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Most animals possess the ability to actuate a vast diversity of movements, ostensibly constrained
only by morphology and physics. In practice, however, a frequent assumption in behavioral science
is that most of an animal’s activities can be described in terms of a small set of stereotyped motifs.
Here we introduce a method for mapping the behavioral space of organisms, relying only upon the
underlying structure of postural movement data to organize and classify behaviors. We find that six
different drosophilid species each perform a mix of non-stereotyped actions and over one hundred
hierarchically-organized, stereotyped behaviors. Moreover, we use this approach to compare these
species’ behavioral spaces, systematically identifying subtle behavioral differences between closely-
related species.

Animals perform a complex array of behaviors, from
changes in body posture to vocalizations to other dy-
namic outputs. Far from being a disordered collection
of actions, however, there is thought to be an intrinsic
structure to the set of behaviors and their temporal or-
ganization [1, 2]. While behavior can be thought of as a
trajectory through a large dimensional space, there is ev-
idence in several different systems that natural behaviors
do not fill this space uniformly, but rather are confined to
lower-dimensional manifolds [3–5]. Moreover, the paths
an animal takes through this reduced space are thought
to be decomposable into sequences of stereotyped mo-
tions or modules [6–8].

Understanding the nature of this type of dimensional
reduction is central to discussion of problems ranging
from neural coding to evolution [9–13], but the lack of a
comprehensive and compelling mathematical framework
for behavioral analysis has limited progress. Standard
paradigms for the study of behavior often rely on the use
of intuitive definitions of behavior and probe their occur-
rence using methods ranging from human observation to
supervised machine-learning algorithms [14–17]. Here
we attempt a more systematic approach to the analysis
of behavior in six closely related species of flies, develop-
ing tools that allow objective definitions of stereotypy,
hierarchy, and similarities in behavioral phenotype.

The basis of our approach is to view behavior as a
trajectory through a high-dimensional space of postu-
ral dynamics. Given some natural coordinate system
on this space, stereotyped behaviors are ones in which
the trajectory hovers near particular, repeatable posi-
tions. Thus the task of behavioral analysis is to start
with raw data (here, high resolution movies) and con-
struct this “behavioral space” B, spanned by coordi-
nates, {ẑi}i=1,...,d. These coordinates must be complete,
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in that they can represent all observed actions. The
probability distribution over B, b(z), measures the rel-
ative fractions of time spent on different actions, and
peaks in this distribution are candidates for stereotyped
behaviors.

Both stereotyped and non-stereotyped behaviors can
be exhibited over time as an animal moves within this
behavioral space. When we can see well-resolved peaks
in the distribution b(z), and the trajectory pauses in the
neighborhood of these peaks, then we can say that we
have identified a stereotyped behavior. Non-stereotyped
actions, on the other hand, correspond to epochs in
which the trajectory moves rapidly through behavioral
space without pausing at characteristic locations. These
data–driven, unsupervised definitions do not require us
to assume, a priori, that stereotyped actions must exist.
We will also see that the spatial structure of b(z) pro-
vides a framework to explore the relationships between
stereotyped actions.

We explore here the spontaneous behaviors of ground-
based flies in a largely featureless circular arena [Figs.
1A, 5]. Under these conditions, flies display a multitude
of complex, non-aerial behaviors such as locomotion and
grooming, typically involving multiple parts of their bod-
ies. To capture dynamic rearrangements of the fly’s pos-
ture, we recorded video of individual behaving animals
with sufficient spatiotemporal resolution to resolve mov-
ing body parts such as the legs, wings, and proboscis.
Each animal was imaged at 100 Hz for one hour, yield-
ing 3.6 × 105 movie frames per individual, and in each
frame we focus our analysis on a 200× 200 pixel square
containing the fly. In these experiments, we studied six
species of Drosophila: D. mauritiana, D. simulans, D.
sechellia, D. melanogaster, D. santomea, and D. yakuba
(four individuals each, corresponding to 1.44 × 106 im-
ages per species and over 8.5 million images in total).

The number of postures an animal can adopt is lim-
ited by the mechanical properties of its body. The fly
body is made up of relatively inflexible segments con-
nected by mobile joints, so that the number of postural
degrees of freedom is relatively small, and it is tempting
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FIG. 1. Quantitative description of behavioral movies. (A) Raw image of a fly in the arena. (B) Pictorial representation of
the first 5 postural modes, x̂1−5, after inverse Radon transform. Black and white regions represent highlighted areas of each
mode (with opposite sign). (C) First 1,000 eigenvalues of the data matrix (black) and shuffled data (red). (D) Fraction of
cumulative variation explained as a function of number of modes included. (E) Typical time series of the projection along
postural mode 6 and (F) its corresponding wavelet transform.

to try extracting these variables directly from the im-
ages, but occlusions and the complex fly geometry make
this difficult [18, 19]. As an alternative, we note that
almost all of the variance in the 4 × 104 pixel images
can be explained by projecting onto a Euclidean space
of just 50 dimensions or principal components (Figs 1C
and D, Appendix E), after correcting for rigid rotations
and translations of the fly’s body; we refer to these di-
mensions as postural modes. Thus we can convert a
movie of fly behavior into a 50–dimensional time series,
{yk(t)} ≡ {y1(t), y2(t), · · · , y50(t)}, representing the pro-
jections onto each of the postural modes over time (Fig
1E).

The postural modes themselves, however, do not pro-
vide a fully natural coordinate system for behavior. In
particular, there is a challenge in recognizing behaviors
that correspond to the similar sequences of movements at
different times and with different durations [14, 15, 20].
As an alternative, we consider a spectrogram represen-
tation, where we measure the power at frequency f asso-
ciated with each mode k, in a window surrounding a mo-
ment in time, S(k, f ; t) (Fig 1F, Appendix E). In prac-
tice we compute the spectrum using Morlet wavelets, and
capture dynamics from f = 1 to f = 50 Hz, correspond-
ing to 25 independent frequency channels. S(k, f ; t) is
thus a 1,250 dimensional feature vector at each time t.
We expect that the dynamics do not fill this space, and
there are several ways of searching for lower dimensional
structures [21]. The approach we use here is to project
the features S(k, f ; t) onto two dimensions, z1(t) and
z2(t), such that we preserve the local neighborhood re-

lations among points but allow for distortions on longer
length scales (Appendix H) [22].

Figure 2A shows the embedding of all the spectral fea-
ture vectors that we observed, across all six species, into
the space z1, z2. Although our embedding method is in-
variant to variations in the total power of the postural
motions (

∑
f S(k, f ; t)), we see that nearby points have

similar total power. If we coarse grain this image to gen-
erate an estimate of local density b(z), we see (Fig 2B)
there are large number of resolved local maxima that
are candidates for stereotyped behaviors. If we look at
the dynamics of z1(t) and z2(t), we find that the sys-
tem really does pause, with near zero velocity, at points
corresponding to maxima of the probability density (Fig
2D).

