Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly

Giuseppe Narzisi1, Jason A. O’Rawe2,3, Ivan Iossifov1, Han Fang2,3, Yoon-ha Lee1, Zihua Wang1, Yiyang Wu2,3, Gholson J. Lyon2,3, Michael Wigler1, and Michael C. Schatz1

1Simons Center for Quantitative Biology, One Bungtown Road, Cold Spring Harbor Laboratory, NY, USA, 11724
2Stanley Institute for Cognitive Genomics, One Bungtown Road, Cold Spring Harbor Laboratory, NY, USA, 11724
3Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, USA, 11794

Abstract
We present a new open-source algorithm, Scalpel, for sensitive and specific discovery of INDELs in exome-capture data. By combining the power of mapping and assembly, Scalpel searches the de Bruijn graph for sequence paths (contigs) that span each exon. The algorithm creates a single path for exons with no INDEL, two paths for an exon with a heterozygous mutation, and multiple paths for more exotic variations. A detailed repeat composition analysis coupled with a self-tuning k-mer strategy allows Scalpel to outperform other state-of-the-art approaches for INDEL discovery. We extensively compared Scalpel with a battery of >10000 simulated and >1000 experimentally validated INDELs between 1 and 100bp against two recent algorithms for INDEL discovery: GATK HaplotypeCaller and SOAPindel. We report anomalies for these tools in their ability to detect INDELs, especially in regions containing near-perfect repeats which contribute to high false positive rates. In contrast, Scalpel demonstrates superior specificity while maintaining high sensitivity. We also present a large-scale application of Scalpel for detecting de novo and transmitted INDELs in 593 families with autistic children from the Simons Simplex Collection. Scalpel demonstrates enhanced power to detect long (≥20bp) transmitted events, and strengthens previous reports of enrichment for de novo likely gene-disrupting INDEL mutations in children with autism with many new candidate genes. The source code and documentation for the algorithm is available at http://scalpel.sourceforge.net.

Introduction
Enormous advances in next-generation sequencing technologies and computational variation analysis have made it feasible to study human genetics in unprecedented detail. The analysis of Single Nucleotide Variations (SNVs) has become a standard technique and high quality software is available for discovering SNVs with high confidence [1,2]. However, the same level of performance and reliability is not yet available for detecting of Insertions and Deletions in DNA sequences (INDELs) [3]. INDELs are the second most common sources of variation in human genomes and the most common structural variant [4]. Many INDELs map within human genes at functional loci, and have been shown to influence many human traits and diseases by
introducing frame-shifts or otherwise interrupting the protein coding sequence. When located within microsatellites (simple sequence repeats, SSRs, of 1 to 6bp motifs), INDELs typically alter the length of the repeat motif and have been linked to more than 40 neurological diseases in humans [5]. INDELs have been also shown to have an important genetic component in autism spectrum disorders [6]: de novo INDELs that are likely to severely disrupt the encoded protein are significantly more abundant in affected children than in their unaffected siblings.

Although INDELs play such an important role in human genetics, detecting them within next-generation sequencing data is still problematic for several reasons: (1) reads overlapping the INDEL sequence are more difficult to map [7] and reads supporting INDEL events may be aligned with multiple mismatches rather than with a gap; (2) irregularity in capture efficiency near the edges of the coding region and non-uniform read distribution across the target region increase the number of false positives called at these sites in whole exome data; (3) increased error rates makes detection of INDELs very difficult within microsatellites; and, as shown in this study, (4) the presence of localized, near identical repetitive sequences can confound the analysis, creating a high rate of false positives. For these and other reasons, the size of INDELs detectable by available software tools has been relatively small, rarely more than a few dozen base pairs [8]. Consequently, our understanding of INDEL origins and functional effects lags behind SNVs.

Two major paradigms are currently used for detecting INDELs in next-generation sequencing data. The first and most common approach is to map all of the input fragments to the reference genome using any of the available read mappers (BWA, Bowtie, Novoalign, etc.). Mutations are then revealed by differences between the reference and the reads mapped any particular location, although the available algorithms are not as effective for mapping across INDELs of more than a few bases. Advanced approaches exploit the information in paired-end reads to perform local realignments to detect longer mutations, e.g., GATK UnifiedGenotyper [1, 2] and Dindel [9]. In principle, these methods can identify INDELs of up to half of the size of the read length, although in practice their sensitivity is greatly reduced for variants of more than 20bp. Split-read methods, such as Pindel [10] and Splitread [11], can theoretically find deletions of any size, but their power is limited by the short read length of current next-generation sequencing technologies and suffer the same drawbacks of mapping approaches for long insertions.

