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Abstract— It has been shown that optimal controller synthesis
for positive systems can be formulated as a linear program.
Leveraging these results, we propose a scalable iterative algo-
rithm for the systematic design of sparse, small gain feedback
strategies that stabilize the evolutionary dynamics of a generic
disease model. We achieve the desired feedback structure by
augmenting the optimization problems with `1 and `2 regular-
ization terms, and illustrate our method on an example inspired
by an experimental study aimed at finding appropriate HIV
neutralizing antibody therapy combinations in the presence of
escape mutants.

I. INTRODUCTION AND MOTIVATION

A challenge inherent to the treatment of certain infectious
and non-infectious diseases, such as HIV or cancer, is the
risk that the pathogen or tumor will evolve away and become
resistant to treatment methods that comprise the standard of
care. Especially vulnerable to this phenomenon are treatment
methods that involve exposing the disease population (such
as viruses or cancer cells) to therapies targeting specific
molecules involved in disease progression for an extended
period of time. While these targeted therapies have the
benefit of allowing physicians to tailor treatments to a
patient’s tumor cell population, they nonetheless establish an
environment in which the occurrence of mildly drug resistant
pathogens or tumor cells can develop an evolutionary advan-
tage over those for which the therapy is targeted, leading to
so called ’treatment-escape’.

One of the solutions that has been proposed [1], [2] is
the rational design of combination therapy, an approach that
requires the identification of targets that are known to play
a key role in disease progression. An example of a multi
target therapy currently used for the treatment of chronic HIV
infection is highly active antiretroviral therapy (HAART),
which is comprised of a combination of antiretroviral drugs
that target specific enzymes involved during different points
of the infection cycle.

Recent results by Rosenbloom, et al. [1] have been more
quantitative in nature, modeling the evolutionary dynamics
of HIV and showing through simulations how the effect of
antiretroviral dynamics can determine HIV evolution and
therapy outcome. The Michor lab [2] recently showed the
effects of different erlotinib dosing strategies in the presence
of pharmacokinetic fluctuations on the evolution of resistance
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of non small cell lung cancer through simulations of a
stochastic evolutionary dynamics model.

Although these methods have provided some insight into
the problem, the challenge of designing treatment protocols
that prevent escape is one that has been more recently
addressed by control theoretic methods. For cancer therapy,
results in this spirit apply methods from optimal and receding
horizon control [3], [4], as well as gain scheduling [5], to
synthesize treatment protocols that are robust to parameter
uncertainty, an inherent issue in all biological systems. In
the context of HIV and antiretroviral therapy, the authors in
[6] propose a discrete time formulation that allows for the
design of switching therapy strategies to delay the emergence
of highly resistant mutant viruses.

In [7], we introduced a general algorithm that used an H∞
approach for the principled design of targeted combination
therapy concentrations that explicitly account for the evolu-
tionary dynamics of a generic disease model. This algorithm
was effective in generating robustly stabilizing controllers,
however it suffered from an inherent lack of scalability symp-
tomatic of semidefinite programming formulations. Here,
we propose a scalable solution to the combination therapy
problem by reformulating it as a second order cone program
(SOCP).

We also address the requirement that the synthesized
controller be not only robust to unmodeled dynamics but
also exhibit sparse structure and small feedback gains. This is
motivated by the fact that the number of therapies commonly
used in combination to treat a disease is often small while the
number of potential usable therapies are often very large [8].
Targeted therapies such as small molecule drugs or antibodies
exhibit a maximum effective concentration beyond which
side effects are likely to worsen and no additional drug
benefits are seen.

In particular, through `1 and `2 regularization, we induce
sparse structure in the feedback controller while bounding
the magnitude of the feedback gains. This leads to a SOCP
formulation of the combination therapy synthesis problem.
The main contribution of this paper is a scalable algorithm
for the systematic design of sparse, small gain feedback
strategies to stabilize the evolutionary dynamics of a generic
disease model.