The impression that trajectories pause can be made
more precise by looking at the distribution of speeds
through the space z, v =

√
ż2
1 + ż2

2 . In Fig 2E, we see
that the distribution P (v) is, in fact, bimodal, and that
the two peaks are separated by nearly a factor of 100 in
speed. It makes sense to think of this distribution as a
mixture of two states, “paused” and “moving,” and we
can then assign every moment in time a probability of
being in the paused state. Pauses occur preferentially at
the peaks of the distribution b(z) (Fig. 18), and with a
reasonably conservative threshold we can say that the fly
is paused at some point in the behavioral space z almost
precisely half the time (fpause = 0.4997 across all indi-
viduals and species studied here, Fig. 15). We identify
these pauses near peaks of b(z) as stereotyped behavioral
states or actions: they persist, with residence times in
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FIG. 2. Embedding into behavioral space. (A) Results
from embedding spectral feature vectors, {S(k, f ; t)}, into
2D. Points are color coded by the summed amplitude of the
wavelet feature vector. (B) Estimated probability density
function (PDF) from embedding all points. (C) Integral of
the PDF over each of the discretized regions. (D) Trajec-
tory segment through behavioral space, z1(t) (blue) and z2(t)
(red). (E) Histogram of velocities in the embedded space fit
to a two-component log-gaussian mixture model. The blue
bar chart represents the measured probability distribution,
the red line is the fitted model, the cyan and green lines
are the mixture components of the fitted model, and the red
dashed line is the threshold between the high and low velocity
states.

one state range from ∼ .05 s out to more than 10 s; Fig.
15, they recur many times over the one hour observation
of an individual, and they they can be identified across
multiple individuals.

We can make our impression of multiple peaks in the
probability distribution b(z) precise by asking for con-
nected regions in the z1, z2 plane such that climbing up
the gradient of probability density always leads to the
same local maximum. In image processing this is called
a “watershed transform” [23], and if the probability dis-
tribution comes from a physical system in thermal equi-
librium this is equivalent to finding the valleys in the
free energy landscape. We show the results of this anal-
ysis in Fig 2C, where we identify 169 distinct regions
of the behavioral space, each of which surrounds a sin-
gle local maximum of probability density. Although this
analysis is based on pooled data form all the species,
each species visits almost all of these states during the

course of our observations, with D. melanogaster visit-
ing the fewest (134) and D. simulans the most (157);
see Fig. 15, Table II. Importantly, visual inspection of
the movies in epochs where the behavior sits within one
of these distinct regions often allows us to recognize fa-
miliar behaviors: walking, running, wing grooming, and
even proboscis extension (Fig. 3). These stereotyped
behaviors, which correspond to nearly stationary values
of z1 and z2, correspond to periodic orbits in the space
of postural modes (Appendix J, Fig. 24), showing that
we have mapped temporal sequences into single points
within B.

Having found discrete states, we can measure the tran-
sition probability Tij that the system will follow its visit
to state i immediately by a visit to a different state j
(Appendix I). We created the space z by requiring that
neighborhood relations be preserved, and correspond-
ingly we find that transitions are more likely among
nearby states (Fig 3A). Looking at the physical move-
ments associated with these different states, we see, for
instance, that a walking fly is much more likely to tran-
sition to turning or walking at a different speed in the
next bout of activity than it is to groom its wing, or that
a fly that is grooming its eyes is more likely to groom its
antennae in the next bout than it is to extend its pro-
boscis. While these seem plausible, it should be empha-
sized that with more than one hundred discrete states,
and thus many thousands of possible transitions, not all
the structure is so intuitive.

It is tempting to think that the locality of transitions
corresponds to a modular organization of behavior: if
the system is in state i, it is more likely to transition
to states j within the same module, while inter–module
transitions are more rare. If this is correct, then know-
ing which module the system is in should capture a large
fraction of the information available about the next state
that will be visited, and this information theoretic ap-
proach leads to an algorithm for partitioning the set of
states into components [24, Appendix I]. We find that
the resulting graph components are spatial segregated
in the z plane, and correspond to broad behavioral cate-
gories (Fig. 3B). If we allow for more graph components,
still trying to capture the most information about the
next state, we find that these broad categories break into
smaller components, hierarchically (Fig. 3B-D), and this
is true for all six species we observed (Fig. 22).

The fact that the different species we have studied can
be described in a common behavioral space z means that
we can use the distribution over this space to compare
the species to one another. Thus, we can construct the
probability distribution b(z) separately for each species
(Fig 4A), and we can measure the pairwise distances be-
tween these distributions using the Jensen–Shannon (JS)
divergence, which quantifies how much information one
sample of the behavioral state provides about the choice
between the two species that might have generated that
sample [25, Fig. 4B-E, Eq. K1]. When the species are
ordered according to their molecular phylogeny [26, 27],
we identify a high degree of behavioral similarity within
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FIG. 3. The structure of behavioral space for D. mauritiana.
(A) Transitions between the 155 watershed regions observed
in the species. Each red point represents the maximum of
the local PDF, and the black lines represent the transition
probabilities between the regions. Black line thicknesses are
proportional to the transition flux (ignoring self-transitions),
and right-handed curvature implies the direction of transmis-
sion. For clarity, all lines representing fluxes less than 10−4

are omitted. (B) Behavioral labels associated with each par-
titioned graph component. Black line thicknesses are propor-
tional to conditional transition probabilities between regions.
(C) Zoom-in on the ”Posterior Movements” module. Lines
now represent conditional transition probabilities to the next
observed state within the module. (D) Further partitioning
of the graph from (C) yields more fine-grained details.

the most recently evolved clade consisting of D. mau-
ritiana, D. simulans, and D. sechellia. This clade di-
verged in the past ≈ 250, 000 years [28] and we find small
within-clade JS divergences compared to the larger JS
divergences with the other species. It is less clear, how-
ever, that the JS divergence is the proper metric to track
evolutionary distance on longer scales.

To probe the origin of the small behavioral differences
seen from species in this clade, we separately calculated
the contribution of each major behavioral region (Fig.
4C) to the overall JS divergence (Fig. 4D). Nearly half
(49.7%) of the total variation in this clade was due to
differences in locomotion behaviors. To a lesser extent
(29.2%), posterior behaviors differed, and very little be-
havioral difference was observed for idle, slow, and an-
terior behaviors. Comparing locomotory behaviors, we

find that D. mauritiana and D. sechellia are the most
distinct, with D. simulans being the nearest species to
both (Fig. 4B,D). Behaviorally, we see that the predom-
inate contributor to this separation is the existence of
higher-frequency locomotion gaits in D. mauritiana and
the presence of gaits involving wing motions in D. sechel-
lia (Figs. 4E, 23). This pattern of differences, with D.
sechellia and D. mauritiana more similar to D. simulans
than to each other, is consistent with the ecological ob-
servation that the former two species are island endemics
that likely diverged from D. simulans, a cosmopolitan
human commensurate [28, 29].

The ability to compare the structure of behavioral
space and the organization of stereotyped motions be-
tween populations of behaving animals has applications
beyond the study of behavioral evolution in fruit flies.
Combined with tools for genetic manipulation, DNA
sequencing, neural imaging, and electrophysiology, the
identification of subtle behavioral distinctions and pat-
terns between groups of individuals will impact deep
questions related to the interactions between genes, neu-
rons, behavior, and evolution. In this initial study, we
probed the motion of individuals in a largely feature-
less environment. Extensions to more complicated situ-
ations, e.g. where sensory inputs are measured and/or
controlled, or multiple individuals are present, are easily
implemented. Finally, we note that the only Drosophila-
specific step in our analysis pipeline is the generation of
the postural eigenmodes. Given movies of sufficient qual-
ity and length from different organisms, spectral feature
vectors and behavioral spaces can be similarly generated,
allowing for potential applications from worms to mice
to humans and a greater understanding of how animals
behave.
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APPENDICES

Appendix A: Fly-Tracking Instrument

To acquire high-resolution image data of ground-based
flies, we built a tracking instrument that allows us to
track a single fly as it moves freely in a large arena (Fig-
ure 5). This apparatus consists of a camera and lens
system (Gazelle Point Gray, 100 Hz, 1088× 1088 pixels,
bit depth of 8) that streams images directly to disk and a
high-speed X-Y translation stage (Griffon Motion) that
is used to keep the fly in the field of view. Backlighting is
provided by LED illumination and the magnification is
chosen such that a single fly is approximately 100 pixels
in length and has an area that covers 6,000-8,000 pixels.
The entire set-up is encased in an opaque box, prevent-
ing external visual stimuli.

