
SUPPLEMENTARY NOTE

1. LD Score in an Unstructured Sample

1.1. Model. We model phenotypes as generated from the equation

(1.1) � = X� + ✏,

where � is an N⇥1 vector of (quantitative) phenotypes, X is an N⇥M matrix of genotypes normalized
to mean zero and variance one (we ignore the distinction between normalizing and centering in our
sample and in the population since the error so introduced has expectation zero and O(1/N) variance),
� is an M ⇥ 1 vector of per-normalized-genotype effect sizes and ✏ is an N ⇥ 1 vector of environmental
(or non-genotyped genetic) effects. We describe a model where all three variables on the right side of
equation 1.1 are random. In this model, E[✏] = 0 , Var[✏] = (1�h2

g)I, E[�] = 0 and Var[�] = (h2
g/M)I1.

To model genotypes, we assume that the genotype at variant j for individual i is independent of
other individuals’ genotypes, but we do incorporate linkage disequilibrium into the model: define
rjk := E[XijXik], which does not depend on i. Finally, we assume that X, � and ✏ are mutually
independent. We will relax the assumption that environmental effects are independent of genotype
when we model population stratification in §2.2.

1.2. Relationship between LD and �2-Statistics. For each variant j = 1, . . . ,M , we compute
least-squares estimates of effect size �̂j := XT

j �/N (where Xj denotes the N ⇥1 vector of genotypes at
variant j) and �2-statistics �2

j := N �̂2
j . In this section, we compute E[�2

j ] with the expectation taken
over random X, �, ✏.

Since E[�̂j ] = 0, observe that E[�2
j ] = N · Var[�̂j ]. We will obtain the variance of �̂j via the law of

total variance:

Var[�̂j ] = E[Var[�̂j |X]] + Var[E[�̂j |X]](1.2)
= E[Var[�̂j |X]],

where the second line follows from the fact that E[�̂j |X] = 0 irrespective of X. First,

Var[�̂j |X] =
1

N2
Var[XT

j � |X](1.3)

=
1

N2
XT

j Var[� |X]Xj

=
1

N2

 
h2
g

M
XT

j XXTXj +N(1� h2
g)

!
.

1This is the same assumption made in [1]. If one wishes to specify a different variance structure for the per-normalized-
genotype effect sizes, e.g., Var[�j ] = fj , then all results presented herein hold with normalized genotypes (Gij�2pj)/

p
fj

replacing the usual (Gij � 2pj)/
p

2pj(1� pj), where Gij denotes additively coded (0,1,2) genotypes.
1
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We can write the term on the left in terms of more familiar quantities as

(1.4)
1

N2
XT

j XXTXj =
MX

k=1

r̃2jk,

where r̃jk :=
1

N

NP
i=1

XijXik denotes the sample correlation between variants j and k. Define the LD

Score of variant j as

(1.5) `j :=
MX

k=1

r2jk.

Since
(1.6) E[r̃2jk] ⇡ r2jk + (1� r2jk)/N

(where the approximation sign hides terms of order O(1/N2) and smaller; one can obtain this approx-
imation via e.g., the �-method),

(1.7) E
"

MX

k=1

r̃2jk

#
⇡ `j +

M � `j
N

.

Thus,

E[�2
j ] ⇡

N(1� 1/N)h2
g

M
`j + 1(1.8)

⇡

Nh2
g

M
`j + 1,

Values of N considered in the main text generally fall between 104 and 105, so the approximation
1� 1/N ⇡ 1 is appropriate.

2. LD Score with Population Stratification

2.1. Model of Population Structure. We model population structure induced by genetic drift in
a mixture of two populations in equal proportions. We draw a matrix of normalized genotypes X
consisting of N/2 samples from population 1 and N/2 samples from population 2 (we will use the
notation i 2 Pm for m 2 {1, 2} to denote that individual i is a member of population m), subject to
the following constraints: Var[Xij ] = 1, E[Xij | i 2 P1] = fj and E[Xij | i 2 P2] = �fj . We model
the drift term f as f ⇠ N(0, FSTV ), where V is a correlation matrix and FST is Wright’s FST [2].
We postpone discussion of the off-diagonal entries of V (which might depend on LD in the ancestral
population or recombination rates) until §2.2. Finally, if `j,m denotes the LD Score of variant j in
population m, we assume that `j,1 ⇡ `j,2 =: `j . The last assumption warrants a brief explanation.
Assuming approximately equal LD Scores in both populations is certainly not reasonable for very large
values of FST (e.g., if population 1 and population 2 are from different continents) or in scenarios where
one population has passed through a more severe bottleneck than the other (e.g., if population 1 is
from Finland and population 2 is from West Africa). However, we are interested in modeling the
population stratification that may remain after principal components analysis2 in GWAS that sample
from non-admixed populations, and for this purpose the assumption that `j,1 ⇡ `j,2 seems reasonable,

2Including principal components as covariates in GWAS is equivalent to regressing PC-residualized phenotypes against
PC-residualized genotypes. PC-residualized genotypes will have more homogeneous LD structure than the raw genotypes.
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and is supported by the large values of R2(`j,m, `j,n) that we observe for all pairs (m,n) of 1000
Genomes European subpopulations.

