a 
network comprised of an input layer including the 
signaling factors Lif, TGF-b, BMP, Fgf4 and Wnt, signal 
transduction and feedback layers around the core 
pluripotency network including Nanog, Sox2 and Oct4 
and an output layer of differentiation markers includ-
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ing Runx2, Pax6 and Gata6 in the GUI of CaiNet (Figure 
3a and Supplementary Information Section 2.3.1)11, 74, 

80. For the transcription factors Stat3, Sox2, Oct4, 
Nanog and Klf4 we applied experimentally determined 
kinetic parameters and promoter structures42, 82, 83, for 
the other kinetic parameters of the network elements 
we chose typical values (Supplementary Table 4).  

To test the network for consistency with experiments, 
we initially traced the time course of expression levels 

of Klf4, Nanog, Sox2 and Oct4 when changing input 
conditions sustaining the naïve state, in which Lif and 
BMP are present, to conditions supporting the primed 
state, in which TGF-b and Fgf4 are present (Figure 3b). 
As expected, expression of Klf4 stalled, while expres-
sion of the pluripotency factors continued 80. Next, we 
used the knockout tool of CaiNet to simulate experi- 

 

Figure 3: Temporal regulation of Pluripotency and differentiation. (a) Layout of the pluripotency network. The regulatory network is 
split into different functional layers. The signal transduction layer translates extracellular signals into transcription factors. These 
interact with core-pluripotency factors and differentiation factors. The feedback layer propagates the state of the pluripotency net-
work to the differentiation factors. (b) Transition from naïve to primed pluripotency. Lif and BMP signaling maintain the activity of 
Klf4, Nanog, Sox2 and Oct4. When Lif and BMP are replaced by Fgf and Tgf-β, all pluripotency factors except Klf4 maintain their 
expression levels. (c and d) Simulation of knockdown experiments of core pluripotency factors. In 2i conditions the core pluripotency 
network is active. While knockdown of all pluripotency factors deactivates the core network, Nanog knockdown in presence of Lif 
signal shows weak activity of Oct4, Sall4 and Klf4 (e) Transition from naïve pluripotency to the endoderm state. Fgf indirectly acti-
vates the endoderm differentiation marker Gata6 which adopts a high expression level since the pluripotency factors Oct4 and Sall4 
are inactive (f) Transition from naïve pluripotency to the enctoderm state. Due to the stable feedback between Six3 and Pax6, ecto-
derm is the default differentiation state if no signal is present. (g) Wnt signaling inhibits the transcription factor Tcf3, which is a down 
regulator of the core pluripotency network. Thus Wnt also inhibits ectoderm differentiation (h) Wnt signaling determines how low 
the core network remains active once all activating signals have been shut down (i) Transition from naïve pluripotency to the meso-
derm state. BMP activates the mesoderm differentiation maker Runx2 (j) upper panel: network motif for the interpretation of plu-
ripotency and differentiation signals. Lower panel: heatmap of Smad and Nanog binding times revealing optimal values for Runx2 
activity. 
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ments in which Stat3 has been knocked down in 2i 
culture conditions 11 (Figure 3c and Supplementary 
Information Section 2.3.4). As expected, expression 
levels of important signaling factors including Nanog, 
Sox2 and Oct4 declined within two days. Analogously, 
knockdown of essential signaling factors resulted in 
vanishing expression levels of all other factors (Figure 
3d). The knockdown of Nanog in presence of 2i and Lif 
culturing conditions showed low levels of Oct4, Sall4 
and Klf4 activity as observed in experiments 11. 

Next, we simulated differentiation from the naïve state 
into the endoderm state by successively altering input 
conditions within one day from Lif/Bmp to TGF-b/Fgf to 
Fgf/Wnt, and monitoring the expression levels of Oct4, 
Sall4 and the differentiation marker Gata6 (Figure 3e) 
80, 81, 84. We found that Sall4, which represses Gata6, is 
continuously expressed during naïve and primed states 
until the core pluripotency network including Oct4 is 
downregulated upon transition to the endoderm line. 
Conversely, Gata6 was not expressed in naïve state and 
only showed marginal expression in the primed state 
due to direct activation by Fgf4, but increased in levels 
after downregulation of its repressor Sall4 by the core 
network. Similarly, we simulated differentiation into 
the ectoderm state (Figure 3f). We observed that dif-
ferentiation into ectoderm, as indicated by an increase 
in the marker gene Pax6, occurred as default if no input 
signals were present after the primed state, consistent 
with expectations 85. In contrast, differentiation into 
ectoderm was prohibited if Wnt signaling was present 
86  (Figure 3g). Our simulation revealed that this is at-
tributed to a prolonged presence of Oct4 when nega-
tive feedback loops activated by Tcf3 are kept inactive 
(Figure 3h). A similar finding was suggested previously 
87. Finally, when we altered the inputs to Bmp only 
after the primed state, differentiation occurred into 
the mesoderm state, indicated by an increase of the 
marker gene Runx2 (Figure 3i).  

In our layout of the pluripotency network, differentia-
tion into the germ layer typically occurs via a regulato-
ry motive in which a pluripotency factor inhibits and an 
input signal activates a marker gene. Similar regulatory 
motives are also found in other complex network struc-
tures 88. We tested how the chromatin interaction 
times of the two adversely acting transcription factors 
affected transcription of the marker gene Runx2 in the 
subnetwork including Nanog and Smad1/5/8 (Figure 3j, 
upper panel). We found a strong dependency of Runx2 
activity on the chromatin residence times of Nanog and 
Smad1/5/8 (Figure 3j, lower panel and Supplementary 
Information Section 2.3.5). 

Discussion 
CaiNet is designed to assist users in setting up and 
simulating complex gene regulatory networks at mo-
lecular detail. We included analytical solutions to 
common biochemical reactions in the hybrid stochas-
tic-deterministic simulation approach, resulting in su-
perior simulation speed compared to Gillespie or ODE-
based approaches. This library can be extended in the 
future, as more analytical solutions become available. 
Novel networks are automatically compiled into the 
simulation algorithm. This allows to quickly assessing 
the effect of changes in network structure on the be-
haviour of the network, without cumbersome recalcu-
lation of the network. The knockdown tool, which ei-
ther reduces or abolishes expression of a gene, further 
facilitates validation of the network structure through 
comparison with experiments or by evoking testable 
predictions. 
 
Our modular algorithm enables adding more and more 
realistic kinetic behaviour and molecule noise to initial 
ODE solutions. For the pulse-triggered auto feedback 
motive, noise led to transitions between stable states58 
in contrast to a sharp threshold behaviour observed in 
the ODE solution. For the circadian clock, the modular 
approach enabled us to find parameters79 allowing for 
oscillations of network components. When simulating 
the pluripotency network including molecular noise, 
we observed a decay of Oct4 abundance with decay 
time depending on the input condition, revealing a 
memory inherent in the network structure as previous-
ly suggested 89. Furthermore, our simulations revealed 
a dependency of network performance on the kinetics 
of gene switching 61, respectively the kinetics of tran-
scription factor-chromatin interactions. Overall, the 
influence of molecular kinetics and proper noise on the 
performance of gene regulatory networks52, 55 can be 
readily appreciated using CaiNet.  
 
In setting up the gene regulatory network for the circa-
dian clock and the pluripotency network, we conceded 
several simplifications to an educational demonstration 
of CaiNet. First, our choice of participating genes com-
promises between comprehensiveness and consisten-
cy. The layout of the networks can be improved in the 
future as more information becomes available.  Sec-
ond, we simplified regulatory mechanisms. In particu-
lar, the relationship between binding of a transcription 
factor and activation of a gene neglects for example 
the activity of cofactors or epigenetic alterations of the 
gene locus. Moreover, we neglected regulatory ele-
ments such as posttranslational modifications or the 
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presence of RNA binding proteins 5. Since a series of 
stochastic processes results in a single effective sto-
chastic process, missing mechanisms can be supple-
mented by appropriate delays. Thus, while future addi-
tions of a more complex regulation of gene activity or 
further regulatory elements might result in different 
temporal network behaviour, however, additional 
feedback motives are expected to impact network 
behaviour most.  
 