We designed our arena based on previous work which
showed that a thin chamber with gently sloping sides pre-
vents flies from flying, jumping, and climbing the walls
[30]. To keep the behaving flies in the focal plane of
our camera, we inverted the previous design. Our arena
consists of a vacuum-formed, clear PETG plastic dome 4
inches in diameter with sloping sides at the edge clamped
to a flat glass plate. The edges of the plastic cover are
sloped to prevent the flies from being occluded and to
limit their ability to climb upside-down on the cover.
The latter of these aims is further aided by applying
Sigma Cote to the underside of the cover, thus prevent-
ing adhesion to the surface. In practice, we find that
this set-up results in effectively no bouts of upside-down
walking.

A Proportional-Integral-Derivative (PID) feedback al-
gorithm is used to keep the moving fly inside the cam-
era frame by controlling the position of the X-Y stage
based on the camera image in real time. The feedback
parameters are tuned such that the camera tracks a fly
smoothly in a sufficiently fast manner to capture all ob-
served terrestrial manoeuvres. All aspects of the instru-
mentation are controlled by a single computer using a
custom-written LabView graphical user interface.

This setup is able to record millions of images without
losing the fly from the field of view. A sample trajectory
of fly motion derived from the tracking routine is dis-
played in Figure 6. Due to storage limitations, we only
save a 200× 200 pixel square that is centred on the cen-
troid of the fly. Data used in this paper consists of movies
of 24 individual flies from the Drosophila melanogaster
species subgroup, each recorded for one hour (approxi-
mately 9 million frames in total).

Appendix B: Animals

All flies used were male from the strains listed in Table
I. These flies were isolated and reared separately within
4 hours of ecolsion and data was collected at 12-14 days
after eclosion. All recording occurred between the hours
of 9:00 AM and 1:00 PM, thus reducing the effect of cir-
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FIG. 5. A schematic of the recording apparatus.

FIG. 6. A) Example Time-trace of a fly as it moves about
the filming arena. B) X and Y positions plotted individually.

cadian rhythms. All recordings for an individual species
were performed during a single day. Flies were placed
into the arena via aspiration and were subsequently al-
lowed 10 minutes for adaptation before data collection.
The temperature for all recordings was 25.5o ± .5oC.

TABLE I. Strains used

Species Strain
D. mauritiana 14021-0241.01
D. melanogaster Oregon-R
D. santomea 14021-0271.00
D. sechellia 14021-0248.01
D. simulans 14021-0251.199
D. yakuba 14021-0261.01

Appendix C: Data Analysis

The general framework of our analysis is outlined in
Fig. 7 as well as the main text. Images are first seg-
mented and registered. After this, they are decomposed
into postural time series and converted into wavelet spec-
trograms. These spectrograms are used to construct
spectral feature vectors that we embed into 2 dimensions
using t-Distributed Stochastic Neighbor Embedding [22].
Lastly, we use this embedding to create definitions for
behavioral states. Each of these steps are described in
the subsequent sections. All calculations are performed
using custom-written MATLAB code executed on a Mac
Pro desktop computer containing two 2.66 GHz 6-core
Intel Xeon processors and 64 GB of RAM.

Appendix D: Image Processing

Image preprocessing is done in two steps: segmenta-
tion and registration.

1. Segmentation

The first phase of our data analysis is to isolate the
insect within the original image. First, we invert the
image, leading to values near zero for the background
and maximal possible values of 255 within the fly. As a
first pass, we set all pixels below a set threshold (40) to
zero to eliminate small noise in the background. Then we
apply Canny’s method for edge detection [31], resulting
in a binary image containing the edge positions. We
then morphologically dilate this binary image by a 3× 3
square in order to fill any spurious holes in the edges and
proceed to fill all closed curves. This filled image is then
morphologically eroded by a square of the same size,
resulting in our desired segmentation. If the resulting
mask is smaller than a minimal value (i.e. because a hole
along the edge is not filled), the size of the dilation and
the sensitivity of the edge detection are adjusted until an
area threshold is met. For our purposes, we set the area
threshold to be 85% of the size of the previous image,
and the first image is monitored for accuracy prior to
subsequent segmentations.

2. Registration

While our tracking algorithm ensures that the fly re-
mains within the image boundaries, the center of the
fly and the orientation within the frame vary over time.
Having obtained a sequence of isolated fly images, we
next register them both translationally and rotationally
with respect to a template image via a method similar to
that developed previously [32–34]. The template image
is generated by taking a typical image of a fly and then
manually ablating the wings and legs digitally (Figure 8,
top right).
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FIG. 7. Schematic of the data analysis pipeline.

FIG. 8. Outline of the alignment algorithm. Starting with
the segmented image and a pre-selected template image (A,
left and right, respectively), magnitudes of the polar Fourier
transforms are computed (B). From these, the phase corre-
lation between the Fourier magnitude angles are computed,
and the maximal value of this function is deemed the rota-
tion angle (C). Finally, the original image is rotated through
this angle, and the translation in the x-y plane is found in a
similar manner, resulting in the aligned image (D).

The rotational alignment is performed by taking ad-
vantage of the property that for two images, I1(x, y) and
I2(x, y), that are translated and rotated with respect
to each other by 〈x0, y0〉, and θ0, respectively, their 2D
Fourier transforms, F1(x̃, ỹ) and F2(x̃, ỹ), can be related
by

F2(x̃, ỹ) = e−2πi(x̃x0+ỹy0)F1(x̃ cos θ0 + ỹ sin θ0,
−x̃ sin θ0 + ỹ cos θ).

(D1)

Information about shifts in position can therefore be
eliminated by looking only at the magnitude of the spec-

tra, M1(x̃, ỹ), and M2(x̃, ỹ). This principle ensures that
rotational and translational alignment can be performed
independently.

In polar coordinates, we have

M2(ρ, θ) = M1(ρ, θ − θ0). (D2)

Practically, we compute M1 and M2 by taking 1D FFTs
along the r-axis of the Radon transforms of the original
images, with the Radon transform defined as

R(r, φ)
[
f(x, y)

]
≡
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(r − x cosφ

−y sinφ)dxdy.
(D3)

This procedure is equivalent to finding the polar Fourier
spectra as a result of the projection-slice theorem, which
states that a slice through the 2D Fourier Transform of
an image can be calculated by taking the 1D Fourier
Transform of a projection onto a line through the same
original image [35]. Given M1 and M2, θ0 can be found
by maximising the average cross-correlation between the
two amplitude images along the θ axis. Specifically, this
is done by solving the following optimization problem
numerically,

θ0 = arg max
θ
C(θ), (D4)

where

C(θ) = F−1
1

[∫
F2{M1(ρ, θ)}[ρ̃, θ̃]

×F∗2 {M2(ρ, θ) dρ̃

]
[θ].