The article is structured as follows: In Section II, we re-
call the extended quasispecies evolutionary dynamics model
that encodes replication, mutation and neutralization and
summarize relevant results in controller design of positive
systems. In Section III, we present our L1 combination
therapy synthesis algorithm. Section IV illustrates our al-
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gorithm in the context of an HIV antibody therapy design
problem previously studied in an experimental setting [9].
In this section we also compare performance and scalability
properties of our L1 algorithm and the previously developed
H∞ algorithm [7] . Section V ends with concluding remarks
and directions for future work.

II. PRELIMINARIES

A. Notation

R+ denotes the set of nonnegative real numbers. The
inequality X > 0, (X ≥ 0) means that all elements of
the matrix or vector X are positive (nonnegative). X � 0
means that X is a symmetric and positive definite matrix.
The matrix A ∈ Rn×n is said to be Hurwitz if all eigenvalues
have negative real part. Finally, the matrix is said to be
Metzler if all off-diagonal elements are nonnegative. Define
1n to be the vector of all ones of dimension n. The induced
matrix norm for a matrix M ∈ Rr×m is

‖M‖p−ind = sup
w∈Rm

|Mw|p
|w|p

where |w|p = (|w1|p + + |wm|p)1/p. Let G(s) = C(sI −
A)−1B + D be a r × m matrix transfer function. The
induced norms of the corresponding impulse response g(t) =
CeAtB +Dδ(t) are

‖g‖p−ind = sup
w

‖g ∗ w‖p
‖w‖p

for w ∈ Lpm[0,∞), given that g ∗ w ∈ Lrp[0,∞) is the
convolution of g and w. Finally we refer to the ∞-induced
robust controller as the L1 controller as is customary in the
robust control literature.

B. Problem formulation

The quasispecies model [10] was originally developed
to describe the dynamics of populations of self replicat-
ing macromolecules undergoing mutation and selection. We
choose this model for its relative simplicity and its ability to
capture the salient features of the evolutionary dynamics of
a simplified generic disease model. In [7] we incorporated
the effects of potential therapies into the basic quasispecies
model, by defining a drug binding reaction, `+ x KA−−→ ` · x
— drug ` binds to self replicating macromolecule x with
association rate KA, giving a neutralized complex ` · x. The
extended quasispecies model for n mutants and m drugs, is
written as:

ẋi = (riqii − di)xi +
n∑
k 6=i

riqikxk −
m∑
k=1

ψki`kxi (1)

where xi ∈ R+ is the concentration of mutant i, `k ∈ R+

is the drug concentration (assumed to remain at constant
concentrations throughout), ri and di are the replication
and degradation rates, respectively, of mutant i, and qik is
the probability that mutant k mutates to mutant i. Finally,
ψki = f(Kki) is a function of the association constant
Kki for each neutralization reaction representing the rate at

which a neutralizing macromolecule `k neutralizes mutant
i. The rates ri and ψki can be viewed as replication and
neutralization fitnesses of mutant i. When `k = 0,∀k ∈
{1, ...,m}, the quasispecies dynamics are unstable.

The following state space representation of equation (1)
emphasizes the inherent feedback structure that arises from
drug binding reactions:

ẋ = (A−ΨL)x+ w
z = Cx

(2)

with (i) A ∈ Rn×n, with Aij = riqij ≥ 0 ∀ i 6= j and
Aii = riqii − di, that encodes the mutation and replication
dynamics; (ii) Ψ ∈ Rn×nm a block diagonal matrix that
describes the fitness of n mutants with respect to m different
drugs, with diagonal elements Ψi = (ψki) ∈ R1×m

+ ; (iii)
L = (I⊗`) ∈ Rmn×n+ , with ` = (`k) ∈ Rm, a block diagonal
matrix that encodes the concentrations of drugs for all n
mutants; (iv) C = [1n L

T ]T ∈ R(mn+1)×n; and (v) w ∈ Rn+
an arbitrary positive disturbance. Note that ΨL ∈ Rn×n+ is
by construction a diagonal matrix.

We set the regulated output z = [z1 z2]T = Cx where
z1 = x1 + · · ·+xn minimizes the total virus population and
z2 = Lx serves as a proxy to minimizing the concentration
of drugs needed to robustly stabilize the system.