In principle, smart application of the features already 
available in CaiNet might enable implementing many 
missing regulatory elements. Posttranslational modifi-
cations to a protein for example could be achieved by 
directly linking two genes and proper assignment of 
parameters. Reaction diffusion processes might be 
realized in a similar fashion. On the other hand, CaiNet 
meets limitations when applied to networks of differ-
ent type, for example networks of fast biochemical 
reactions that might conflict with temporal separation 
in the hybrid algorithm. For gene regulatory networks, 
CaiNet represents a readily applicable and versatile 
simulation environment to unravel kinetic network 
properties at molecular detail. 
 

Methods 
We develop a hybrid algorithm that is composed of 
stochastic and deterministic components. Stochastic 
components include common promoter structures (see 
Supplementary Information Section 1.2) and are simu-
lated with the Gillespie-Algorithm. The deterministic 
components include common signaling pathway motifs 
and chemical reactions (see Supplementary Infor-
mation Section 1.3) and are calculated with predefined 
analytical solutions. We decouple all components dur-
ing the simulation to increase computational speed. 
We let the blocks communicate their current molecule 
number on defined synchronization time points. The 
synchronization time points allow us to include con-
stant delays without computational effort. Analytical 
solutions for gene product synthesis allow for efficient 
simulation of initiation and termination events in tran-
scription and translation. In addition, we allow external 
user-defined inputs that can change over time. 

Pseudo Code: 

for (  t=0  ;  t<T  ;  t=t+Δt  ) 

 Apply external inputs to n(t) 

Apply constant Delay by fetching numbers 
from the past n(t)=n(t-delay) 

 for every block in Stochastic-blocks 

n(t) =f(n(t- Δt),block)  

// Methods and Supplementary In-
formation Section 1.2  

 endfor 

 for every block in Deterministic-blocks 

n(t) =g(n(t- Δt),block) 

// Supplementary Information 1.3 

 endfor 

 t=t+dt 

endfor 

Stochastic building block of gene switching 
We model genes as two-state systems 90 that produce 
a gene product while in the on-state (birth process) 
and are silent in the off-state (Supplementary Figure 
3a). Proteins degrade in both states of the gene (death 
process). The stochastic rates for switching to the on-
state is called by ( )n 

 and the rates for switching to 

the off state are called ( )n 
 . We assume that the 

switching events are Poisson processes. As a result, the 
time of a stochastic event is determined by the random 
number X  and the current switching rate constant 

 
, Gene offlog( )

       where   
, Gene oni

X
t







  


  (1) 

Using (1) we obtain a time series of stochastic switch-
ing events  1 2, , ...t t   for each gene that determine 

the time evolution of the gene product during the time 
interval t  between two synchronization time points. 
From this time-series we construct the function ( )a t  

that describes the time-trajectory of the promoter 
states. We use this trajectory to calculate the expres-
sion level of the gene. 

Gene expression including delays 
In the on-state, the gene produces products with the 
rate  . The products are degraded. We assume that 
degradation is a Poisson process with rate   for each 
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product. Each individual gene has its own birth and 
death rates ,  . The differential equation for gene 
product synthesis and degradation is given by 

 ( )n a t n     (2) 

where we introduced the time dependent state ( )a t  of 

the gene that adopts the values zero and one. The rate 
constant   summarizes the many steps included in the 
synthesis of a gene product. In case of protein synthe-
sis these steps include initiation of transcription, elon-
gation of RNA, termination of transcription, initiation 
of translation, elongation of the protein and termina-
tion of translation. In addition, the mRNA needs time 
to be transported to ribosomes and might be subject to 
posttranslational modifications. We assume that each 
of the aforementioned processes has a single rate-
limiting step as it was shown for splicing 91. Rate limit-
ing steps change the time trajectory of the expression 
level n  by introducing delays with rate constants

1... N  . In particular, they may smooth bursts of gene 

expression. To determine the resulting function ( )n t  

we solve the general system of ODEs for an arbitrary 
number of delay processes. Using the switching func-
tion ( )a t  for a single gene we arrive at the system of 

differential equations 
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where Nc n  represents the output expression level 

of the gene. Our first step to solve the system for ( )Nc t  

is to calculate the Laplace transform of all equations in 
(3). The result for the first and the i-th equation is 
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where p the transform variable and a  is the Laplace 
transform of a . With these results we can easily find 
an equation for the Laplace-transform of the final 
product Nc   
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Before we calculate the inverse Laplace transform to 
obtain ( )Nc t  we simplify the denominators in (5) by 

partial fraction composition with the coefficients i   
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For few delays this simplification can most easily be 
verified by plugging in i and rewriting the right hand 

side of (6). For a high number of delays the result can 
be derived by the well-known technique of partial 
fraction decomposition. We plug this result in (5) and 
obtain 

 i
N

i i

c a
p







    (7) 

We next use the multiplication theorem for the Laplace 
transform and find 

 exp( ( )) ( ') d 'N i i
i

c t t a t t         (8) 

Since ( )a t  only adopts the constant values zero or one 

this integral can be solved analytically. 

Besides single time-limiting steps, elongation of tran-
scripts or Amino Acid chains can introduce a delay in 
terms of a well-defined time-span in contrast to an 
exponential distribution. We add these deterministic 
delays directly in the algorithm by referring to previous 
synchronization time points. A limitation of this proce-
dure is that the delays can only be given as multiples of 
the synchronisation time-step t  . 

The above formalism does not limit the algorithm to 
models of exponential degradation. In (Supplementary 
Information Section 1.3.2) we demonstrate that the 
degradation model can be modified by adding an addi-
tional equation to the system (3). 

 

Birth and death noise 
We are able to emulate a stochastic Gillespie simula-
tion of stochastic birth and death processes by calculat-
ing the mRNA produced during a burst of transcription 
according to the Poisson distribution. Assuming a pro-
duction rate of   and an on-time of t  the probability 
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distribution p(k,N) for k produced molecules with the 
expectation value t  is 

 ( , ) exp( )
!

kN
p k N N

k
    (9) 

In our simulator we draw a random number from the 
Poisson distribution and obtain the amount of gene 
products added. The magnitude of the variance in 

relation to the expectation value is 1/ N  indicating 
that this emulation of Birth and death noise is most 
relevant for small molecule numbers. 

Since we apply the noise in the first step of gene prod-
uct synthesis, that method presented here reproduces 
correct expectation value and variance for arbitrary 
gene-switching and delay rate constants- 

Top-Down design of noisy networks in CaiNet 
Networks assembled in CaiNet can be investigated in a 
deterministic mode with gene-switching noise and 
birth and death noise switched off. For each individual 
gene that is simulated n this deterministic mode, we 
omit the random number generation in (1) and replace 
the production rate   by the average production rate 
considering on/off times of the gene 

 Deterministic onv p
 

 
 


  (10) 

In addition, birth and death noise of gene products 
(Methods Section 1.1.2) and noise in chemical reac-
tions (Supplementary Information 1.3.6) can be turned 
on and off for individual species. Using this feature the 
influence of noise of single processes or species on the 
network can be determined. 
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1 Elements of CaiNet 
1.1 Inputs 
We designed input-elements that feed a user-defined time trajectory into the network. Such elements 
may be used to simulate external stimuli or noise-less constant expression levels. Figure 1 shows 
example input trajectories. 

1.2 Effective on/off rates of the stochastic two state model 
To simplify our computational approach, we assume that the complex dynamics on a promoter can be 
reduced to a two state model. For each promoter structure below we calculate effective on- and off-
rates eff  and eff  that correspond to a two state model. 

1.2.1 Activation by a single TF 
For the most simplified case of activation of a gene we assume that a promoter is activated once a TF 
binds (Figure 3a). This means that the on-rate is given by the arrival rate of the TF at the promoter. 
Once a TF has arrived at the Promoter the gene is ‘on’ for the time 1 /  . This time can vary depending 
on the TF and the promoter of the gene. In not otherwise stated we assumed that the binding time of 
the TF corresponds to this on-time. 

 
0eff TF

eff

n 
 




  (1.1) 

where 0  is the arrival rate of a single transcription factor. 

1.2.2 Promoter with AND-logic 
The AND-logic refers to a promoter that is only activated if TF1 and TF2 up to TFN are bound (Figure 3b). 
Once a single TF leaves, the activation criterion is immediately violated and the promoter is off. 

Therefore, the off-rate of the promoter eff  is the sum over all off-rates of the TFs TFi  . 