For reference, typical values of FST for human populations are ⇡ 0.1 for populations from different
continents [2], ⇡ 0.01 for populations on the same continent [3], and < 0.01 for subpopulations within
the same country [4].

2.2. LD in a Mixture of Populations. Suppose j and k are unlinked variants such that rjk,1 =
rjk,2 = 0 and fj is independent of fk. In a mixture of populations, it will often hold that j and k
will be in LD in the whole population even if they are in equilibrium in both component populations.
Given fixed f ,

E[rjk | f ] = E[XijXik | f ](2.1)

=
1

2
(E[XijXik | f, i 2 P1] + E[XijXik | f, i 2 P2])

= fjfk.

If we take the expectation over random fj and fj , then E[rjk] = 0, because fj and fk are independent
with expectation zero. We can use equation 2.1 to compute the variance,

Var[rjk] = Var[E[rjk | f ]] + E[Var[rjk | f ]](2.2)
= E[f2

j f
2
k ] + 0

= E[f2
j ]E[f2

k ]

= F 2
ST .

Observe that since E[rjk] = 0, Var[rjk] = E[r2jk]. By equation 1.5, in a finite sample,

(2.3) E[r̃2jk] ⇡ F 2
ST + (1� F 2

ST )/N.

Thus the sample LD Score is approximately

E[˜̀j ] ⇡ `j +MF 2
ST +

M(1� F 2
ST )

N
(2.4)

⇡ `j +MF 2
ST +

M

N
.

Note that we have ignored the case where j and k are linked and Vjk 6= 0. In this case, E[f2
j f

2
k ] =

F 2
ST+2FSTV 2

jk (from the formula for the double second moments of a multivariate normal distribution).
Even if for some variants j, the number of variants k such that Vjk > 0 is ⇡ 103, this will make a
negligible difference in E[˜̀j ], because

P
k:Vjk>0

2FSTV 2
jk < 2000FST ⌧ MFST when M ⇡ 107.

2.3. Model of Stratified Phenotype. We model phenotypes as generated by the equation

(2.5) � = X� + S + ✏,

where X is as described in §2.1, � is as described in §1.1 and where we introduce an environmental
stratification term S, defined by

(2.6) Si :=

(
�s/2 i. 2 P1

��s/2, i 2 P2.
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Finally, ✏ is as described in §1.1, except Var[✏] = (1 � h2
g � �2

s), which assures that the variance of
� in the population is 1. Note that we have implicitly required that parameters be chosen such that
1� h2

g � �2
s � 0.

2.4. Relationship between LD and Stratified �2-Statistics. We compute �2-statistics as defined
in §1.1. In this section, we compute E[�2

j ] with the expectation taken over random X, �, ✏, f but with
S fixed to ensure population stratification. Since E[�̂j ] = 0, observe that E[�2

j ] = N ·Var[�̂j ]. We will
obtain the variance of �̂j via the law of total variance:

Var[�̂j ] = E[Var[�̂j |X]] + Var[E[�̂j |X]].(2.7)

Note that one can calculate f from X, so by conditioning on X we also implicitly condition on f .
Unlike in equation 1.2, E[�̂j |X] 6= 0, because of confounding from population stratification. The inner
portion of the first term on the right side of equation 2.6 is the same as in equation 1.3,

Var[�̂j |X] =
1

N2

 
h2
g

M
XT

j XXTXj +N(1� h2
g)

!
.(2.8)

We can take the expectation over random X, p, q, using the result from §2.2 that in a sample from a
two-way mixture of populations,

(2.9)
1

N2
E[XT

j XXTXj ] ⇡ `j +MF 2
ST +

M

N

Thus,

E[Var[�̂j |X]] =
1

N2

 
h2
g

M
E[XT

j XXTXj ] +N(1� h2
g)

!
(2.10)

⇡

h2
g

M
`j + h2

gF
2
ST +

1

N

Next, the inner portion of the second term on the right side of equation 2.6 is

E[�̂j |X] =
1

N
E[XT

j X� +XT
j S +XT

j ✏](2.11)

=
1

N
XT

j S

= f�s.

Since f has variance FST , Var[f�s] = �2
sFST . Thus,

E[�2
j ] = N ·Var[�̂j ](2.12)

Nh2
g

M
`j + 1 +NFST (�

2
s + h2

gFST ).

We can interpret the final term, NFST (�2
S + h2

gFST ), as NFST times the expected squared mean
difference in phenotype between populations, which has environmental component �2

s and genetic
component h2

gFST (if we model X, � and f as random, there is zero genetic stratification on expecta-
tion, but with some small variance about zero). Precisely, if we let �̄m denote the mean phenotype in



SUPPLEMENTARY NOTE 5

population m 2 {1, 2}, then

E[(�̄1 � �̄2)] = �2
s +

MX

j=1

E[�2
j ]

 
X

i2P1

E[X2
ij | i 2 P1] +

X

i2P2

E[X2
ij | i 2 P2]

!
(2.13)

= �2
s + h2

gFST .

Set a := E[(�̄1 � �̄2)2]. Then we have

(2.14) E[�2
j ] =

Nh2
g

M
`j + 1 + aNFST .
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