The second paradigm consists of performing de novo whole-genome assembly of the input reads. Variations are then detected by computing differences between the assembled contigs and the reference genome [12,13]. This paradigm has the potential to detect larger mutations since it is unbiased by the reference sequence, but in practice is less sensitive: whole-genome sequence assemblers have been designed with the goal of reconstructing the high level structure of a genome, while detecting structural variations requires a fine-grained and localized analysis of the sequence composition to report homozygous and heterozygous mutations.

Recently, three approaches have been developed that use de novo assembly specifically for variation discovery: GATK HaplotypeCaller, SOAPindel [14] and Cortex [15]. According to the GATK documentation (http://www.broadinstitute.org/gatk/), the HaplotypeCaller calls SNPs and
INDELs simultaneously via local de novo assembly of the haplotypes. Although this is the recommended tool for using the GATK software package, the methodological details have not been published and remain unknown. SOAPindel is the variation caller from the Short Oligonucleotide Analysis Package (SOAP). Our new method shares some similarity with this algorithm, although it differs in several important ways to enhance sensitivity and specificity of the results (see Methods for details). Cortex is a de-novo sequence assembler that uses colored de Bruijn graphs for detecting and genotyping simple and complex genetic variants in an individual or population. However Cortex was tailored for whole-genome sequencing data and not demonstrated to account for the wide coverage fluctuations in exome-capture data. Thus, it is not used for comparison in this paper. Finally, another recently proposed approach, TIGRA [16], also uses localized assembly, but it has been tailored for the task of detecting breakpoints, without reporting the INDEL sequence. Similar to our method, TIGRA uses a targeted graph assembly strategy; however, it differs from Scalpel in several technical details (see Online Methods for details).

We present a novel DNA sequence micro-assembly pipeline, Scalpel, for detecting INDELs within exome-capture data (Fig. 1). By combining the power of mapping and assembly, Scalpel searches for sequence paths (contigs) that span each exon. The assembler creates a single path for exons with no INDEL, two paths for exons with a heterozygous mutation, and multiple paths for more exotic variations. For example, if the sample has an insertion in just one of the two haplotypes, the assembler would discover the INDEL and also the unmodified reference sequence. After the sequences are assembled, they are aligned to the reference exon using a sensitive gapped sequence aligner to identify variants. Thanks to this approach, Scalpel is able to accurately discover and validate larger and more complex mutations with increased power compared to standard mapping methods. Moreover, the algorithm includes an on-the-fly analysis of the repeat composition of each exon, coupled with a self-tuning k-mer strategy, which allows Scalpel to outperform current state-of-the-art approaches for INDEL discovery in exons with complex repeat structure.

We extensively compared Scalpel with >10,000 simulated and >1,000 experimentally validated INDELs between 1 and 100bp against GATK HaplotypeCaller and SOAPindel. We report anomalies for these tools in the ability to detect INDELs, especially in regions containing near-perfect repeats, which leads to a high false positive rate. In contrast, Scalpel demonstrates superior specificity while maintaining high sensitivity without bias towards insertions or deletions. We also present a large-scale application of Scalpel to analyze de novo and transmitted INDELs in 593 (2372 individuals) families with autistic children from the Simons Simplex Collection [17]. We demonstrate more power to detect long transmitted events, and confirm a strong enrichment for de novo gene disrupting INDEL mutations in children with autism, and we identify many new candidates.
Results

Experimental validation of variants in one single exome

It is now established that standard mapping methods have reduced power to detect large (≥20bp) INDELs [14, 15] and we confirm this result in this paper using simulated reads with 9 algorithms: Scalpel, SOAPindel, GATK-HaplotypeCaller, GATK-UnifiedGenotyper, SAMtools, FreeBayes, Cortex/Platypus, lobSTR, and RepeatSeq (Supplementary Note 1 and 2). However, the performance of variation discovery tools changes dramatically when applied to real data. In order to elucidate the underlying processes that contribute to this difference, we performed a large-scale validation experiment involving ~1000 INDELs from one single exome. The individual has a severe case of Tourette Syndrome and obsessive compulsive disorder (sample ID: K8101-49685), and was sequenced to ≥20 reads per base pair over 80% of the exome target using the Agilent 44MB SureSelect capture protocol and Illumina HiSeq2000 paired-end reads, averaging 90bp in length after trimming. INDELs were called using the three leading pipelines according to their best practices: Scalpel, SOAPindel and GATK HaplotypeCaller (see online Methods). Interestingly, there is only ~37% concordance among calls made by all of the pipelines, and each method reports a variable number of INDELs unique to that pipeline (Fig. 2a). Note that such low concordance is in close agreement with the recent
analysis reported by O’Rawe et al. [3], and is much lower than the concordance for SNVs (~60%).

From this analysis alone, it is hard to judge the quality of INDELs unique to each pipeline, as these could either represent superior sensitivity or poor specificity. Interestingly, the size distribution of all INDELs called by the HaplotypeCaller (Fig. 2b) has a clear bias towards deletions whereas SOAPindel has a clear bias towards insertions. Scalpel instead shows a well-balanced distribution between insertions and deletions, in agreement with other studies of human INDEL mutations [8].