Remark 1: A is a Metzler matrix with off-diagonal entries
that are several orders of magnitude smaller than the diagonal
entries. This is due to the biological fact that mutation
rates range from 10−5 − 10−9 mutations per base pair per
replication cycle for reverse transcriptase to DNA replication.

Letting G denote the closed loop system (2), the control
task then becomes to design drug concentrations ` by finding
a controller L = (I ⊗ `) that leads to a stable G satisfying
||G||∞−ind < γ, for some robustness level γ > 0.

C. Linear programming controller synthesis for positive sys-
tems

Our previous work [7] provided a semi definite program
(SDP) formulation to synthesize H∞ controllers that stabi-
lize the evolutionary dynamics of a generic disease model as
described by the extended quasispecies model. One feature
of our system was its internal positivity, which allowed us
to restrict the storage function matrix used in the bounded
real lemma to be strictly diagonal [11] [12]. Although this
reduced the number of decision variables in the SDP, it
was not enough to offset the inherent lack of scalability
of semidefinite programming. Scalability is an important
consideration when designing combination therapies where
the number of possible mutants can be large, such as for the
treatment of chronic HIV infection. Recent results [12],[13]
on the synthesis of controllers for positive systems show that
the design of structured static state feedback controllers for
internally positive systems can be reformulated as a convex
problem with methods that scale linearly with the number of
non zero elements in the feedback matrix. In this section we
provide a brief survey of the relevant definitions and results
from [13]:

Theorem 1: For the system:
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ẋ = (A+ ELF )x+Bw
z = (C +GLF )x+Dw

(3)

let D be the set of m×m diagonal matrices with entries in
[0,1]. Suppose that A+ELF is Metzler and C +GLF ≥ 0
for all L ∈ D. Let g(t) be the impulse response of

G(s) = (C +GLF )[sI − (A+ ELF )]−1B +D

If the matrices B,D and F have non-negative coefficients,
then the following two conditions are equivalent:

1) There exists an L ∈ D with A + ELF Hurwitz and
‖g‖∞−ind < γ.

2) There exists a ξ ∈ Rn+, µ ∈ Rm+ with

Aξ + Eµ+B1 < 0

Cξ +Gµ+D1 < γ1

µ ≤ Fξ

If ξ, µ satisfy the linear constraints 2) then the stability and
norm guarantees of 1) hold for every L such that µ = LFξ.

Input-output performance is characterized using induced
norms which are determined by the closed loop system’s
static gain:

Theorem 2: For an r×m transfer matrix G(s) = C(sI−
A)−1B+D, let g(t) = CeAtB+Dδ(t) be the corresponding
impulse response, where CeAtB ≥ 0 for t ≥ 0 and D ≥ 0,
with A Hurwitz. Then ‖g‖p−ind = ‖G(0)‖p−ind for p = 1,
p = 2 and p =∞.

The positive nature of the system allows us to restrict
ourselves to linear storage functions, which in turn allows
for sparse structure to be imposed on the feedback gain [12].
Our feedback gain L = I ⊗ ` is not only structurally con-
strained to be block diagonal, but algebraically constrained
as well, in that all block diagonal components must be equal.
Unfortunately, there is no known convex reformulation for
this additional constraint.

D. Regularization for structured controller synthesis

The biomedical justification for wanting a simple con-
troller structure with small gains is twofold: first, the number
of therapies that can be used simultaneously to treat a disease
is often limited, and second to minimize side effects, it is
desirable to keep the magnitude of drug concentrations small
while being robust to evolution. These design specifications
can be expressed with the use of regularization, a common
technique used in machine learning and inverse problems for
model identification [14], [15], [16], [17] and increasingly
used for controller design [18], [19], [20], [21]. As such,
we introduce `1 and `2 penalties in our design objective to
promote controller sparsity and minimize controller gains.

We combine these regularization techniques with con-
troller synthesis results for positive systems and present an
iterative algorithm that yields a suboptimal L1 controller.
This formulation of the combination therapy problem allows
the designer to explore explicit trade offs between closed

loop performance, sparsity in controller structure and gain
minimization.