  



1

N

eff TFi
i

  (1.2) 

Combinatorically, we can also write down the probability of the promoter to be on as the product of 
the probability of all TFs to be bound 

      , / ( )on on TFi TFi TFi TFi
i i

p p   (1.3) 

where   ,0 ,TFi TFi TF in  is the arrival rate of a TF at the promoter. From ,on effp and eff  we can calculate 

the on-rate of the promoter 

 / (1 )eff on on eff effp p K       (1.4) 

 

1.2.3 Promoter with OR logic 
When a promoter is active if TF1 or TF2 up to TFN or a combination of all is bound, we refer to this 
promoter as OR-logic (Figure 3c). We start the calculation of effective rates with the on-rates of 

individual TFs TFi . Since the arrival of any TF is enough to activate the promoter, the on-rate is 
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  eff TFi
i

  (1.5) 

The probability to be on can be calculated combinatorically with ,on TFip  implicitly defined in (1.3) 

     , 1 , 2 ,1 (1 )(1 )...(1 )on on TF on TF on TFNp p p p   (1.6) 

With (1.4) we find the effective off rate of the promoter  

   (1 ) /eff eff on onp p   (1.7) 

1.2.4 Promoter with cooperating TFs 
We next describe a promoter where TF1 enhances the binding time of TF2 (Figure 3d). We first 
calculate the on- and off-rate of both TFs being bound to the promoter. 

 
1 2

, 1, 2

, 1, 2 1 2

( )

1
on

eff TF TF
on

eff TF TF

p

p

 

  






 
  (1.8) 

We add this effective on and off rates to the or-promoter described above. These effective rates enter 
equations (1.5) and (1.7) to calculate the effective on/off rates of the gene. 

1.2.5 Competitive Repression 
We now enhance all promoters developed above by an additional feature, which is the blocking of the 
promoter by a repressor. We assume that the promoter cannot be activated once a repressor is bound. 
Once a gene is activated however, the repressor does not abort expression. Therefore, the repressor 
directly affects the effective on-rate of an arbitrary promoter while the off-rate remains unchanged  

 
 
 

 


, ,Re

,

eff repressor eff off pressor

eff repressor eff

p
  (1.9) 

To proof this, we write down the differential equations describing the change in the blocked and free 
promoter populations. We denote blocked promoters with b  free but inactive promoters with f  
and active promoters with a   

 
 

   

  

   




R R

R eff eff R

b b f

f b a f f
  (1.10) 

Assuming that the changes in repressor-population are small, we find 

 R
R

R

b f K f



    (1.11) 

If we now calculate the sum of blocked and unblocked promoters, we obtain 

 (1 )Rp b f K f      (1.12) 

We add up equations (1.10) plug in (1.12) and obtain 

 1
eff

RKp a p     (1.13) 
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From this result we conclude for the new effective rate modified by the repressor 

   1
, 1eff repressor eff RK      (1.14) 

 

1.2.6 Noncompetitive repression 
For a non-competitive repressor the gene is off if the repressor is bound. Therefore, the new 
probability to be active is 

 , ,on on activatingTF off repressorp p p   (1.15) 

To obtain the effective rates in the two-state model, we assume that binding of the repressor during 
the on-time of the gene is unlikely. With this assumption we can calculate the new on-rate with 

 , 1
on

eff repressor eff
on

p
p

 


  (1.16) 

 

1.3 Chemical reactions 
Biochemical reactions may dramatically slow down pure Gillespie approaches due to high protein 
numbers coming with a high frequency of reaction events. At the same time, hybrid approaches using 
ODE-solvers for biochemical reactions can also be slowed down due to computational overhead in 
switching between algorithms and small integration step sizes due to nonlinearities in the differential 
equations. We here provide a library of analytical solutions for frequently occurring biochemical 
reaction motifs in presence of birth and death processes to speed up simulations in the hybrid 
stochastic deterministic framework. Table 1 and Figure 2 give an overview of biochemical reaction 
motifs and occurring kinetic variables. 

1.3.1 Dimerization 
We solve the differential equation of homo- and hetero-dimerization (Figure 2a). We first consider the 
heterodimerization where species A  and B  form a heterodimer AB  with the dimerization rate  . 
The heterodimer AB  can degrade into the monomers with rate  . 

 A B AB


    (1.17) 

We assume that both monomer populations are subject to slow birth and death processes with rates 

,A B   and ,A A B Bm m   respectively where we introduced the number of monomers ,A Bm m  of species 

A  and B . We obtain the system of differential equations 

 
A A B A A A B

B A B B B B A

A B A B

m m m d m d
m m m d m d

d m m d d d

    
    

   

     
     

   





  (1.18) 

where the number of heterodimers is abbreviated with d . Adding up the above equation yields the 
particle conservation law 

 A A

B B

m d N
m d N

 
 

  (1.19) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872374doi: bioRxiv preprint 

https://doi.org/10.1101/872374
http://creativecommons.org/licenses/by-nc-nd/4.0/


The total numbers of molecules AN  and BN  are subject to small changes in population due to birth 

and death processes. We plug (1.19) in (1.18) and obtain 

 
1

( )( )       K=A B
A B

d
d N d N d

K


   
    

 
   (1.20) 

The fixed point of the differential equation is obtained by setting the left hand side of (1.20) to zero 
and solving for d . The two solutions of the quadratic equation are 

 2 1
2

1
( , )      A B

A B

N N
d d KN KN d

K d
    (1.21) 

where we introduced the function  

 
21 ( ) 2( ) 1

( , )
2

u v u v u v
d u v

      
   (1.22) 

We use this result to rewrite (1.20) and obtain 

 
1 2( )( ) 

d
d d d d


 


  (1.23) 

The solution of this differential equation is given by 

 
  

 


    
 

 


0
2 1 2

0

exp( )
         ( )

1 exp( )
u t

d d d d
u t

  (1.24) 

where 0u  is given by the initial number of dimers 0d  

 2 0
0

1 0

d d
u

d d





  (1.25) 

We can apply this solution to the case of a homodimer by substituting 

 

4
/ ( 2 )

/ 2
( 1) / 2

A

B

K
N M
N M

 
  

 
 


 

  (1.26) 

with this substitution we obtain the solution for the homo-dimers from (1.24) 

 0
2 1 2

0

exp( )
         ( )

1 exp( )
u t

d d d d
u t

  
 

     
  

 
   (1.27) 

1.3.2 Targeted degradation 
We consider a protein A  of amount n  that is degraded by a Michaelis-Menten type reaction with 
enzyme B of amount m  (Supplementary Figure 2 panel b). The corresponding system of differential 
equations is 
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n nm f n
m nm f f f

f nm f f f

   
   

   

    
    

   





  (1.28) 

where we denoted the number of enzyme-protein complexes with f . The rates   and   correspond 
to association and dissociation of the protein to the enzyme respectively. The rate   is the rate of 
degradation of a protein bound to an enzyme. The rates   and   correspond to the birth and death 
process of the protein. The protein can decay as a free protein and while it is bound to the enzyme f  

For the total number of enzymes M  we obtain the conservation law m f M  . We calculate the 
change in the total number of proteins that is given by the sum of free proteins and the number of 
proteins bound to the enzyme and obtain the differential equation 

 ( ) ( )
d

n f n f f
dt

          (1.29) 

We simplify this equation by assuming that 0f  . This corresponds to a constant occupation of the 
enzyme machinery. This occupation is given by 

            where         ,
1 1

Kn KM
f M fn f K

Kn Kn


  
   

   
    (1.30) 

In the time-interval t  the number of free enzymes n and with that f  are constant. With the 
substitution 

 
      

 
 

 

   2 1 1 2 1 1

(1 )
           

1 1
f f

f K M f K M
  (1.31) 

we can rewrite (1.29) identically to the differential equation for birth and death (Methods Equation 
(1.2))  

     n n   (1.32) 

with the well-known solution 

 
 


    
 
0 exp( ) (1 exp( ))n n t t   (1.33) 

For the production rate   we take the degraded molecules n  to ensure particle conservation. In 
other words we modify the last rates in (Methods Equation 1.3) with (1.33) such that they depend on 
the number of degrading enzymes M  in contrast to being constant.   