(D5)

Here, F−1
1 is a inverse 1D Fourier Transform and F2 is

a 2D Fourier Transform.
The orientations calculated in this way have a 180◦

degeneracy. We overcome this obstacle by manually as-
signing the direction of the first frame in a sequence and
then assuming that the insect moves less than 180◦ in
each successive frame. After rotating the original image
through the desired angle, we rescale the fly so that it’s
body – not including wings and legs – has the same num-
ber of pixels as the template image, allowing for effective
comparisons between multiple flies. This essentially as-
sumes that fly bodies differ predominately via an over-
all scalar multiplier. Lastly, translational alignment is
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achieved through use of a sub-pixel method for finding
the offset that maximizes the phase-correlation between
the images [36].

Appendix E: Postural Representation and
Dimensional Reduction

1. Subsampling and variance thresholding

The segmented fly images contain too many pixels to
analyse using our memory-limited techniques. We there-
fore seek to represent the segmented and aligned images
in a manner that preserves nearly all of the information
in the image sequence while at the same time compress-
ing the data. The first operation we perform to curb this
excess is to down-sample our segmented and aligned im-
ages by a factor of 10/7 after alignment (from 200× 200
to 140 × 140 pixels). The fly possesses no features that
are less than 2 pixels wide even at this reduced reso-
lution. Even after coarse-graining, we do not need to
study the entire 19,600-dimensional system. Many pix-
els within the fly image are either always zero or always
saturated and thus contain no dynamical information.
Accordingly, we would like to use only a subsample of
these measurements.

The most obvious manner to go about this is to find
the pixels containing the highest variance and keep only
those above a certain threshold. The primary difficulty
here, however, is that there is not an obvious truncation
point (Figure 9A). This is most likely the result of the
fact that the fly legs can potentially occupy the majority
of the pixels in the image, but only are present in a rel-
atively small number in any given frame. Hence, many
of these periphery pixels all have similar, moderate stan-
dard deviations, making them difficult to differentiate as
important or negligible.

A more compact scheme is to represent the images
in Radon-transform space (Equation D3), which more
sparsely parameterizes lines such as legs or wing veins.
After Radon transformation, the probability density
function of pixel-value standard deviations has a clear
minimum and we keep pixels whose standard deviation
is larger than this value (Figure 9B). This results in keep-
ing 6,763 pixels out of 18,090 which retain approximately
95% of the total variation in the images.

2. Principal Components Analysis of Fly Body
Posture

Principal components analysis (PCA) is a frequently-
used method for converting a set of correlated variables
into a set of values of linearly uncorrelated eigenmodes.
PCA also facilitates dimensional reduction when a lim-
ited set of components explains a large amount of the
total observed variation in the data. Results from this
analysis can be described as the space spanned by the
eigenvectors of the data covariance matrix, C, corre-

FIG. 9. A) Probability density function of pixel standard
deviations. B) Probability density function of Radon pixel
standard deviations. Note the clear minimum that exists in
B), allowing for an effective reduction in the number of pixels
necessary to represent the data.

sponding to the largest m eigenvalues out of the total
latent dimensionality of the data, δ. While in general
there is no rigorous manner to choose m, we discuss a
way to estimate an upper bound in m in Section E 3.

As seen in Figure 11, the majority of the observed
variation occurs in a relatively small number of modes.
If we define variation explained as

σ2
k =

∑k
i=1 λi∑d
i=1 λi

, (E1)

where λi is the ith largest eigenvalue of C, we find that
σ2
k ≈ 0.7 for k = 7, σ2

k ≈ 0.85 for k = 14, and σ2
k ≈ 0.9

for k = 24. These data lack any characteristic kink in
the eigenvalue spectrum, the traditional tell-tale sign of
where to truncate the representation. This is most likely
a result of the fact that the low-dimensional manifold on
which the data lies is non-linear, resulting in an effective
mixing between lower-variation modes. Figure 12 shows
the inverse Radon transform of the first 49 eigenmodes of
C. The modes are all fly-like and are relatively localized
at particular points, usually along the edges of the fly
body and wings. While several of these postural modes
are localized to discrete appendages on the fly body, in
general a one-to-one assignment between the eigenmodes
and the fly physiology is not possible. As a result, we
shall rely primarily on frequency-domain projections for
behavioral analyses.
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FIG. 10. Mean and standard deviations of the Radon-transformed images, blue being zero and red being maximal. A shows
the mean values, and B displays the corresponding standard deviations of the data set. The region bounded by the magenta
line in Figure B represents the subset of pixels used for further analysis.

FIG. 11. A) Plot of the first 1,000 eigenvalues of C (black
circles) and the noise model (red squares). 50 modes from
our data PCA are larger than the largest noise eigenvalue.
B) The cumulative variance explained in the data.

3. Series truncation and comparison to the null
model

Dimensional reduction of postural space via trunca-
tion from the PCA is difficult because of the smoothness
of the eigenvalue spectrum. Given this, one approach
to determining the truncation point is to compare the
PCA eigenvalues with a null model based on the noise
properties of our data set. This noise is due to finite
data collection as well as any measurement error in both
the tracking software and image preprocessing and regis-
tration. Eigenvalues that are statistically indistinguish-
able from zero (i.e. modes whose amplitude is below
the noise threshold) are not included in the subsequent
dynamic analyses. This process is aided by the sharp-
cutoffs found in random matrix eigenvalues.

Our specific null model here is that each of the Radon
pixel values are drawn independently from each other
but out of the same distribution as seen experimentally.

In other words, we take our data matrix, X ∈ <N×d
(rows corresponding to individual images and columns
corresponding to Radon space pixels), and shuffle each
of the columns independently from each other. In this
model, given an infinite number of samples, there should
be no linear correlations. Given finite sampling (even if
very large), however, there will still remain some resid-
ual correlations, resulting in off-diagonal non-zero terms
in the covariance matrix. Hence, if we diagonalize this
new covariance matrix, the largest eigenvalue provides a
resolution limit for our ability to distinguish signal from
finite sampling noise.

Performing this null model analysis, we find that 50
modes from our data set have eigenvalues greater than
the largest observed eigenvalue from the null model
(Fig. 11, top). These 50 modes account for slightly
more than 93% of the observed variation in the data
(Fig. 11, bottom). Subsequent dynamic analysis then
uses this low-dimensional postural representation, Y =
{y1(t)y2(t) · · · y50(t)} ∈ <N×50, to represent the full im-
age data set.

It should be noted that this procedure places an upper-
bound on the number of modes necessary to represent
the fly postures. There are undoubtably more sources
of noise in our data set than finite sampling error alone
(i.e. segmentation and alignment errors), but setting the
eigenvalue cut-off as described eliminates modes that are
unambiguously indistinguishable from noise.

Appendix F: Wavelet Analysis and Power Spectrum
Calculation

Given a low-dimensional postural representation, Y,
we wish to discover sets of image sequences that repre-
sent stereotyped behaviors. Clustering of the postures,
however, clearly does not capture the dynamics of the
fly motion. For example, a stationary fly should be clas-
sified as “resting” regardless of the positions of its ap-
pendages. Similarly, different bouts of a periodic walking
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FIG. 12. The 49 most significant eigenmodes (after inverse Radon transformation), displayed in descending order (left-to-right
then top-to-bottom). The color scale is in arbitrary units.

gate should be classified together despite their different
phases or durations during a measurement.

We attempt to ameliorate these difficulties by ana-
lyzing Y via a time-frequency analysis. Many time-
frequency analyses implement a gaussian-windowed
Fourier Transform (sometimes referred to as a Gabor
filter or a short-time Fourier transform):

χ(t, f) =
∫
y(t′)e−

(t−t′)2

2σ2 ei2πf(t−t′)dt′. (F1)

While this results in a smooth, well-behaved output,
the uncertainty in the temporal and frequency axes are
linked such that ∆t∆f > 1. Decreasing the filter width,
σ, requires a corresponding increase in ∆f . This presents
a fundamental difficulty because behavioral events occur
over many different time scales, yet we desire the maxi-
mum temporal resolution possible.