III. A SUB-OPTIMAL L1 COMBINATION THERAPY
CONTROLLER

In this section, we address the aforementioned non-
convexity of the optimal control problem by formulating an
iterative algorithm for finding effective drug concentrations.
Our main result addresses the issue of synthesizing a sta-
bilizing controller subject to the constraints imposed by the
quasispecies model (2), with acceptable robustness properties
characterized in terms of its ∞-induced closed loop norm.

A. Initializing stabilizing controller

We begin by synthesizing a stabilizing controller to use
as an initial controller in our iterative algorithm, as noted
in Remark 5. We recall a simple algorithm developed in [7]
for the synthesis of a stabilizing controller, which admits a
particularly simple formulation in light of the Metzler nature
of A and the diagonal structure of ΨL.

Lemma 1: There exists ε > 0 such that the solution to
the convex program:

minimize
`∈Rm

+

||`||∞

subject to
Ad + εI −ΨL ≺ 0
L = I ⊗ `

(4)

is a stabilizing controller for system (2), where Ad ∈ Rn×n+

is a diagonal matrix such that (Ad)ii = (A)ii where A is the
replication and mutation matrix in equation (2).

Remark 2: The resulting LMI is strictly diagonal, and so
reduces to an LP.

Proof: Rewrite A = Ad + M where Ad is diagonal
and M = {mij} ∈ Rn×n, mij = 0 for i = j and
mij > 0 for i 6= j. By the Perron Frobenius theorem,
there exists r > 0 such that the spectral radius ρ(M) =
r ≤ maxi

∑
mij . Let ε = maxi

∑
mij and rewrite M =

εI − (εI −M). We note that −(εI −M) ≺ 0. The closed
loop dynamics are then given by A−ΨL = Ad+ εI− (εI−
M)−ΨL ≺ Ad+εI−ΨL ≺ 0, yielding the desired stability.

B. A Suboptimal L1 combination therapy controller

Observe that through a straightforward application of
Theorem 2, with B = I, C = [1n L

T ]T , D = 0, E =
−Ψ, F = I to system (1), solving the following non-convex
program:

minimize
`∈Rm

+ ,x∈Rn
+

‖Cx‖∞ + λ1‖`‖1 + λ2‖`‖2

subject to
Ax+Kx+ 1 ≤ 0
K = ΨL
L = I ⊗ `
x ≥ 0

(5)
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will yield a sparse combination of drug concentrations `,
yielding an optimal ∞-induced closed loop norm for appro-
priately chosen regularizers λ1 ≥ 0, λ2 ≥ 0 ∈ R.

Remark 3: We can impose an additional constraint limit-
ing the concentrations of candidate therapies. This is neces-
sary with certain drugs that have maximum tolerated doses
dictated by clinical trials.

As mentioned earlier, there are no known convex refor-
mulations of this problem due to the additional structure on
L. As such, we suggest the following iterative algorithm,
based on the convex programs (6) and (7), to find a stabi-
lizing controller. For notation, let Y = PZ(x, γ) denote an
optimization problem P in which we optimize over x and γ
leaving Z fixed and with solution Y .
Program 1. P1`(x, γ) :

minimize
γ,x∈Rn

+

γ

subject to
Ax+ ΨLx+ 1 ≤ 0
L = I ⊗ `, C = [1n L

T ]T

x ≥ 0
γ ≥ ‖Cx‖∞

(6)

Program 2. P2(x,λ1,λ2)(`, γ)

minimize
γ,`∈Rm

+

γ + λ1‖`‖1 + λ2‖`‖2

subject to
Ax+ ΨLx+ 1 < 0
L = I ⊗ `, C = [1n L

T ]T

γ ≥ ‖Cx‖∞

(7)

We now present our algorithm:

Algorithm 1 Scalable Combination Therapy
1) Set ε > 0.
2) Solve for initial stabilizing controller `′:

Solve (4) to obtain controller `0.
Set (x′, γ) = P1`0(x, γ).
Set (`′, γ) = P2(x′,0,0)(`, γ).

3) Find (λ′1, λ
′
2, `) that minimize γ:

∀(λ1, λ2) ∈ Λ1 × Λ2,Λ1,Λ2 ∈ Rk+,
while γ′ − γ > ε :

Set (x′, γ) = P1`′(x, γ).
Set (`′, γ) = P2(x′,λ1,λ2)(`, γ).
Set γ′ = γ.