1.3.3 Reversible Michealis-Menten kinetics 
We consider Michaelis-Menten kinetics where an inactive substrate 0S  is activated to 1S  by an Enzyme 
E  (Figure 2 c). We denote the complex of enzyme and inactive substrate with f  and the number of 
free enzymes with Em . We introduce a reverse rate 2  that describes the kinetics of spontaneous 
deactivation of 1S . The system of differential equations is 
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  (1.34) 

Here,   and   correspond to association and dissociation of the protein to the enzyme respectively. 
The rate of activation of 0S  being bound to E  is denoted by 1 . The birth and death processes of 1S  
and E  are denoted by ,S S   and ,E E   respectively. We assume again that the pre-steady-state 
phase of enzyme occupation is fast. In addition, the reversible channel prevents complete depletion of 

substrate. Thus 0f   is a good approximation. We obtain 

 


   
 

   
0

0 1

        where       
1 E S

KS
f E K

KS
  (1.35) 

We next calculate the fixed point 

 1 2 2

2 1 2

( )( )                 S

S S

f K E f S f K K S S
   
    
 

    
  

     (1.36) 

To approximate transient behavior toward this fixed point we linearize the ODE and obtain the 
effective rate 

 0
1 2

0

( )
+

1 ( )

eq

Seq

f S
k

f S
  


 


  (1.37) 

for its kinetics. In the above equation denoted the derivative of 0( )f S with respect to 0S  at the fixed 

point 0
eqS   as 0( )eqf S . With this approximation for transient rate towards equilibrium we obtain the 

time dependent amount of 0S  with the initial condition 0
ivpS   

 0 0 0( ) exp( ) (1 exp( ))ivp eqS t S kt S kt       (1.38) 

1.3.4 Enzyme activities controlled by external factors 
We consider an enzyme that is activated by receptors and deactivated by a repressive cofactor (Figure 

2d). The unoccupied Receptor R  catalyses the formation of the activated enzyme 1E  from the 

inactivated enzyme 0E . This includes formation of the complex f  that consists of 0E  and R  and in a 

successive step the formation of 1E  and the release of R . The reverse reaction is governed by the 

enzyme D  where the complex of D  and 1E  is denoted by g .To model these two processes we use 

the classical Michaelis-Menten-Modell for both enzymes. For R  we denote 1  as the rate of formation 

of the enzyme substrate complex f  , 1  as the rate governing the stability of the complex and 1  as 

the catalysis rate. The ODEs for the reaction catalyzed by R  are 
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f f E m

     

      

    

      

       

     





  (1.39) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872374doi: bioRxiv preprint 

https://doi.org/10.1101/872374
http://creativecommons.org/licenses/by-nc-nd/4.0/


Where we denoted the birth and death processes of E  and R  with ,E E   and ,R R   respectively. 

For D  we denote 2  as the rate of formation of the enzyme substrate complex g  , 2  as the rate 

governing the stability of the complex and 2  as the catalysis rate. The ODEs for the reaction catalyzed 

by R  are 

 

 
 

 

2 1 2 2

1 2 1 2 2 1 1 2

2 2 2 1

D D E D D D

D D E E

E D D

m E m g m

E E m g E f g

g g E m

     

       

    

      

        

     





  (1.40) 

From these equations we obtain mass conservation laws for the passive and active enzymes 
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  (1.41) 

We assume that 0f g    and obtain the Michaelis Menten type equations for the overall number of 

Receptors RR m f   and the overall number of inhibitors DD m g   
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  (1.42) 

The fixed point is obtained by setting (1.41) to zero and solving the system of (1.41)(1.42) applying the 

particle conservation law 0 1E E E f g    . The iteration for the fixed point is  

 

1

1
0

0

1 0

1 0

0 1
2

1 2
2

1

 
1
1

( ( ) )

(1 )

E

f g E
E E

E

K E
f R

K E

g E f f

g
E K E

K D

 



  

  
 




  

 

  (1.43) 

To approximate the transient behavior toward the fixed point we use the linearization  

 0 1
1 2

0 1

( ) ( )
1 ( ) 1 ( )E

f E g E
k

f E g E
  

 
  

  
  (1.44) 

where we denote the derivatives of 0( )f E  and 1( )g E  as 0 1( ), ( )f E g E  . The solution of the linearized 

differential equation in proximity of the fixed point is  

 0 0 0( ) exp( ) (1 exp( ))ivp eqE t E kt E kt       (1.45) 
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where 0
ivpE  is the initial condition and 0

eqE  is the number at the fixed point. 

1.3.5 Enzyme Inhibitor 
We describe the activation of substrate 0S  by an enzyme R  forming a complex f  with association 
and dissociation rates 1  and 1 . The complex produces the active substrate 1S  with rate 1 . The 
active substrate can form a homo-dimer 2S  with association and dissociation rates 3  and 3 . We 
include a species X  in the reaction that can inhibit the enzyme by forming a complex g  with the 
enzyme (Figure 2 e). The occupation of the enzyme by the inhibitor is determined by the association 
and dissociation rates 2 2,  . We denote the number of unbound inhibitors as Xm . 
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  (1.46) 

The birth and death processes of 1S  and E  are denoted by ,S S  , ,R R   and ,x x   respectively. 
We obtain the differential equation for the total number of inactive and active substrate 
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  (1.47) 

From (1.46) we can find the particle conservation laws for the total number of inhibitor, the total 
number of enzyme and the total number of substrate 
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  (1.48) 

We next introduce new variables to rewrite the system of equations into the previously discussed 
heterodimer-case (Section 1.3.1) 
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  (1.49) 

As argued in (Section 1.3.3), we assume that the enzymes are in a steady state corresponding to the 

relation 0f g   . We then find 
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  (1.50) 

 1 0 Rf Kg K S m    (1.51) 

We introduce the new variable 

 1 0

1 0

     where    
1

K Sf
d R r

r K S
  


   (1.52) 

to obtain an equation that can be solved using (1.22) 

 2 ( )( )d K r R d X d       (1.53) 

We obtain the fixed point by iterating the equations  
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  (1.54) 

We linearize the differential equation close to the fixed point and obtain the rate constant k  for the 
transient kinetics toward the fixed point. 
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     (1.55) 

where we denote derivatives as primed functions. With this approximation for transient rate towards 
equilibrium and the values at the fixed point we obtain the time dependent amount of 0S  with the 

initial condition 0
ivpS   

 0 0 0( ) exp( ) (1 exp( ))ivp eqS t S kt S kt       (1.56) 

1.3.6 Noise in chemical reactions 
All kinetic rate constants in the reactions discussed above represent stochastic Poisson processes. 
However, we merely offered deterministic solutions for the steady state and the transient processes 
towards it. If the number of molecules per species in the reaction is high, these deterministic solutions 
are sufficient for the description of the reaction in the context of the GRN. For networks that may be 
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affected by noise of reactions, CaiNet offers a strongly simplified representation of the exact noisy 
fluctuations in steady state levels. The steady state level is assumed to be the expectation value of a 
Poisson distribution. CaiNet draws a random number for this distribution, that that represents the new 
steady state level transient processes are converging to. In the following we discuss the validity of this 
procedure for the homo-dimer case. 

To calculate the noise due to stochastic fluctuations in the molecule level of dimers we write down the 
Kolmogorov equations for the probability to find n Dimers at time t 

 ( ) ( 2 )( 1 2 ) ( ) ( 1) ( 1)p n N n N n p n n p n           (1.57) 

where N is the total number of monomers. In equilibrium this equation relates p(n) and p(n+1) by 

 ( 1) ( 1) ( 2 )( 1 2 ) ( )n p n N n N n p n         (1.58) 

With this recursion formula we can write down the absolute value for the probability 
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    (1.59) 

We sum over (1.58) and obtain an equation for the expectation value of n, n   

 2( 2 )( 1 2 ) 4 ( ) ( 2 )( 2 )n K N n N n K n n n K N n N n             (1.60) 

where we assumed that 24 ( )K n n n n    . We calculate the variance of n with 
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  (1.61) 
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Supplementary Table 1: Parameters for the  elements 

Element Name Symbol Meaning 
Dimerization    Association rate of the two monomers 
    Inverse Half Life of the dimer 
Targeted 
Degradation 

  Association rate of the degradation complex to the protein of 
interest 

   Dissociation rate of the protein from the degradation complex 
without degradation happening 