One way to cope with this fundamental limitation is
to retile the sampling of time-frequency space. Namely,

we wish to sample low-frequency events over longer time
windows, and higher-frequency over shorter time win-
dows, thereby giving instantaneous measures of both
long time-scale behaviors and sharp transitions. A con-
venient formalism for achieving this tiling that maintains
accuracy in both the time and frequency dimensions
is the continuous wavelet transform (CWT). Although
this transform shares many similarities with the Fourier
transform, primarily a result of the fact that both can be
viewed as rotations in a functional space, wavelets pos-
sess the desired multi-resolution time-frequency trade-off
and often can represent the data in a more sparse manner
[37]. Specifically, wavelets are generated by morphing a
mother wavelet, ψ(t), through a scaling and translation,

ψs,τ (t) =
1√
s
ψ
( t− τ

s

)
, (F2)

where ψ(t) has a mean of zero, is square-normalizable,
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has a Fourier transform, Ψ̃(ω), that obeys∫ ∞
−∞

|Ψ̃(ω)|2

|ω|
dω <∞, (F3)

and is otherwise well-behaved. These conditions insure
that ψ(t) is localized and well-defined for all t. We then
define a set of wavelet coefficients, {Ws,τ [x(t)]}s,τ , via

Ws,τ [y(t)] =
∫ ∞
−∞

y(t)ψ∗s,τ (t)dt. (F4)

Applying the convolution theorem to Eq. F4 and using
the definition of the mother wavelet from Eq. F2, we
have

Ws,τ [y(t)] =
√
sF−1

[
ŷ(ω)ψ̂(ωs)

]
(τ), (F5)

where the hat notation indicates a Fourier transformed
variable and F−1 is the inverse Fourier transform. Given
an analytical formula for ψ̂(ω), Eq. F5 provides a fast
and reliable method for computing the wavelet coeffi-
cients.

The fly behavioral data generally consists of long, sta-
tionary sequences interrupted by bursts of activity. Mor-
let’s wavelet function,

ψ(η) = π−1/4eiω0ηe−
1
2η

2
, (F6)

is able to capture these chirps while being relatively in-
sensitive to noise [38]. This function has the additional
property that the scale, s, is related to the Fourier fre-
quency, f , by

f =
ω0 +

√
2 + ω2

0

4πs
. (F7)

This can be derived by maximizing A(s, ω) ≡∣∣∣Ws,τ [eiωt]
∣∣∣ with respect to s.

Because of the differing time scales used for each of the
wavelet coefficient calculations, this leads to a bias that
makes A(s, ω) disproportionally large when responding
to pure sine waves of lower frequencies. To correct for
this, we find a scalar function C(s) such that

C(s)A(s, ω∗) = 1 for all s, (F8)

where ω∗ is 2π times the Fourier frequency found in Eq.
F7. For a Morlet wavelet, this function is

C(s) =
π−

1
4

√
2s
e

1
4

(
ω0−
√
ω2

0+2

)2

. (F9)

Combining this result with Eq. F5, we can define the
power spectrum

P (s, τ) =
1

4
√

4π
e

1
4

(
ω0−
√
ω2

0+2

)2 ∣∣∣∣∣F−1
[
x̂(ω)ψ̂(ωs)

]
(τ)

∣∣∣∣∣.
(F10)

By picking an dyadically-spaced set of frequencies be-
tween fmin = 1 Hz and the Nyquist frequency (fmax =
50 Hz) via

fi = fmax2
−i log2

fmax
Nffmin (F11)

for i = 1, 2, . . . , Nf (and their corresponding scales via
Eq. F7), one can create a wavelet spectrogram that is
resolved at multiple time-scales. Accordingly, we can
build a multimodal wavelet data set by applying Eq.
F10 to each of the first 50 modes for Nf = 25 frequen-
cies between 1 and 50 Hz, yielding a matrix S(f, k; t) ∈
<N×1250.

Appendix G: Distance Metric and Intrinsic
Dimensionality

Starting from the matrix S(f, k; t), each row of which
contains the wavelet transform centered about a partic-
ular moment in time, we would like to possess a distance
metric that provides the basis for the space in which we
wish to embed our data set. Our choice of metric hinges
on two important observations. First, because the data
results from the amplitudes of wavelet transforms, all
entries in S(f, k; t) must be non-negative. Second, as a
particular behavior starts, sustains, and ends, the fea-
ture vector will change by an overall multiplicative fac-
tor, but will vary only slightly in shape. Accordingly,
since we possess a set of non-negative feature vectors,
we can eliminate this variance by normalizing each vec-
tor separately. In other words, we let

Ŝ(f, k; t) ≡ S(f, k; t)∑
f ′,k′ S(f ′, k′; t)

. (G1)

Given that we now have a set of feature vectors that
are all non-negative and normalized to one, a natural
distance metric between these points can be derived
by treating each feature vector as a probability density
over all mode-frequency channels. The natural distance
metric between two such probability distributions is the
Kullback-Leibler divergence between them [25]. Mathe-
matically, this means that we compute the distance be-
tween two time points, t1 and t2, via

d(t1, t2) =
∑
f,k

Ŝ(f, k; t1) log2

Ŝ(f, k; t1)
Ŝ(f, k; t2)

. (G2)

This can be viewed as the extra number of bits re-
quired to encode Ŝ(f, k; t1) if based on a code built upon
Ŝ(f, k; t2) rather than itself. It should be noted at this
point that our definition for d(t1, t2) is not symmetric,
but this does not cause a problem for the embedding
procedure described in the next section.

Given this distance metric, it is now possible to get
a rough estimate of the dimensionality of M , the man-
ifold populated by the set of all values for Ŝ(f, k; t2),
and show that it is much smaller than 1,250. The most
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straight-forward means for performing this is to calcu-
late the correlation dimension, dC(M) of our data. In
this method, we estimate d(M) via

dC = lim
ε→0

∂ logC(ε)
∂ log ε

, (G3)

where

C(ε) =
2

n(n− 1)

n∑
i=1

n∑
j=1

Θ(ε− d(ti, tj)), (G4)

n is the number of data points, and Θ(x) is the Heav-
iside step function. Thus, by fitting C(ε) as a function
of ε on a log-log plot to a line (excluding regions of sat-
uration at high ε and under-sampling at low ε), we can
obtain an estimate for dC (Fig. 13). Here, we find that
dC ≈ 12.7. While this is only an estimate and by no
means a statement of the implicit dimensionality of the
manifold containing the data (which can potentially vary
from point to point), it confirms that our data has a di-
mensionality much less than our naive 1,250-dimensional
parameterization.

FIG. 13. Estimation of the correlation dimension of the data
set (Eq. G4). The blue line is C as a function of ε, and the
red line is a linear fit to the middle region of the plot. The
measured slope is 12.7± .2.

Appendix H: t-Distributed Stochastic Neighbor
Embedding

This section gives an outline of the t-Distributed
Stochastic Neighbor Embedding (t-SNE) algorithm [22]
and details as to our implementation of it. Like other
embedding algorithms, t-SNE aims to take data from
a high-dimensional space and embed it into a space of
much smaller dimension, preserving some set of invari-
ants as best as possible.