Remark 4: The sequence of γ’s defined by the iterative
process in Algorithm 1 is non increasing by construction,
and bounded below by 0, thus implying convergence. An
initial stabilizing controller can always be found as shown
in [7], and thus the algorithm can always be initialized.
We therefore have that our algorithm always converges to
a feasible, local minimum robustness value γ, generating a
stabilizing controller for (2).

Remark 5: In practice, we note that the L1 controller
suffers from dependence on initial conditions and converges

to local optima quickly, yielding a stabilizing controller with
robustness properties that are not significantly different from
the nominal controller. A solution to this is to iterate once
through P1 and P2, with λ1 = λ2 = 0 and initialize the
algorithm with the resulting controller.

Remark 6: Due to the presence of the `2 regularizer, P2
and (5) are SOCPs and not linear programs. As it will be
clearly demonstrated in the example in the next section, this
is still more efficient than the SDP combination therapy
algorithm from [7]. In addition, the second order cone
constraint is only on the drug concentrations so it should
have minimal effect on performance, given that the number
of antibodies is small compared to the number of mutants.

IV. HIV/ANTIBODY THERAPY APPLICATION

Our results provide a principled approach to the design
of antibody treatments for chronic infection with human
immunodeficiency virus-1 (HIV-1). We illustrate this with an
example motivated by experimental results of evolutionary
dynamics of HIV-1 in the presence of antibody therapy
obtained in [9].

A relatively recent discovery is that a minority of HIV-
infected individuals can produce broadly neutralizing anti-
bodies (bNAbs), that is, antibodies that inhibit infection by
many strains of HIV [22]. These have been shown to inhibit
infection by a broad range of viral isolates in vitro but also
protect non-human primates against infection [22],[23], [24].
Recent experimental results conducted in the Nussenzweig
lab at Rockefeller University have demonstrated that the use
of single antibody treatments can exert selective pressure on
the virus, but escape mutants due to a single point mutation
can emerge within a short period of time [9]. Although
antibody monotherapy did not prove effective, it was shown
that equal, high concentrations of an antibody pentamix
effectively control HIV infection and suppress viral load
to levels below detection. The goal of this example is to
demonstrate how our proposed algorithm offers a principled
way to design combination antibody therapies that control
HIV infection and prevent evolution of any set of known
resistant mutants. In a realistic setting, the ability to do
this relies on the knowledge of what resistant viruses may
be selected for with single therapies, and so this algorithm
would be most effective in conjunction with single antibody
selection experiments.

1) Model parameters: We consider a system of eighteen
to thirty five HIV mutants with five potential antibodies to
use in combination. Figure 5 lists the mutants that evolved
from monotherapy experiments with their corresponding half
maximal inhibitory antibody concentration (IC50) in µg/ml,
as measured by the Nussenzweig lab in [9]. Antibodies
3BC176, PG16, 45-46G54W, PGT128 and 10-1074 are po-
tential combination therapy candidates.

Although virus replication rates can vary considerably
depending on the nature of the mutations a virus may
undergo, we choose replication rates to be 0.5 (ml · day)−1

for all mutants. We justify this selection by noting that
escape mutants grew to be dominant mutants during selection
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Fig. 1. The graphs depict the average of thirty simulations subject to
random time invariant perturbations of 5.5 % in the plant dynamics found
with the H∞ and L1 combination therapy algorithms for evolutionary
dynamics of the first 18 point mutants in Figure (5). (Left) Full support
controllers synthesized with the pentamix of antibodies available: 3BC176,
PG16, 45-46G54W, PGT128 and 10-1074 and (Right) Sparse controllers
synthesized with only two antibodies 45-46G54W and PGT128.

experiments and assume that replication rate variability due
to mutations were negligible.