    Rate of degradation of the protein while being bound to the 
degradation complex 

Activation and 
Inhibition by 
enzymes 

1   Association rate of the activating enzyme to the protein of interest 

 
1   Dissociation rate of the protein from the activating enzyme without 

activation happening 
 

1   Activation rate while bound to the activating enzyme 

 
2   Association rate of the deactivation enzyme to the protein of 

interest 
 

2   Dissociation rate of the protein from the deactivating enzyme 
without deactivation happening 

 
2   Deactivation rate while bound to the deactivating enzyme 

Enzyme 
inhibitor 

1   Association rate of the activating enzyme to the protein of interest 

 
1   Dissociation rate of the protein from the activating enzyme without 

activation happening 
 

1   Activation rate while bound to the activating enzyme 

 
2   Association rate of the inhibitor to the enzyme substrate complex  

 
2   Dissociation rate of the inhibitor from the enzyme substate complex 

 
2   Constant deactivation rate of the protein of interest 

 
3   Association rate of the two monomers 

 
3   Inverse Half life of the dimer 

Michaelis 
menten 

1   Association rate of the enzyme to the protein of interest 

 
1   Dissociation rate of the protein from the enzyme without activation 

happening 
 

1   Systhesis rate while bound to the activating enzyme 

 
2   Rate of the inverse process 
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2 Simulated Examples 
2.1 Validation: Pulse activated auto feedback loop 
To validate our hybrid stochastic deterministic algorithm, we compared CaiNet with the Gillespie 
algorithm. We chose an example where minimal stochastic fluctuations in protein synthesis, as well as 
in switching between on and off states in the two state model, can emerge in a different outcome with 
respect to de-/activation of the auto feedback loop. 

We considered a single gene. This gene is activated by an external factor that is only present for a 
defined pulse-length. The gene produces transcription factors, which dimerize and activate their own 
transcription. Kinetic parameters have been chosen such that this autocatalysis can collapse resulting 
in a expression level close to zero. We investigate the probability to observe this collapse depending 
on the pulse length of the activating external factor. 

2.1.1 Gillespie simulation with a custom programed Excel-Matlab-UI 
To validate our algorithm, we used the Gillespie algorithm. Currently many tools implement the 
Gillespie Method (the direct method as well as the sped up method) and include user-interfaces for 
entering the coupled reaction system 1-4. However, for the special task of simulating gene networks we 
wrote a custom implementation in Matlab that is complemented by a rudimentary user-interface in 
excel. (See Code Availability Statement) 

The Gillespie method invokes two steps: 1) Calculating the point in time of the next reaction event 
from all reaction rates 2) Deciding which reaction event actually takes place. These two steps can 
become computationally expensive since they invoke iterations through all reactions of the system. 
Therefore, algorithms have been developed that group reactions and use two random numbers to first 
select a subgroup and then the reaction inside the subgroup 5. In doing so, they avoid iterating trough 
every single reaction. 

For the case of gene regulatory networks, we perform a heuristic grouping based on reaction times 
scales to form three subgroups: 1) birth and death processes 2) Chemical reactions 3) Binding of TFs 
to promoters. This choice of groups reduces computation time during reaction type selection. 

In the pulse-activated auto feedback loop described in (Supplementary Information Section 2.1 and 
Figure 1 Panel c) The reactions for binding/unbinding of TFs to the promoter are 

 
Promoter + TF  Promoter-TF

Promoter + ExtTF  Promoter-ExtTF




  (1.62) 

Where the activation of the promoter leads to production of TF. The Birth and death reactions are 

 







Promoter-TF  Promoter-TF + TF

Promoter-TF  Promoter-TF + TF

TF

  (1.63) 

The external TF extTF is not subject to any dynamics, since its levels are given as boundary conditions. 
The chemical reaction rates are  

 
 

 2

2

2TF TF

TF TF
  (1.64) 
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With our Excel-UI this set of reactions can be formulated in a simplified way, since chemical reactions 
of birth and death-processes as well as state switching of promoters are automatically compiled into 
a set of reactions that can be processed by the Gillespie-formalism. 

The reaction parameters are: 

Supplementary Table 2: Parameters for the autofeedback-loop 

TFEXT-Promoter Association 1 3Input e     

TFEXT-Promoter-Dissociation 5 1input e     

TF-Promoter Association 2 3TF e     
TF-Promoter-Dissociation 7 2TF e     
TF Production 25 2e     
TF Degradation 1 3e     
TF Dimerization-Rate 1 1 2e     
TF Dimerization half-life 2 1   

 

2.1.2 Ordinary differential equations 
As a next step, we compared the Gillespie algorithm with the solution of the ordinary differential 
equations of the pulse-activated auto feedback loop. The ODEs are (parameters are defined in 
Supplementary Table 2) 

 
    

  

 
    

  

  





2
1 2

2
1 2

2 2 2
1

2

Ext TF

Ext TF

K a K
n n n m m

K a K

m n m m

  (1.65) 

where  

 0

0

1,0

0,

t t
a

t t

 
  

  (1.66) 

We first numerically calculated the solution from t  to 0t  with 1a   and then used the values 0( )n t  as 
an initial value problem for the ODE with 0a  . If the number of monomers n  decayed to zero we 
interpreted this as staying in the off-state. We chose simulation parameters identical to the Gillespie 
parameters (Supplementary Table 2) 

 2
2 3; ; 0.25; 1 3; 1 2; 1

70Ext TFK e K e e              (1.67) 

2.1.3 CaiNet 
Finally, we compared the Gillespie algorithm with the stochastic-deterministic algorithm of CaiNet for 
the pulse-activated auto feedback loop. 

We implemented the external TF as an input element. The TF-gene element was chosen to be an OR-
Logic element since it obtains activating inputs from the external TF and from its own TF-Dimers. The 
TF-Dimers were implemented by the dimerization element which was connected to the output of the 
TF-gene element.  

By default, stochasticity in this setup is only contributed by the OR-Logic element which stochastically 
switches between on/off states. In addition, stochasticity of the birth-process as well as noise in dimer 
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levels can be switched on with the formalism described in (Methods Section 1.1.2 and Supplementary 
Information Section 1.3.6). In the Gillespie algorithm Dimers immediately take action in activating the 
promoter one they have been formed. In contrast, the dimer-population in CaiNet is updated with a 
delay corresponding to the time-step t . 

For CaiNet we chose the same parameters as for the Gillespie simulation. To test whether the step size 
of CaiNet has an impact on the simulation outcome, we ran simulations for the values 0.1s,1s,10s,100s 
(Supplementary Supplementary Figure 4). We found that the step sizes 0.1s, 1s and 10s resemble each 
other reasonably well, while the step size of 100s visibly underestimated the switching probability for 
short pulse durations. Comparing this step size to the shortest applied pulse duration 300s and to the 
order of magnitude of the gene switching rates 1e-2 this result is to be expected. 
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2.2 Circadian clock 
2.2.1 Comparing mechanisms of repression of Bmal/Clock targets by Per/cry 
In our simplified picture of Bmal/Clock target gene expression, the gene is transcribed as long as 
Bmal/Clock occupy its promoter. Per/Cry acts as a repressor of Bmal/Clock target genes by either 
directly inhibiting the Bmal/Clock heterodimer through formation of a Bmal/Clock-Per/Cry tetramer, 
or by blocking promoters of Bmal/Clock target genes such that Bmal/Clock cannot bind. Currently there 
is no experimental evidence to support one of these two variants of Bmal/Clock repression. Here we 
compare the two scenarios to discuss whether they affect modelling of the circadian clock. We start 
with tetramer formation and compare our results to the two state model with repression calculated in 
(Supplemtary Information 1.2.5) 

We assume that Bmal/Clock A   and Per/Cry R  heterodimers are constant. The number of tetramers 
d  in equilibrium is given by 

 ( )( )d K A d R d     (1.68) 

Where K  is the equilibrium constant of tetramer formation. To better point our reasoning we rewrite 
this equation and obtain 

 
1

KAR
d

KA KR Kd


  
  (1.69) 

We assume that 1Kd KA KR   . This means that the number of heterodimers is either limited by 
one of the monomers or the equilibrium constant of dimerization is small. With this assumption we 
obtain 

 
1

KAR
d

KA KR


 
  (1.70) 

The number of tetramers d  equals the amount of inhibited Bmal/Cry heterodimers. We obtain the 

amount of active Bmal/Cry heterodimers 1A  with the law of particle conservation 

 1

1
1

KA
A A d A

KR KA


  
 

  (1.71) 

The probability of finding a target promoter occupied by Bmal/Clock is 

 
 

  
11 1

1 1 1

1
1 1 1

K A KAK A
p

K A K A KA KR


 
   

  (1.72) 

where 1K  is the product of the arrival rate and the binding time of Bmal/Clock. Comparing this to the 

result from (1.14) 

 1

1 21
K A

p
K A K R


 

  (1.73) 

we find that the two equations are the same if 1KA  . 