For t-SNE, the conserved invariants are related to the
Markov transition probabilities if a random walk is per-
formed on the data set. Specifically, let us assume that

we have n time points in our data set, and the tran-
sition probability from time point ti to time point tj ,
pj|i, is proportional to a Gaussian kernel of the distance
between them:

pj|i =
exp
(
− d(ti, tj)2/2σ2

i

)
∑
k 6=i exp

(
− d(ti, tk)2/2σ2

i

) . (H1)

All self-transitions (i.e. pi|i) are assumed to be zero. The
t-SNE algorithm attempts to embed the data such that
these transition probabilities are optimally preserved.
Each of the σi are set such that all points have the
same transition entropy, Hi =

∑
j pj|i log pj|i = const,

via binary search until |2H0 − 2Hi | < 10−5. Here, we set
2Hi = 30, which can be thought of as a proxy for se-
lecting the number of nearest neighbors to which a point
will transition.

We also need to define transition probabilities in the
embedded space. The naive approach, initially outlined
in [39], is to assume that the transitions in this space,
qj|i, are also given via Gaussian kernels. This becomes
problematic, however, because the process of embedding
objects of relatively high intrinsic dimension (say, 10),
results in a crashing of points towards the centre of the
map, thus obscuring the clustering properties of the orig-
inal space. t-SNE alleviates this problem by mandating
that transition probabilities in the embedded space be
proportional to a heavy-tailed distribution. Specifically,
the Student-t distribution is used:

qj|i =
(1 + ∆2

i,j)
−1∑

k 6=i(1 + ∆2
i,k)−1

, (H2)

where ∆i,j is the Euclidean distance between embedded
points ~zi and ~zj , corresponding to ti and tj , respectively.
Note that no values for σ are required in this space,
since they would only result in an overall multiplicative
constant.

If we symmetrize these transition probabilities by
defining

pi,j =
pj|i + pi|j

2n
(H3)

and

qi,j =
(1 + ∆2

i,j)
−1∑

k

∑
` 6=k(1 + ∆2

k,`)−1
, (H4)

then our cost function to be minimized is the Kullback-
Leibler divergence between the pi,j and qi,j , or

C = DKL(P ||Q) =
∑
i,j

pi,j log
pi,j
qi,j

. (H5)

This cost function is used – as opposed to a cost func-
tion relying on the unsymmetrized probabilities – due to
ease of optimization and previous studies have reported
that it results in similar maps as the symmetric version
[22, 40]. In general, though, this choice of cost function is
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beneficial because it places low weight on points that are
far apart in the original space (low pi,j), while still main-
taining information about the manifold’s local structure.
This separates it from methods such as diffusion maps
[41] or multi-dimensional scaling [42], where effects from
far-away points can dominate the cost function.

Unfortunately, Equation H5 is not convex, so some
care is necessary to optimize it. Specifically, we opti-
mize this cost function via gradient descent, utilizing
techniques proposed in the original t-SNE paper [22].
Given the cost function in Equation H5, it is possible to
show that

∂C

∂~zi
= 4

∑
j

(pi,j − qi,j)(~zi − ~zj). (H6)

If χ(n) is the solution of the equations at iteration n, we
follow the gradient downward using

χ(n+1) = χ(n) + η(n)
∂C

∂~zi
+ α(n)(χ(n) − χ(n−1)), (H7)

where η(n) is an adaptive learning rate that is set via
the scheme from [43], and α(n) is a momentum term.
Here, we set η(1) = 100 and

α(n) =
{
.8 n < 250
.5 n ≥ 250 .

In addition, we utilize the “early exaggeration” concept
from [22]. Here, we multiply all values of pi,j by a con-
stant, γ, for the first τexag iterations. Because the pi,j
values are large, this forces the qi,j values, which still
must sum to one, to be as large as possible. This pushes
the data’s natural clusters into tight, widely separated
regions. For the work presented here, we use γ = 4 and
τexag = 100. The stopping criteria for the algorithm is
for the fractional improvement in the cost function to
fall below 10−4.

1. Selecting training-set points

Due to memory limitations (the memory requirements
scale like N2), we can only embed a subsample of ap-
proximately 30,000 at one time. Although improving
this number will be the subject of further research, our
solution here is to generate an embedding based-upon a
selection of 1,250 data points from each of the 24 individ-
uals observed (out of ≈ 360, 000 data points per individ-
ual). To ensure that these points create a representative
sample, we perform t-SNE on 20,000 randomly-selected
data points from each individual, using the same param-
eters as described above. This embedding is then used to
estimate a probability density by convolving each point
with a 2D gaussian whose whose width is equal to the dis-
tance from the point to its 10th nearest neighbor. This
space is segmented by applying a watershed transform
[23] to the inverse of the PDF, creating a set of regions.
Finally, points are grouped by the region to which they

belong and the number of points selected out of each re-
gion is proportional to the integral over the PDF in that
region. This is performed for all data sets, yielding a
total of 30,000 data points.

2. Comparing new points to the training set

Given the embedding resulting from applying t-SNE
to our training set, we embed additional points into our
behavioral space by comparing each to the training set
individually. Mathematically, let X be the set of all
feature vectors in the training set, Y be their associated
embeddings via t-SNE, z be a new feature vector that we
would like to embed according to the mapping between
X and Y , and ζ is the embedding of z that we would
like to determine.

As with the t-SNE cost function, we will embed z
by enforcing that its transition probabilities in the two
spaces are as similar as possible. Like before, the tran-
sitions in the full space, pj|z, are given by

pj|z =
exp
(
− d(z, j)2/2σ2

z

)
∑
x∈X exp

(
− d(z, k)2/2σ2

z

) , (H8)

where d(z, j) is the Kullback-Leibler divergence between
z and x ∈ X, and σz is once again found by constraining
the entropy of the condition transition probability dis-
tribution, using the same parameters as for the t-SNE
embedding (2Hz = 30± 10−5). Similarly, the transition
probabilities in the embedded space are given by

qj|ζ =
(1 + ∆2

ζ,j)
−1∑

y∈Y (1 + ∆2
ζ,y)−1

, (H9)

where ∆ζ,y is the Euclidean distance between ζ and y ∈
Y .

For each z, we then seek the ζ∗ that minimizes
the Kullback-Leibler divergence between the transition
probability distributions in the two spaces:

ζ∗ = arg min
ζ
DKL(px|z||qy|ζ) (H10)

= arg min
ζ

∑
x∈X

px|z log
px|z

qy(x)|ζ
. (H11)

As before, this is a non-convex function, leading to po-
tential complexities in performing our desired optimiza-
tion. However, if we start a local optimization (us-
ing the Nelder-Mead Simplex algorithm [44, 45]) from
a weighted average of points, ζ0, where

ζ0 =
∑
x∈X

px|zy(x). (H12)

This point is usually within the basin of attraction of
the minimum (see Figure 14) so that the global mini-
mum is found. To ensure that this is true in all cases,
we also evaluate the cost function on a coarse grid cen-
tered about ζ0 (25 × 25 evaluation points placed in a
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FIG. 14. Cost function landscape for embedding a new point into the training set. The colormap represents the KL-divergences
(Equation H10) at various points in the landscape. The black points are the nearest neighbor positions used in the calculation,
the magenta square is the initial guess from Equation H12, and the red star is the found optimal embedding location.

square lattice with a grid spacing of 1.25). If the cost
function value was less than or within 10% of the previ-
ous minimum value, a new local optimization was run,
starting from that location. This was necessary less than
1% of the time.