The fitness function associated with the neutralization of a
virus i with respect to an antibody j is a Hill function ψij =

`nj
`nj +K

n
ij

where n is the Hill coefficient, `j is the concentration

of a given antibody j, and Kij = kon
koff

=
[xi`j ]
[xi][`j ]

is the
association constant for the virus/antibody binding reaction
`j + xi

kon−−→ `j · xi, and kon and koff are the on and off
reaction rate constants. Note that the association constant
represents the fraction bound of antibody/virus complexes in
solution and that Kij =

3·IC50ij
3ri+ln(2)−IC50ij

, is found by solving
Equation (1) for one virus/antibody pair for the duration
[t0, tf ] = [0, 3]. We simplify the Hill function by setting
the Hill coefficient n = 1, as there is evidence that that
antibodies do not bind cooperatively. Our algorithm yields
antibody concentrations near zero and this yields the linear
approximation ψij = 1

Kij
`ij . In addition, the antibodies we

consider in our example do not target the same epitope, in
other words, do not bind competitively to the same sites on
the virus, thereby reducing any coupling between antibody
concentrations.

2) Mutation process: The mutation rate for HIV reverse
transcriptase is u = 3 × 10−5 mutations/nucleotide base
pair/replication cycle, and the HIV replication cycle is ap-
proximately 2.6 days. We approximate the rate of mutation
for a particular amino acid mutation at a particular location
to be 1

na
u(1 − u)k = 1.443 × 10−6 per replication cycle,

where k ≈ 3000 is the size of the genome in residues and
na = 19 is the number of amino acids that can be mutated
to. Our model supports forward point mutations and two
point mutations. We do not consider back mutations, as the
probability of mutation is negligible. Units of concentration
in number of viruses/ml or number of antibodies/ml are used
for states, and time is measured in days. The standard volume
is 1 ml.

A. A comparison between H∞ and L1 controllers

We seek to provide a qualitative comparison between
controllers synthesized using the scalable L1 and the H∞
algorithms. To do this, we adapt the formulation in [7]
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Fig. 2. The graph depicts the average H∞ (left) norm and∞− ind norm
as a function of the sparsity of controllers found using either the H∞ or
L1 combination therapy algorithms.

to include `1 and `2 regularization terms and solve the
following non convex problem using our iterative algorithm.

minimize γ + λ1‖`‖1 + λ2‖`‖2
subject to[
ATclX +XAcl + CTC X

X −γ2I

]
≺ 0

Acl = (A−ΨL)
C = [1TLT ]T

L = I ⊗ `
X � 0, X diagonal

(8)

We synthesized a nominal stabilizing controller using (4),
a robust controller that minimizes the H∞ closed loop norm
using (8), and a robust controller using (7) that minimizes
the L1 closed loop norm for the evolutionary dynamics
of the eighteen HIV point mutants listed in Figure 5. We
found similar gains and robustness properties for both sparse
and full controllers using either algorithm with the notable
difference seen in computational time. Not surprisingly, the
L1 algorithm has far superior performance, beating the
runtime for the H∞ synthesis algorithm by four orders of
magnitude.

We averaged thirty simulations of closed loop evolu-
tionary dynamics subject to 5.5% random time invariant
perturbations in the plant dynamics using both sparse and
full support H∞ and L1 controllers. The sparse controller
found by the L1 algorithm performed better than the one
found by H∞ algorithm, whereas the situation was reversed
for the respective synthesized full support controllers. As
previously mentioned, the motivation for generating sparse
controllers for combination therapy is that number of ther-
apies commonly used in combination to treat a disease is
often limited for clinical reasons. Therefore, the potential
for the L1 algorithm to synthesize controllers that are not
only sparse but more robustly stable than H∞ algorithm is
a desirable feature.

Figure 2 shows the relationship between gain sparsity and
both H∞ and ∞-induced norms in the synthesis of H∞
and L1 controllers. Although closed loop H∞ norms remain
constant with respect to sparsity for both controllers, the
closed loop ∞-induced norm decreases with sparsity with
the suggesting that the L1 synthesis algorithm, as expected,
finds better performing sparse controllers.

We note that due to computational limitations, we were
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not able to synthesize controllers using the H∞ algorithm
for the full set of thirty five mutants from Figure 5.