From this we conclude that both scenarios yield qualitatively same behavior. Thus, we decided to 
restrict ourselves to one scenario, namely exclusive tetramer formation at the promoter. 
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2.2.2 Deterministic model of the internal loop of the circadian clock 
We here investigate the internal loops of the circadian clock consisting of a negative lobe mediated by 
Rev and a positive lobe mediated by Ror (Supplementary Figure 5 panel a). Both the Rev and Ror genes 
are activated by the Bmal/Clock heterodimer. The Rev and Ror TFs in turn independently repress and 

activate the transcription of clock and bmal genes. We added two constant signals 1N  and 2N to the 

system. These activate the transcription of Bmal and Clock. Using the function for dimer formation 

( , )d u v  defined in (1.22), the system of ODEs of the circadian clock is given by 

 

1 1

2 2

3 3 1

3 4 2

1
4 4 4/ ( , )

ROR ROR A

REV REV A

BMAL BMAL B

CLOCK CLOCK B

Bmal Clock K d K Bmal K Clock

 
 
 
 



  

  

  

  

 






  (1.74) 

where A  is the probability of a Bmal/Clock target gene to be active, 1B  is the probability of the Bmal 

Promoter to be active and 2B  is the probability of the Clock promoter to be active. 

 

1

1

2
3 3 1 3 1

1
3 3 1 2

2
3 3 2 3 2

2
3 3 2 2

1

1
(1 ) (1 ) 1

1
(1 ) (1 ) 1

K BMALCLOCK
A

K BMALCLOCK

K ROR K N K ROR N
B

K ROR K N K REV

K ROR K N K ROR N
B

K ROR K N K REV




 

     
 

      

     
 

      

  (1.75) 

We now renormalize this system of equations with the variables 

 

1 2 3 4
1 2

1 2 3 3

1 1 1
1 2 3

1 1 1 2 4

1 2 3 4
1 3 2 3 4 4 4

1 2 3 3

ROR x REV y BMAL z CLOCK z

K
q q q

N N K

n K n K n K n K

   
   

 
 
   
   

   

  

   

  (1.76) 

and obtain 

 

1

2

1 3 1 1

2 3 2 2

3 3 1 4 2

1,2
2 3 1,2 1

( )
( )
( )
( )

1
1

1 ( , )

1 1 1
1

1 1 1

x x A
y y A
z z B
z z B

A
q d n z n z

B
n y K N n x






  
  
  
  

 


 
      






  (1.77) 
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2.2.3 Parameterizing the circadian clock 
When setting up the network of the circadian clock, we observed that it does not oscillate for arbitrary 
sets of parameters. We here show a formalism that provides rules on how to choose parameters for 
oscillations of the circadian clock network. We started with the inner clock consisting of Bmal Clock 
Rev Ror. Our starting point was the ODEs from (1.74). To simplify the calculation, we assumed that 

occupation of promoters by these TFs is small. This means that 1TF TFK n   for BMAL/CLOCK and 

ROR. In addition, we assumed that the number of the BMAL/CLOCK Dimer d  can be calculated by the 

number of the two monomers 1M  and 2M by 4 1 2d K M M  with the equilibrium constant 4K . With 

these assumptions we obtain the simplified probabilities of active promoters from (1.74) 

 

1 4

3 1 1
1

2

3 2 2
2

2

(1 / )
1
(1 / )
1

A K K BMAL CLOCK
K N ROR N

B
K REV

K N ROR N
B

K REV

 









  (1.78) 

An empirical observation when applying guessed parameters in our simulations showed that 

 1 2    (1.79) 

supports oscillations. We further assume that the timescales of 1  and 3  are well separated such 

that the adiabatic approximation  

 3 3 1

4 3 2

/
/

BMAL B
CLOCK B

 
 




  (1.80) 

holds. We then use normalized variables from (1.76) to write down the normalized and simplified 
system of ODEs 
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1 2
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2 3 4
1 4 3 1 2 2
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y y A

q x q x
A s
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  (1.81) 

For clarity we here only look at the case 2q n . Our aim is now to create a fixed point with repelling 

dynamics such that the circuit never adopts a constant stable value. In our system we can have a 
maximum of two fixed points. Since one of the two possible fixed points is negative we are left with 

one fixed point 0x  that is calculated by 

 0 0 1 0(1 ) (1 )x nx s q x     (1.82) 

The solution of this quadratic equation for 0x  is given by 
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 2

1 1
0

1 1 4

2

q s q s sn
x

n

   
   (1.83) 

Knowing the fixed point we can calculate the condition for repelling eigenvalues i.e. eigenvalues that 
have a positive real part. A sufficient condition for at least one positive real part is that the trance of 
the matrix of the linearized system, is larger than zero. The diagonal elements are 

 

1
11 1

0

0
22 2

0

1
1

1 3
1

q s
m

nx
nx

m
nx











 


  (1.84) 

We obtain the necessary condition for positive real part of the eigenvalues 

 2 1

1 0

1
1 3
q s

nx







  (1.85) 

In particular, this means 

 1 1 0q s    (1.86) 

2.2.4 Estimation of the frequency 
We have constructed a repelling fixed point that ensures that the circadian network exhibits periodical 
dynamics. To tune the frequency of the clock to approximately 24h we rewrite the system of ODEs to 
obtain a classical lienard system. We apply the transformation 

 2 1

2 1 1 21 2

1
( )

u x
v y

 
    
    

         
  (1.87) 

to obtain the system 

 
1 2

1 2

1 2 1 2( )( ) ( )

u v

v u A v

 
 
   

 


    




  (1.88) 

We eliminate v  to obtain a nonlinear second order ODE with nonconstant coefficients 

 1 2 1 2( ) ( )u u A u          (1.89) 

Linearizing A yields with respect to u  yields a Lienard type ODE  

 ( ) ( )u f u g u u      (1.90) 

with 1 2( ) ( ( , ))f u u A u u   . The frequency of oscillation can be approximated by 

 2
0( )f x    (1.91) 

To obtain a frequency of one Day, the relation  

 2 0
1 2

0 1

1
2 1

nx
nx q s

   


 
  (1.92) 
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has to hold. Plugging this into (1.85) yields 

 0 0
1

0 1 1

1 1 3
2 1 1

nx nx
nx q s q s

 
 

 
  

  (1.93) 

2.2.5 The internal loop of the circadian clock in an autonomous oscillator 
We used the parameters determined above to create oscillations in the internal loop without per and 
cry. We found that NFYA can modulate the phase of this internal loop.  

The core clock network was set up according to the entry in the KEGG database 6 omitting the 
transcription factor Dec. We assumed that Bmal and Clock expression is regulated by the same 
promoter 7 and that this promoter has a constant ground activation Nfy 8. 

We set up the network in CaiNet using OR-logic elements for ROR, REV, BMAL and CLOCK. We used 
the dimer element to include the dimerization of Bmal and Clock. The elements have been connected 
amongst each other according to (Supplementary Table 3) 

The internal loop shows a periodical oscillation with a period of ~24h. We varied the level of NFY using 
a pulsed input signal. This led to a Phase shift in oscillation of circadian clock genes. 

We tested whether per can induce a Phase shift, while the frequency of the oscillation of the circadian 
clock is preserved. For this, we added Per/Cry as the Stat3/enzyme inhibition element. (ref. calculation) 
We modulated the inhibition of Per/Cry dimers with an Input element. We observed that a constant 
shift in Per pulsing resulted in a shift of the maxima of the oscillations. Fig. 5d. 

