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Abstract 
 
Epistasis can make adaptation highly unpredictable, rendering evolutionary trajectories contingent on 
the chance effects of initial mutations. We used experimental evolution in Saccharomyces cerevisiae to 
quantify this effect, finding dramatic differences in adaptability between 64 closely related genotypes. 
Despite these differences, sequencing of 105 evolved clones showed no significant effect of initial 
genotype on future sequence-level evolution. Instead, reconstruction experiments revealed a consistent 
pattern of diminishing returns epistasis. Our results suggest that many beneficial mutations affecting a 
variety of biological processes are globally coupled: they interact strongly, but only through their 
combined effect on fitness. Sequence-level adaptation is thus highly stochastic. Nevertheless, fitness 
evolution is strikingly predictable because differences in adaptability are determined only by global 
fitness-mediated epistasis, not by the identity of individual mutations.  
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Evolutionary outcomes hinge on the rate and selective effects of new adaptive mutations. Together, 
these determine a populationʼs adaptability. This has driven extensive prior work to measure the 
mutation rate and distribution of fitness effects (DFE) of new mutations (1-8), and to predict how these 
parameters determine the outcomes of adaptation (9-12). However, recent work in microbial and viral 
systems shows that epistasis is often pervasive, leading to a rugged fitness landscape where 
adaptability depends strongly and without any apparent regularity on genotype (13-18). In some cases, 
just a single mutation can open up previously unavailable opportunities for a population to colonize a 
new metabolic niche (14) or survive in a previously intolerable drug concentration (15).  
 
This widespread epistasis suggests that the outcomes of adaptation depend strongly on historical 
contingency (i.e., the specific intermediate genotypes that happen to arise), and are therefore highly 
unpredictable. On the other hand, others have argued that pervasive but systematic patterns of 
epistasis can explain striking observations of convergent and parallel evolution at both phenotypic (12, 
19, 20) and genotypic levels (21). Related work has provided evidence for such patterns among 
particular small sets of mutations that arise in a single experimental line (22, 23). These observations 
suggest a more optimistic picture: evolutionary outcomes may be statistically predictable if mutations 
leading to extreme and irregular changes in adaptability are rare, while mutations leading to small and 
regular changes in adaptability are common. Here, we directly test this hypothesis by measuring the 
variation in adaptability between related genotypes in laboratory yeast populations. We combine this 
with complete genome sequencing of evolved populations and targeted reconstructions of specific 
mutations, to connect phenotypic predictability to its genetic causes and to identify the epistatic basis of 
variation in adaptability.   
 
To this end, we conducted a hierarchical laboratory evolution experiment in S. cerevisiae (Figure 1). In 
the first phase (“Diversification”), we created 432 independent lines from a single haploid clone we refer 
to as the diversification ancestor (DivAnc). We evolved each line independently in rich media in 96-well 
microplates for 250 generations, half at large and half at small population size (Methods). We then 
selected a single clone from 64 of these lines, chosen to span a range of fitness relative to the DivAnc. 
We refer to these as Founders (Table S1). Each Founder differs by a few mutations, some beneficial 
and some deleterious. In the second phase (“Adaptation”), we founded 10 independent replicate 
populations with each Founder, and allowed each of the resulting 640 lines to adapt at a large 
population size for 500 generations (see Methods). This design allows us to compare variation among 
lines descended from the same Founder (which reflects the inherent stochasticity of evolution) to 
variation between lines descended from different Founders, in order to assess the extent to which the 
genetic background influences future evolution.  
 