Because this can be calculated independently for each
value of z, the algorithm scales linearly with the number
of points. We also make use of the fact that this al-
gorithm is embarrassingly parallelizable. Moreover, be-
cause we have set our perplexity (2H) to be 30, there
are rarely more than 50 points to which a given z has
a non-zero transition probability. Accordingly, we can
speed up our cost function evaluation considerably by
only allowing px|z > 0 for the nearest 200 points to z in
the original space.

Appendix I: Definition of behavioral states

1. Resting and moving states

Observing the spatio-temporal dynamics in our behav-
ioral space, it becomes apparent that movements can be
described by relatively long spans of stability followed by

quick bursts of movement (see Figure 17, blue line for a
typical sequence). This can be quantified through the
log-histogram of embedded-space speeds (Figure 3D),
which displays a bimodal distribution. Decomposing this
distribution into two log-normal distributions via expec-
tation maximization [46], we now define the probability
of a point to be in a pause state as the posterior prob-
ability that the data point in question belongs to the
left-most distribution. The fly is said to be within a “be-
havioral state” at a moment in time if there is at least a
.05 second (5 frame) sequence in the pause state, and the
point in question does not cross over a region boundary
(see following section). It is this definition that is used to
compute transition probabilities such as those displayed
in Figure 4A of the main text.

2. Spatial segmentation

Given the strong clustering of the embedded space
observed in Figure 3 of the main text, we would like
to break this space into regions corresponding to these
groupings. Many clustering algorithms have been devel-
oped for similar purposes [47], all with their respective
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FIG. 15. All flies visit most of behavioral space. The color coding here represents the number of species (left) and individual
flies (right) that performed the stereotyped behavior corresponding to the region in the embedded space at some point during
recording.

FIG. 16. PDFs for each of the four D. mauritiana analyzed here, plotted separately.
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FIG. 17. A typical dynamical sequence in the embedded
space. The blue line shows quick bursts of velocity, followed
by longer slow periods. The red line shows the posterior
probability of belonging to the left-most distribution in Fig-
ure 2D.

strengths and weaknesses. Here, we choose a method
that allows us to avoid pre-selecting the number of clus-
ters by hand. Specifically, we create a composite image,
Bσ, from our embedded data points (~y ∈ Y ), where,

Bσ(~x) =
1√

2πσ2

∑
~y∈Y

exp
(−||~x− ~y||2

2σ2

)
. (I1)

This image (as seen in Figure 2B of the main text) can
be viewed as an estimate of the probability density func-
tion over the embedded space. Given this image, we can
proceed to segment space into various regions, each asso-
ciated with a local maximum of the PDF, via the water-
shed algorithm [23]. Additionally, we ignore regions of
the space where Bσ is sufficiently small (here, we ignore
all areas where Bσ < 5×10−6). Naturally, the number of
regions found via this approach decreases monotonically
with increasing σ. Accordingly, instead of specifying the
number of clusters, we provide a minimum length scale
beneath which all local anisotropies are smoothed. For
the results presented in the main text, we choose σ = 1,
as it provides a good balance between preserving local
structure and elimination of spurious noise (σ is approx-
imately equal to the length scale of spatial fluctuations
seen when the trajectory remains in the “resting” state).

It should be noted, however, that the technique used
here is the not the only method of partitioning the em-
bedded points or space. For our purposes, however, it
serves as an intuitive segmentation of space into natu-
ral clusters that is found to correspond well to stereo-
typed behaviors. Future work will include a focus on
developing and applying a more formal approach to this
clustering problem.

3. Calculating transition fluxes

In order to perform our graph partitioning, we first
must define a transition matrix, T , that will serve as our
weighted graph. Here, we assume that Ti,j is the relative
transitional flux from behavior i to behavior j. In other
words, the number of transitions observed from i to j

divided by the total number of transitions observed al-
together (after setting all self-transitions to zero). More
specifically, if P (i → j) is the conditional probability
that state j is the next state observed after observing
state i, and ρi is the fraction of the time that the system
is observed in state i, then we can define our transition
flux via

Ti,j =


1
Z ρiP (i→ j) i 6= j

0 i = j
,

where

Z =
∑
i

∑
j 6=i

ρiP (i→ j). (I2)

4. Graph partitioning

To perform the graph partitioning of a given transi-
tion matrix, T , as displayed in Figure 3 and 4 of the
main text, we rely on the self-consistent Network In-
formation Bottleneck (NIB) method introduced in [24].
This approach, taking its inspiration from the informa-
tion bottleneck method [48], clusters a set of data points,
X, into a group of modules, Z, in a manner such that
the mutual information between X and Z is minimized
(maximally compressing the data), given that the loss
of mutual information between X and a third variable,
Y , is constrained to be below a prescribed value. Stated
more colloquially, one desires to pass the information
that X preserves about Y , usually referred to as a ”rele-
vance variable,” as reliably as possible despite having to
pass through a bottleneck, Z.

This can be achieved through minimizing the func-
tional, F = F0 − I(Y, Z) + 1

β I(X,Y ) with respect to
p(z ∈ Z|x ∈ X). Here, F0 is a constant that does not
depend on p(z|x) and β is a Lagrange multiplier that
is monotonically related to amount of information loss
allowed between X and Y . In practice, one solves this
by iterating through the Blahut-Arimoto algorithm (see
[24, 48] for details).

For our purposes, X is the set of all behavioral states
obtained through the methods described in the previous
section, Z is the set of modules, and Y is defined as the
state at which one finds a random walker on T (sym) (the
symmetrized version of T ) after τ time steps. Here, we
set τ to be the characteristic time scale of the transi-
tion matrix (the inverse of the second-largest eigenvalue
of T ). Accordingly, we can define p(y|x) ≡ exp(−Lτ),
where L is the graph Laplacian of T (sym), and p(x) is the
steady-state probability distribution from T (sym), which
is proportional to the eigenvector corresponding to the
matrix’s smallest non-zero eigenvalue. Starting with this
information, a random initialization for p(z|x), and a
pre-specified number of clusters, k, we solve the iterated
equations for a relatively small value of β. We then an-
neal the system by taking the output from the previous
iteration and starting a new iteration at a higher value
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FIG. 18. Probability density functions of positions in behavioral space conditional on belonging to a stereotyped behavior
(Left), or not belonging to a stereotyped behavior (Right). Note the drastic smoothing out of the landscape in the non-
stereotyped case.

TABLE II. Behavioral statistics for six species

Species # of States Visited % of Time Stereotyped Transitions / min
D. mauritiana 155 51.8 104.2
D. melanogaster 134 57.7 92.4
D. santomea 143 48.2 111.7
D. sechellia 154 47.8 110.7
D. simulans 157 42.6 106.9
D. yakuba 137 51.7 91.0

of β, using the previous p(z|x) as an initial condition.
Here, we start with β = 2 and anneal up to β = 1, 000,
stopping each iterative algorithm with a relative conver-
gence criterion of 10−6. The number of modules ranged
from 2 to 12, for 20 replicates each, keeping the solution
with the minimal value for F .

This still leaves us with determining the number of
modules in Z, however. To select this, we applied the
Newman-Girvan modularity measure [49],

Q(k) ≡ 1
m

∑
i,j

[
T

(sym)
i,j − γiγj

2m

]
δ(z(k)

i , z
(k)
j ), (I3)

where γi =
∑
j T

(sym)
i,j , m = 1

2

∑
i,j T

(sym)
i,j and z

(k)
i is

the community assignment of state i given k modules in
Z. We use the partition that corresponds to the maximal
value of Q(k) (Figs. 20 & 21).