Supplementary Table 3: Parameters and connections in the circadian Network 

Species Interaction Rate Birth/Death 
ROR BMAL/CLOCK 5 4      1e      33.3   1   3.67 4e        
 Per/Cry 1 4      1 2e e       
REV BMAL/CLOCK 5 4      1e     1.96   3.67 4e     
 Per/Cry 1 4      1 2e e       
BMAL ROR 1 4      1e     10   1   0.001      
 REV 1 2      1e      
 NFY 1 4      1e      
CLOCK ROR 1 4      1e     10   1   0.001      
 REV 1 2      1e      
 NFY 1 4      1e      
BMAL/CLOCK Bmal Clock 1 2      1e     N/A 
PER Cry BMAL/CLOCK 5 4      1e     2   5 4e     
 Per/Cry Dimer 1 4      1 2e e       
Per/Cry Per/Cry 

1 1 1

2 2 2

3 3

1 3   1   1   

1 3   1   1  

0.1   0.001

e

e

  
  
 

   
   
 

  

N/A 
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2.3 Pluripotency Network 
2.3.1 Set up of the pluripotency network deduced from experiments  
We built up the pluripotency network by searching the TRRUST database 9 and the KEGG database 6 
for functional interactions between TFs. In accordance with 10 we separated the network in layers that 
communicate with each other. The first layer consists of the extracellular signals Lif, TGFβ, Bmp, Fgf4 
and Wnt. Extracellular signals are transduced by a signal transduction layer that controls the activity 
of corresponding signaling transcription factors and includes crosstalk between extracellular signals. 
Transcription factors from the signal transduction layer regulate the core pluripotency gene regulatory 
network consisting of Nanog, Sox2 and Oct4, as well as markers of differentiation including Runx2, 
Pax6 and Gata6 in the last layer. Between the core network and the layer of differentiation markers is 
a feedback layer, whose transcription factors are controlled by positive and negative feedback loops 
of the two neighboring layers. 

We first describe the layer of extracellular signals and their immediate targets. The cytokine Lif 
activates the Lif-Receptor, which in turn activates Janus kinases (Jak) that phosphorylate Stat3 
monomers 11. Stat3 dimerizes and activates expression of the downstream targets Socs and Klf4 11, 12. 
Socs inhibits the activation of Stat3 and thereby downregulates the response of the stat pathway to 
an external signal by Lif 11, 13. Klf4 is associated with naive pluripotency and activates transcription of 
the core pluripotency factor Nanog 14. The Lif receptor in addition activates the Ras/Raf cascade 
resulting in Erk activation 15. 

Both the TGFβ-pathway and the BMP-pathway activate Smad TFs. TGFβ activates Smad2/3 and thereby 
the core pluripotency factor Nanog 16. BMP activates Smad 1/5/8, which activates ID, Dusp and Runx2 
17. The ID TF inhibits differentiation by inhibition of TCF3 18, which represses the core pluripotency 
network 10. Dusp inhibits the activity of Erk1/2. The Runx2 TF is a marker for mesoderm activation. 

The fgf protein binds Fgf receptors, which activate the Ras/Raf cascade and thereby the ERK kinease 
19. ERK is responsible inhibition of the TFs Klf4 and TCF3 20, 21. In addition, it supports the auto feedback-
loop of the endoderm differentiation marker Gata6 22. 

The WNT signaling pathway inhibits degradation of ctnnb1 by the GSK kinease. In turn ctnnb1 
represses transcription of Tcf3 23. Tcf3 is also repressed by ID 18. The TF Tcf3 shuts down the core 
pluripotency network by repressing transcription of the Oct4 activated mir302a 23 and Nanog 24. The 
micro RNA mir302a inhibits repression of Oct4 by Nr2f2 23, 25, 26. 

Second, we set up the core pluripotency network. In our core network based on 27., Nanog activates 
Sox2, which in turn activates Oct4 and represses itself 28. For Oct4 we employed a complex promoter 
including cooperation of the TFs Sox2 and Oct4 29. Oct4 further activates Nanog. 

Third, we describe the pathways into differentiation of the three germ lines. We identified 
differentiation markers that we could link to the core pluripotency network. These were Runx2 for 
mesoderm 30, Pax6 for ectoderm 31 and Gata6 for endoderm 22. We found that none of these markers 
are direct targets of the core pluripotency fators, but all are activated by an interposed feedback layer. 

Nanog activates the Snai1 transcription factor 32, which represses both its own transcription and 
transcription of the mesoderm differentiation marker Runx2 33. Sox2 activates the TF Six3 34. Six3 and 
the ectoderm differentiation marker Pax6 mutually activate each other 35, 36. Oct4 forms a positive 
feedback loop with Sall4 37, which represses the endoderm differentiation marker Gata6 38. Oct4 
further activates transcription of Pax2 39. Pax2 and the ectoderm differentiation marker Pax6 mutually 
repress each other 40. 
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2.3.2 Set up of the pluripotency network in Cainet 
We implemented all components of the Extracellular input layer as input elements with rectangular 
pulsed signals. The Stat pathway was implemented as the Stat-buildung element where the complex 
out of Jak-Kinease and Lif Receptor was identified as R and the Socs TF was assigned to the inhibitor. 
The Smads where implemented using the reversible michaelis menten  element, ERK was implemented 
using the Forward/backward michaelis menten  element where the forward reaction is controlled by 
fgf and the reverse reaction is controlled by Dusp. In the Wnt pathway is the element for GSK3 servs 
as an input for the degradation  element for ctnnb1. Erk influences the downstream transcipriton 
factors by transport out of the nucleus. This export is simulated by the Michaelis Menten  element. 
The core network was built of OR-logic combined with repressors. The Oct enhancer was designed 
according to 29 or the cooperative  element with repression respectively. All genes in the Feedback and 
differentiation layer were set up as Or-logic elements combined with repressors.  

 

2.3.3 Values assumed in the simulation  
From measurements 41 we estimated ranges of orders of magnitude of transcription and translation 
rates and mRNA and Protein half-lifes of 
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  (1.94) 

Since we did not know the exact values for transcription and translation, we used the values above to 
conclude effective birth and death rates for the simulation. These effective rates correspond to a 
sequence of transcription of a gene with rate Transcription  and translation of the transcript with rate 

Translation . Depending on the mRNA levels these rates may be in the range of 
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e s

e s
  (1.95) 

For the on-rates of genes we estimated the diffusion limited on-rate in a nucleus also taking into 
account observed target search times 

 1[1 5,1 2]e e s       (1.96) 

For off-rates we took measurements of TF-binding times and estimated a range of binding times 
relevant for transcription regulation 

 1[1 3,1]e s      (1.97) 

Where possible, we used experimentally observed values from literature. We designed the Sox2/Oct4 
enhancer including binding times of Oct4 and Sox2 as reported in 29. In addition, we applied the binding 
times of Stat3 and Klf442. Degradation rates for the core pluripotency factors Klf4, Nanog, Sox2 and 
Oct4 measured in 43 were also included in the network. 

Due to missing information of specific rate constants of promoters, mRNA and proteins we guessed 
standard parameter-sets depending on the function that we ascribe to the respective promoter or 
protein. 
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For static expression levels, e.g. transcription factors which are always present, but whose activity is 
controlled by phosphorylation we took the parameter-set 

 Self Sustained Expression: 1 2  1 2   1 2   1 5          e e e e   (1.98) 

where the on rate   is not connected to any TF-species in the network. For enzyme dynamics, we 
assumed that enzyme-substrate-complex formation is limited by diffusion. Product synthesis rates and 
affinities were chosen such that the enzyme performs its biological function. 

 

Supplementary Table 4: Parameters for the pluripotency network. Biomolecules with the suffix “-I” represent 
inhibited versions. 

Species Interaction Rate Birth/Death Ref. 