We measured the competitive fitness of each population after 250 and 500 generations of evolution in 
the Adaptation phase and found that it increased on average by 3.3% and 6.6%, respectively (Figure 
2A). However, not all populations adapted at the same rate. Instead, we observe a strong pattern of 
convergent evolution: the initially large variation in fitness between lines monotonically declined with 
time (Figure 2A). To quantify the sources of this variation, we first carried out an analysis of variance in 
the spirit of Travisano et al. (24). We partitioned the observed variation in the fitness increase during 
the Adaptation phase into contributions from measurement noise, inherent stochasticity of the 
evolutionary process, and the specific genotype of the Founder (Methods). We found that after 250 
(500) generations of adaptation, inherent stochasticity explains 49% (29%) of the variance in fitness 
increment, while 17% (21%) is attributed to measurement error and 34% (50%) to the identity of the 
Founder (Figure 2B, Table S2). This analysis demonstrates that genetic background is a key 
determinant of how rapidly a population will adapt. That is, different Founders have dramatically 
different adaptabilities.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2014. ; https://doi.org/10.1101/001784doi: bioRxiv preprint 

https://doi.org/10.1101/001784
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
However, these differences in adaptability are not entirely random. Rather, populations with lower initial 
fitness systematically adapt more rapidly than populations with higher initial fitness, driving the overall 
pattern of convergent evolution in fitness (Figure 2C). To quantify this effect, we partitioned the variation 
in fitness increment further: after 250 (500) generations of adaptation, 31% (46%) of this variation is 
explained by the fitness of the Founder while only 3% (4%) is determined by its specific genotype 
(Figure 2B, Table S2). In other words, the dramatic differences in adaptability between Founders are 
almost entirely predicted by their differences in fitness, and independent of the specific mutations that 
led to that fitness. Thus when we eliminate the effect of inherent stochasticity by averaging the final 
fitness of populations descended from the same Founder, we find that the initial fitness of the Founder 
is strongly predictive of the rate of adaptation in its descendant lines (Figure 2D). This means that 
although inherent evolutionary stochasticity makes it impossible to precisely predict adaptation in 
individual lines, we can accurately predict the average rate of adaptation based only on the fitness of 
the initial genotype. We note, however, that although the effects of specific genotype on adaptability are 
rare or weak, they are significant (Table S2). For example, Founders L041 and L094 have similar 
fitness but systematic differences in adaptability (Figure S1, Table S3).  
 
A negative correlation between fitness and adaptability has also been observed in prokaryotes among 
genotypes with fitness variation generated by deleterious mutations (19, 20). It is also consistent with 
the common observation in many evolution experiments that the rate of increase in fitness within an 
individual population typically slows down over time (12, 25). Combined with this earlier work, our 
results suggest a general “rule of declining adaptability” which holds for prokaryotes and eukaryotes 
adapting to rich and poor media. Further, our observations support an even stronger version of this rule: 
(a) genotypes with lower fitness are more adaptable than those with higher fitnesses, and (b) distinct 
genotypes with identical fitness are equally adaptable. We note that this latter observation is 
inconsistent with Fisherʼs geometric model of adaptation (except possibly in one dimension, see 
Methods and Figure S2).  
 
The rule of declining adaptability could arise for one of two basic (and non-exclusive) reasons. The first 
explanation is that there are only a few ways to increase fitness, each of which could consist of a single 
mutation or more generally a set of mutations within some biological module. In this “modular epistasis” 
model (21), which is a generalization of a finite sites model in population genetics, each beneficial 
mutation improves a single module and only one mutation is necessary per module. Higher-fitness 
genotypes adapt more slowly because they have fewer remaining modules to improve.  
 
Alternatively, diminishing returns epistasis may be pervasive among adaptive mutations, such that 
mutations arising in higher-fitness backgrounds are less beneficial than those arising in lower-fitness 
backgrounds. This could hold only on average, or it could be true for each mutation individually. 
Specifically, if epistasis is “idiosyncratic,” mutations may often have widely different effects in different 
genetic backgrounds (possibly including sign epistasis), but the average effect of a beneficial mutation 
is smaller in fitter backgrounds. On the other hand, if epistasis is “global,” each individual beneficial 
mutation provides a smaller advantage in a fitter genetic background. This latter model implies a global 
coupling among all mutations, such that the effect of each mutation depends on all other mutations, but 
only through their combined effect on fitness.  
 