B. L1 controller synthesis, full HIV example

We synthesized a nominal stabilizing controller using (4)
comprised of an antibody pentamix (0.4687,0.7815, 0.6129,
0.6279, 0.8831) µg/ml of (3BC176, PG16, 45-46G54W,
PGT128, 10-1074), and a robust controller using (8) that
consisted of antibody trimix (0.6891,0.6712,1.0706) µg/ml
of (3BC176, 4546-G54W, PGT128). These both were gen-
erated for the evolutionary dynamics of the full, thirty five
HIV mutants listed in Figure 5.

Both antibody pentamix (stabilizing) and trimix (robustly
stabilizing) controllers have similar gains and based on a
cursory first glance, one might be tempted to believe these
have comparable robustness properties. Indeed, for some
simulations of the closed loop dynamics subjected to 5%
random time invariant perturbations in plant dynamics, the
nominal controller is stabilizing as seen in Figure 3. This
is qualitatively consistent with the experimental results done
in by the Nussenzweig lab in [9]. It was shown that with
weekly injections of equal concentrations of the antibody
pentamix holding concentrations constant, had viral loads
that remained below the limit of detection during an entire
treatment course in mice.

In [9] again, an antibody trimix of equal concentrations of
3BC176, PG16 and 45-46G54W was suggested and experi-
mentally shown to produce a decline in the initial viral load.
However, a majority of mice in the experimental study had a
viral rebound to pre-treatment levels, suggesting that in these
cases, the virus had evolved mutations that were resistant to
the trimix treatment. To compare the performance of our L1

synthesized controller with gains of (0.6891,0.6712,1.0706)
µg/ml of (3BC176, 4546-G54W, PGT128) to the exper-
imentally studied trimix, we chose equal concentrations
of (3BC176, PG16, 45-46G54W), namely (1, 1, 1) µg/ml
for the experimentally derived trimix. We found that even
though total antibody concentrations were larger in our
version of the experimental trimix, the robustly stabilizing
controller synthesized by the L1 algorithm nonetheless per-
formed overall better; the closed loop norms were ‖G‖∞ =
0.2941 and ‖G‖∞−ind= 0.6533 for the L1 controller versus
‖G‖∞=0.26433 and ‖G‖∞−ind=0.74572 for the experimen-
tal trimix.

These simulations demonstrate that although many stabi-
lizing solutions to the combination therapy problem exist,
the best ones are found when design parameters such as a
sparsity, limits on the magnitude of gains, and robustness
guarantees are simultaneously considered. Experimentally
searching for these combinations is infeasible as the number
of potential therapies and possible concentrations to consider
is experimentally intractable. We propose to guide these ex-
perimental activities with our ability to design and synthesize
combination therapy controllers. As such, one could generate
a family of controllers based on ”design specifications”
tailored not only the (viral or cellular) composition of the
disease, but to explore tradeoffs between number of therapies
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Fig. 3. Sum of virus populations subject to random time invariant
perturbations of 5% in the dynamics for 30 different simulations for
(left) a stabilizing closed loop controller comprised of antibody pentamix
(0.4687,0.7815, 0.6129, 0.6279, 0.8831) µg/ml of (3BC176, PG16, 45-
46G54W, PGT128, 10-1074) synthesized using the convex program (5) and
(right) a robustly stabilizing closed loop controller comprised of antibody
trimix (0.6891,0.6712,1.0706) µg/ml of (3BC176, 4546-G54W, PGT128)
synthesized using the L1 combination therapy algorithm.

used (sparsity), therapy concentrations (magnitude of the
gain) and ability to support pharmacokinetic fluctuations
(robustness to perturbations) and subsequently verify these
experimentally.

V. CONCLUSION AND FUTURE WORK

Leveraging recent results in positive systems, we pro-
posed a scalable SOCP based iterative algorithm for the
systematic design of sparse, small gain feedback strategies
that stabilize the evolutionary dynamics of a generic disease
model. Through the addition of `1 and `2 regularization
terms to the objective function, we achieved the desired
feedback structure. In future work, we plan to explore a
principled integration of our methods with recent results on
the robust L1 stability of positive systems [25]. In particular,
we hope to explicitly account for model error introduced due
to model linearization, parametric uncertainty and unmodeled
dynamics due to drug interactions.
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