Stat3Dimer 
Lif 1 1 11 3; 1; 1e       

2 1   11 Stat3Dimer 3 31 3; 1e     

Socs 2 21 3; 1 5e e      
Stat3 Self-Sustained Expression Parameter-Set (1.98) 
Socs Stat3Dimer 1 3; 1 1e e      1 2; 1 4e e      11 
Klf4 Stat3Dimer 1 3; 12 2e e      3.5 3; 3.5 5e e      12 
Klf4 Erk 1 3; 1; 1; 1e         n/a 20 

Smad2/3 Self-Sustained Expression Parameter-Set (1.98) 
Smad23# TGF-b 1 3; 1; 1; 1e         n/a 16 
Smad158 Self-Sustained Expression Parameter-Set (1.98) 

Smad158# BMP 1 3; 1; 1; 1e         n/a 17 
Dusp Smad158# 1 3; 1 1e e      1 1; 1 3e e      17 
Erk-I Self-Sustained Expression Parameter-Set 1 2; 5 5e e      - 

Erk 
Fgf+Lif 1 1 11 5; 0.1; 0.1e       

n/a 
19 

Dusp 2 2 21 5; 0.1; 10e       6 
GSK Self-Sustained Expression Parameter-Set  - 
GSK Wnt 1 3; 1; 1; 1 2e e          n/a 6 

Ctnnb1 Self-Sustained Expression Parameter-Set 1 1; 1 3e e      - 
Ctnnb1 GSK# 1 3; 1; 0.01e        6 

Tcf3-I 
Self-Sustained Expression Parameter-Set 

1 2; 1 4e e      
- 

Ctnnb1 1 3; 1 3e e      23 
ID 1 3; 1 3e e      18 

Tcf Erk 1 3; 1; 1 1; 1 4e e e           n/a 21 
ID Smad158# 1 3; 1 1e e      1 1; 1 3e e      6 

Nanog 

Nanog 1 3; 1 1e e     

1.4 2; 1.4 4e e      

6 
Klf4exp 1 3; 1 1e e      14 

Oct4 1 3; 68 3e e      27 
Smad23 1 3; 1 1e e      16 
Tcf3Exp 1 3; 1 1e e      24 

Sox2 
Nanog 1 3; 1 1e e      

3.5 3; 3.5 5e e      
27 

Sox2 1 3; 8 2e e      28 

Oct4 
Sox2 1 3; 8 2e e      

7 3; 7 5e e      

27 
Oct4 1 3; 68 3e e      44 
Sall4 1 3; 1e     37 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/872374doi: bioRxiv preprint 

https://doi.org/10.1101/872374
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nr2f2 1 3; 1 2e e      25 

Mir302 
Oct4 1 3; 68 3e e      

1 1; 1 3e e      
23 

TCF3Exp 1 3; 1 3e e      23 

Nr2f2 
Self-Sustained Expression Parameter-Set   

Mir302a 1 3; 1 3e e      1 2; 1 4e e      26 

Sall4 
Oct4 1 3; 68 3e e      

5 2; 1 3e e      
37 

Sall4 1 3; 1e     37 
Six3 Sox2 1 3; 8 2e e      1 2; 1 4e e      34 

 Pax6 1 3; 5 2e e       36 

Pax6 
Six3 1 4; 1 2e e      

1 2; 1 4e e      
36 

Pax2 1 3; 1 3e e      40 

Pax2 
Oct4 1 3; 68 3e e      

1 1; 1 3e e      
39 

Pax6 1 3; 1 3e e      40 
Gata6  Self-Sustained Expression Parameter-Set 1 2; 1 4e e      - 

Gata6 
Basal Expr.  1 3; 1 3e e      

1 2; 1 4e e      
- 

Gata6# 1 3; 1 1e e      22 
Sall4 1 3; 1 3e e      38 

Gata6# Erk 1 21 3; 1 1; 1; 1 2e e e            22 

Snai1 
Nanog 1 3; 1 1e e      

1 1; 1 3e e      
32 

Snai1 1 3; 1e     33 

Runx2 
Smad158# 1 3; 1 1e e      

1 1; 1 3e e      
17 

Snai1 1 3; 1 3e e      33 
 

2.3.4 Culture condition-dependent differentiation 
To model transition of the pluripotency gene regulatory network from the Naïve state over the primed 
state into the three germ lines, we considered the following input signal patterns. Naïve pluripotency 
is maintained by Lif and BMP signaling 45. Primed pluripotency is initiated and maintained by TGFB and 
FGF 45. Ectoderm differentiation is the default pathway if the core network is shut down without any 
further inputs 46. Mesoderm differentiation is supported by BMP 47. Endoderm differentiation is 
supported by Erk 22, which is activated by Fgf signaling. 

 

2.3.5 Design of a differentiation element 
Here we investigate a recurring motif associated with differentiation in the pluripotency network. It is 
composed of a repressor that is activated by pluripotency factors and inhibits transcription of a 
differentiation factor. The differentiation factor is activated by an extracellular signaling molecule 
associated with a certain differentiation. An example is Snail1, which is activated by Nanog and 
represses Runx2, while Runx2 is activated by Smad1/5/8, a signal transduction factor activated by Bmp. 

For the motif to be functional, repression of the differentiation marker by the pluripotency factor and 
subsequent repressor needs to dominate activation of the differentiation marker by the differentiation 
signal. Differentiation than only occurs if the core pluripotency network is shut down. All combinations 
of inputs and the desired outputs of the motif are summarized in Supplementary Table 5. 
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Supplementary Table 5: Target functionality of the differentiation motif. Independent of the Differentiation 
signal, the pluripotency signal has to repress the differentiation marker. 

Pluripotency Signal Differentiation Signal Output Differentiation Marker 
Low Low Low 
Low High High 
High Low Low 
High high low 

 

To identify kinetic parameters, in particular the on- and off-rates of genes, we have designed a target 
function to combine all different outputs and assigned a score to the Parameters.  

To design the target function, we first quantify the fuzzy terms “low” and “high”. We define thresholds 
with the following functions 

 
T (x)=atan(6(x-0.6))/pi+0.5;

T (x)=1-(atan(6(x-0.3))pi+0.5);
active

inactive

  (1.99) 

We then use these thresholds to combine all conditions by multiplying the thresholds of the 
corresponding conditions resulting in the cost-function 

 
sin

( ) ( )active inactive
Conditionsactive Condition active

s T x T x     (1.100) 

We set up the network motif depicted in (Figure 3 panel j) in CaiNet using two input elements for 
pluripotency signals and Differentiation signals. We implemented the differentiation marker (here 
Runx2) as an OR-logic and the Repressor with an or logic. We then applied all pulse combinations (Table 
1) to this small network. To test whether a specific parameter set is required for the motif to work we 
varied the binding times of the Differentiation and the Pluripotency factor. We found that the cost-
function has a distinct minimum for a single set or parameters. 
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Supplementary Figure 1: Examples for possible input trajectories. Sinusoidal (a), pulsed plateaus (b), smoothed 
plateaus (c) and sharp pulses (d). 

 

 

Supplementary Figure 2: Biochemical Reactions. (a) Two monomers of different or same species can form a dimer 
(b) The degradation of species (purple) s controlled by an enzyme (green). (c) The reaction of the reagent E0 to 
E1 is catalyzed by an enzyme (blue). The reverse reaction is not catalyzed. (d) Both, the forward and reverse 
reaction of E0 to E1 is catalyzed by two different enzymes. (e) The reaction in (c) is enhanced by an inhibitor that 
deactivates the Enzymes. 
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Supplementary Figure 3: Promoter Structures. (a) We approximate all promoter with a two-state model, where 
a gene can either produce mRNA or remain silent. Until the Gene-Product is finished delay steps due to 
transcription and translation have to be passed. (b) AND-Logic for promoter activation. The Promoter is only 
active if all activating transcription factors are bound. (c) OR-logic for promoter activation. The promoter is active 
as soon as a single activating TF is bound. (d) A repressor can be added to all the aforementioned promoter 
structures. If the Repressor is bound, transcription is repressed independent of the state of the promoter. 

 

 

Supplementary Figure 4: Influence of Time steps. Up to a time step of 100 the pulse-duration of CaiNet compares 
well to the result of the exact Gillespie-Simulation. For 300t   CaiNet differs from the exact result of the 
Gillespie algorithm. 
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Supplementary Figure 5: Internal Loop of the circadian clock. (a) Circuitry of the internal loop of the circadian 
clock. (b) During a period of 4 days the stochastic internal oscillation of the internal loop is coherent with a 
deterministic 24-h oscillation.  

 

 

Supplementary Figure 6: Phase Shift induced by a pulsed shift in Per expression. (a) Circuitry of the internal loop 
complemented with Per. (b) a pulse of active Per causes repression of the internal loop and forces a phase shift. 
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Supplementary Figure 7:(a) Scheme of spontaneous activation of the Bmal/Clock promoter. (b) If the level of NFY 
is modulated for a short time-period the oscillation experiences a phase shift. 
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