To discriminate between the modular, idiosyncratic, and global epistasis models, we sampled one clone 
from each of 128 populations descended from 15 Founders at generation 500 of the Adaptation phase 
and sequenced their complete genomes (Methods). Four clones acquired a mutator phenotype during 
the Adaptation phase and two Founders and all their descendants became diploid (Methods; Figure 
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S3); we excluded these from further analysis, leaving a total of 105 sequenced clones descended from 
13 Founders. We identified a total of 55 mutations that occurred in the Founders during Diversification 
and 1150 mutations that occurred during Adaptation. We annotated each mutation to a gene or 
intergenic region and classified coding mutations as synonymous or nonsynonymous (Figure 3A, Table 
S4). Most synonymous and intergenic mutations are likely to be neutral hitchhikers and therefore 
uninformative with respect to model selection. We therefore restrict further analysis to nonsense, 
frameshift, nonsynonymous, and promoter mutations, which we refer to as “putatively functional”.  
 
In contrast to recent experiments in bacteria and viruses (21, 26, 27), all but 4 mutations we identified 
are unique at the nucleotide level, consistent with our earlier work in S. cerevisiae (28). However, we 
found significant convergent evolution at the gene level. For example, 24 genes had mutations in at 
least three replicate lines (compared to 4.2 expected by chance, P < 10-4; Tables S5, S6), indicating 
that most mutations observed in these multi-hit genes are likely beneficial. Moreover, we observed 
significant enrichment for mutations in genes involved in negative regulation of Ras, cell cycle 
regulation, and filamentous growth (Table S7), indicating convergence at higher levels of biological 
organization. However, it is interesting to note that the degree of convergence in our system is much 
weaker than recently observed by Tenaillon et al. (21) in E. coli adapting to heat stress (Figure S4). The 
biological reasons for this difference are unclear. 
 
We next compared the total number of mutations observed in different evolved lines. As expected, we 
find that among lines descended from a given Founder, the lines that increased most in fitness were on 
average those that acquired more mutations in multi-hit genes (Figure S5). In the modular epistasis 
model, we also expect that lines descended from high-fitness Founders should acquire fewer beneficial 
mutations than those descended from low-fitness Founders (the former are less adaptable because 
they have fewer ways to improve). However, we find that this is not the case: lines descended from all 
Founders acquired the same number of putatively functional mutations (Figure 3B). Similar results hold 
if we consider only mutations in multi-hit genes (Figure S6).  
 
We next asked whether lines descended from the same Founder took more similar mutational 
trajectories than lines descended from different Founders. The modular and idiosyncratic epistasis 
models predict that many mutations are beneficial only in particular genetic backgrounds. Hence, these 
models predict that clones descended from the same Founder should on average have more mutations 
in common (“parallelism”) than expected by chance given the observed degree of overall convergence. 
However, this is not the case. Figures 3C, 3D and S7 show that clones descended from the same 
Founder are no more likely to share mutations than clones descended from different Founders. This 
holds regardless of the level at which we define parallelism and convergence (genes or GO Slim 
categories). 
 
Together, these analyses suggest that the modular and idiosyncratic epistasis models are inconsistent 
with our data, and point towards the global diminishing returns epistasis model. To confirm this directly, 
we carried out a series of genetic manipulation experiments. We selected three genes (SFL1, WHI2, 
and GAT2) in which we found putative loss-of-function (nonsense or frameshift) mutations in three or 
more replicate lines, suggesting that knockouts of these genes are beneficial in our system. We note 
that GAT2 displays the strongest signature of parallel evolution in our data (Figure 3D), and hence 
represents the strongest candidate for idiosyncratic epistasis. We introduced targeted knockouts of 
these mutations (along with one control gene, HO) separately in several replicates each into all 13 
sequenced Founders, as well as in the DivAnc and in four additional clones (Methods, Table S1). We 
then measured the fitness effects of each knockout in each background. We found a striking negative 
correlation between the fitness effect of the gat2∆, whi2∆ and sfl1∆ gene deletions and the fitness of the 
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background strain (Figure 4). Furthermore, there are no idiosyncratic epistatic interactions specific to 
particular genotypes: up to small deviations, the fitness effect of each knockout depends only on the 
fitness of the genetic background and not on the specific mutations present in that background. This 
strongly supports the global diminishing returns model as the underlying reason for the rule of declining 
adaptability with increasing fitness.  
 