Appendix J: Phase reconstruction and average
orbits

The postural modes oscillate with a well-defined fre-
quency for each non-resting stereotyped behavior (Fig.
24), implying, perhaps, that periodic changes in posture
are mapped to points in behavioral space. This occurs
even though the wavelet transform used to define the fea-
ture vectors does not preserve phase information. For ex-
ample, in the locomotion sequences we observed, we find
the postural eigenvalues oscillate regularly, with frequen-
cies ranging from 2 to 14 Hz (Figs. 24 and 23). These
frequencies are in good agreement with previous mea-
surements of the fly walking and running gaits [50, 51].

Mapping these projections onto the unit circle us-
ing a phase reconstruction algorithm [18], we construct
an average path through postural space (Fig. 24C-D).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2014. ; https://doi.org/10.1101/002873doi: bioRxiv preprint 

https://doi.org/10.1101/002873
http://creativecommons.org/licenses/by-nc-nd/4.0/


19

FIG. 19. Histograms of persistence times for a fly remain-
ing the stereotyped (blue) and transitional (red) states. Al-
though rare, events as long as 15 seconds were found in the
stereotyped state and are included within the last bin of the
stereotyped histogram.

FIG. 20. Modularity, Q, as a function of the number of in-
cluded clusters for the D. mauritiana transition matrix.

For phase reconstruction of periodic orbits, we use the
Phaser algorithm originally introduced in [18]. Phaser
takes a set of synchronized oscillators and uses the mea-
surements of these values to map measurement times
onto the unit circle. This algorithm works by using
Hilbert transforms to construct phase estimations from
each oscillator separately, then recombining to form
a maximum likelihood estimate utilizing Fourier-series
based corrections. Here, our coupled oscillators are the
postural eigenmode projections, yk(t). Accordingly, the
returned phase is a combined estimate from observing
all 50 modes at once. Given at least 7 oscillatory cycles,
this method provides a robust phase estimation in the
limit where dynamics are deterministic with only small
variations with respect to the mean trajectory.

We find oscillatory postural dynamics for other stereo-
typed behaviors, with each behavior resulting in a pe-
riodic orbit in postural space (Fig. 24E). Periodic or-

bits are suggestive of underlying low-dimensional dy-
namic attractors that produce stable behavioral tem-
plates. These types of motifs have been hypothesized
to form the basis for neural and mechanical control
of legged locomotion at fast time scales [4, 6]. The
large number of behavioral bouts that we observe for
each data set will allow future data-driven analyses of
the orbit stabilities and their dominant slow degrees of
freedom[18, 52].

From these phase reconstructions, we find the average
orbit through a von Mises distribution weighted aver-
age. More precisely, we construct the average orbit for
eigenmode k, µ(k)(φ) via

µ(k)(φ) =
∑
i

y
(k)
i

exp[κ cos(φ− φi)]∑
j exp[κ cos(φ− φj)]

, (J1)

where y(k)
i is the projection onto the kth eigenmode at

time point ti, φi is the phase associated with the same
time point, and κ is related to the standard deviation
of the von Mises distribution (σ2(κ) = 1 − I1(κ)

I0(κ)
, where

Iν(x) is the modified Bessel function of νth order). Here
we find the value of κ ≈ 50.3, which is the κ resulting in
σ = .1.

Appendix K: Calculating JS-divergences

To calculate the distance between our behavioral prob-
ability distributions (Fig. 4 of the main text), we rely
on the Jensen-Shannon divergence [25], defined via

DJS(p(~x)||q(~x)) =
1
2

[
DKL(p(~x)||m(~x)) +DKL(q(~x)||m(~x))

]
, (K1)

where p(~x) and q(~x) are probability distributions, DKL

is the Kullback-Leibler divergence and

m(~x) =
1
2

[
p(~x) + q(~x)

]
. (K2)

This quantity (bounded by zero and one) can be inter-
preted as the mutual information between draws out of
the mean distribution, m, and a binary string that is 1
if the draw is from p and 0 if from q. In other words,
this is a measure of distinguishability. If DJS(p||q) = 1,
this means that given a draw from m, it is possible to
precisely determine which of p or q it came from. As the
divergence approaches zero, the number of draws needed
to determine which distribution one is drawing from in-
creases monotonically.

Appendix L: Supplementary Movies

Movies available upon request at gber-
man@princeton.edu

Movie 1. Raw video data of a behaving fly (left) and
the corresponding segmented and aligned data (right).
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FIG. 21. Graph partitions of the D. mauritiana transition matrix (Figure 3A of the main text) as a function of the number
of modules included. Each color (arbitrarily ordered) represents a different module.

FIG. 22. Graph partitions based on the transition fluxes for each of the six species. Each color (arbitrarily ordered) represents
a different module. White holes represent states that were not observed in that particular species.

Movie 2. Dynamics in behavioral space. Raw video of a
behaving D. mauritiana (middle) is displayed alongside
coordinates of the fly’s position within the filming appa-
ratus (left) and its position in the embedded behavioral
space (right). The red circles represent the positions in
the appropriate coordinate system and the trailing lines
are the positions traversed in the previous .5 s. The light
blue shading indicates that a particular behavior is being
performed, and the blue text below the video of the fly
gives a coarse label for the behavior. The first portion of
the movie is 5 s, played at real time (indicated by “Real
Time” above the fly video), and the subsequent portion
of the movie is slowed down by a factor of 6 for clarity
(indicated by “Slowed 6×”).
Movies 3-10. Each movie is a mosaic of multiple in-

stances of specific regions in behavioral space as dis-
played in Fig. 25 and Table III. Every movie contains
multiple segments from each of the six examined species
(four examples per species). All films are slowed by a
factor of 4 for clarity.
Movies 11. Comparison between typical running gaits
for the three species of the D. simulans clade. Top:
composite movies for D. mauritiana, D. sechelia, and
D. simulans (slowed by a factor of 4). For each species,
the state chosen is the region containing the peak of the
PDF within the locomotion region (Fig. 4E). Note the
relatively fast gait for mauritiana, the slower gait seen in
simulans, and the subtle wing motions occurring during
the gaits of sechellia. Bottom: the region from which
the gaits are shown from each species.
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FIG. 23. Map of dynamics within locomotion module. A)
Map of the peak frequency of the wavelet transform as a
function of position (averaged over all modes). Note that
frequency monotonically decreases when going from left to
right along the region. B) Map of the fraction of power in
mode #2 for each region. Motion in mode #2 represents
posterior movements (see main text, Fig. 1B). Here, the
pattern goes from top to bottom.

FIG. 24. Behavioural space peaks are periodic orbits in postural space. (A) Projections onto the fourth (blue) and fifth (red)
postural eigenmodes during a running sequence. (B) Average normalized wavelet transform value over this sequence for each
of the two previous time series. (C) Fourth eigenmode projection values from (A) after being mapped onto the unit circle
via phase reconstruction (dots) and the average curve using Von Mises weighted averaging (line). (D) Same as (C) but using
the fifth eigenmode. (E) Plots of the phase-averaged curves for four different behavioral sequences. The inset displays the
respective regions of space associated with each of the curves (same color code).

TABLE III. Supplementary Movies

Movie Label
3 Left wing grooming
4 Wing flicking
5 Right wing grooming
6 Right leg flicking
7 Head grooming
8 Walking (non-tripod gaits)
9 Front legs grooming
10 Proboscis extension
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FIG. 25. Stereotyped behaviors shown in Movies 3 to 10. Black lines are the boundaries resulting from the watershed
segmentation described in Section I 2. Colored regions are the areas of behavioral space corresponding to the movies
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