Taken together, our results suggest a different interpretation of the concept of a “fitness peak” in our 
system. As is apparent from Figure 2D, all adapting lines appear to be converging in fitness towards a 
point about 8% to 10% more fit than DivAnc. Consistent with this, all three mutations shown in Figure 4 
become approximately neutral in genotypes ~8% more fit than DivAnc. While this is unlikely to be a true 
fitness peak, it does represent a fitness level above which adaptation slows substantially. However, this 
fitness plateau can be reached via many different combinations of beneficial mutations. That is, it 
occupies not a single point in genotype space but rather an enormous number of genetically and 
perhaps even physiologically distinct types. A population adapting on this fitness landscape may take 
one of many thousands of genetically distinct trajectories, each of which would nevertheless lead it to 
the same fitness plateau at the same rate.  
 
These results paint a surprisingly simple picture of adaptation in our system. Many mutations scattered 
across many biological processes appear to be beneficial. Yet despite their lack of apparent functional 
relationship, these mutations are globally coupled by diminishing returns epistasis – their effects are 
strongly mediated by background fitness, but are otherwise essentially independent of the specific 
identity of other mutations present in the background. The biological basis of this global coupling 
remains unknown. Nevertheless, it leads to a striking pattern of convergent evolution at the fitness 
level, making fitness evolution relatively predictable. Despite this fitness-level convergence, evolution 
remains highly stochastic at the genotype level, because many different mutations can be responsible 
for a given fitness change.  
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Figure Captions 
 
 
Figure 1. Experimental design. We created many independent lines from a single clone (DivAnc) and 
evolved each for 250 generations (Diversification). We then selected a single “Founder” clone from 66 
of these lines (chosen to span a range of fitness) and evolved 10 independent replicate populations 
descended from each Founder (Adaptation).  
 
Figure 2. Fitness evolution. (A) The distribution of mean population fitnesses over time, relative to 
DivAnc. Inset shows inter-population fitness variation over time. (B) Partitioning of variance in fitness 
increment after 250 and 500 generations of the Adaptation phase. All variance components are 
significant (Table S2, Methods). (C) Correlation between Founder fitness and population fitness after 
250 and 500 generations of Adaptation. (D) Correlation between Founder fitness and the mean fitness 
of the 10 independent lines descended from that Founder, after 250 and 500 generations of Adaptation. 
Error bars show ±1 sem. 
 
Figure 3. Sequence-level evolution. (A) 1150 mutations that occurred in the Adaptation phase arranged 
by type (Methods). (B) Clones descended from different Founders acquired on average the same 
number of putatively functional mutations (see also Figure S6). (C) Convergence and parallelism at the 
gene (top, orange) and GO Slim (bottom, blue) levels. Each cell is colored to show the average number 
of mutations shared by two clones descended from the Founders indicated in the row and column 
headers. Founders are ordered from least-fit (left, bottom) to most-fit (right, top). (D) Mutations in 
multihit genes and the Founder backgrounds in which they were observed (top); putatively functional 
mutations that determine the Founder background (bottom). Asterisks indicate genes mutated in both 
Diversification and Adaptation phases.  
 
Figure 4. Diminishing returns epistasis among specific mutations. The fitness effect of knocking out 
genes gat2, whi2, and sfl1 declines with the fitness of the background strain. The ho knockout is a 
negative control (Methods). Error bars show ±1 sem over biological replicates. 
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