Figure 2. Concordance of INDELs between pipelines. (a) Venn Diagram showing the percentage of INDELs shared between the three pipelines. (b) Size distribution for INDELs called by each pipeline. The whole set of INDELs detected by the pipeline are colored in grey (“All”), while INDELs only called by the pipeline and not by the others are colored in orange (“Unique”).

We further investigated the performance of the algorithms by a focused re-sequencing of a representative sample of the candidate INDELs. Specifically we performed deep re-sequencing of selected INDELs from all the tools using the more recent 250bp Illumina MiSeq sequencing protocol (see online Methods). Based on the data depicted in Figure 2a, we selected a total of 1000 INDELs according to the following five categories:

1. 200 random INDELs from the intersection of all pipelines.
2. 200 random INDELs only found by HaplotypeCaller.
3. 200 random INDELs only found by SOAPindel.
4. 200 random INDELs only found by Scalpel.
5. 200 random INDELs of size ≥ 30bp from the union of all three algorithms.

Figure 3 shows the validation results for each INDEL category. Due to possibly ambiguous representation of an INDEL we “left-normalize” the coordinates of the reported INDELs using the approach of O’Rawe et al. [3]. However, some ambiguity can still remain, especially inside microsatellites, so we computed validation rates using two different approaches for comparing INDELs. (1) Position-based: an INDEL is considered valid if there is a mutation with the exact same starting position in the validation data (Fig. 3a). (2) Exact-match: an INDEL is considered valid if there is a mutation in the validation data that not only starts at the same coordinate but also has the same sequence composition (Fig. 3b).
As reported in prior studies, INDELs that are detected by all pipelines have a high validation rate and their sizes follow a lognormal distribution, and thus dominated by the smallest events (Supplementary Fig. 1). However, the rate of INDELs passing validation varies dramatically for each tool. Respectively, only 22% and 55% of the HaplotypeCaller and SOAPindel INDELs could be validated even when the less strict position-based approach was used, whereas 77% of Scalpel’s specific INDELs are true positive. Even worse is the outcome for the long INDELs: overall less than 10% passed validation, with SOAPindel and HaplotypeCaller calling the majority of these as erroneous INDELs (Table 1). The high false-positive rate for long deletions is also highlighted in Figure 3c where the validation rate by INDEL size for each variant caller is reported. HaplotypeCaller and SOAPindel show bias towards erroneous long deletions and insertions respectively. It is important to note that a recent version (v3.0) of the GATK HaplotypeCaller has reduced the bias towards deletions reported here. However, we performed targeted re-sequencing to quantify such improvement and found that Scalpel still achieves a significantly higher validation rate than HaplotypeCaller (Supplementary Note 3).

![Figure 3. Results of MiSeq validation.](image)
“HaplotypeCaller”, and “SOAPindel”), for all INDELs of size ≥ 30bp from the union of the mutations detected by all three pipelines (“LongIndels”), and for INDELs in the intersection (“Intersection”). Validation results are further organized into three groups: validation for all INDELs (“All INDELs”), validation only for INDELs within microsatellites (“SSRs-only”), and validation for INDELs that are not within microsatellites (“No-SSRs”). (c) Stacked histogram of validation rate by INDEL size for each variant caller. INDELs that passed validation are marked with green color (“Valid”), while INDELs that did not pass validation are marked with grey color (“Invalid”).

Since detecting INDELs within microsatellites is particularly challenging, we further divide the results to report the relative validation rate for this class of mutations separately. SOAPindel shows an appreciably higher rate of false-positives when only INDELs within microsatellites are considered (“SSRs-only” in Fig. 3a and 3b). When microsatellites are excluded (“no-SSRs” in Fig. 3a and 3b), the performance of SOAPindel and HaplotypeCaller drops significantly, while the Scalpel validation rate is only slightly reduced. This result is in agreement with the size biases highlighted in Figure 2b: microsatellites mutations are typically short in size, and when removed from the whole set, the remaining longer INDELs belong to the set that generates the size bias. Also note that Figure 3a and Figure 3b illustrates the relative abundance of INDELs called within microsatellites for each tool, although HaplotypeCaller seems to filter against these. Finally, it is important to observe that, when switching from position-based to exact-match, INDELs within microsatellites show significant reduction in validation rate. This phenomenon is due to their high instability and higher error rates, and as a result it is not unusual to have more than one candidate mutation at a microsatellite locus.

Table 1. Validation rate for INDELs specific to each pipeline. PPV is the positive predictive value computed as #TP/(#TP+#FP), where #TP is the number of true-positive calls and #FP is the number of false-positive calls.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Valid (all)</th>
<th>Invalid (all)</th>
<th>PPV (%) (all)</th>
<th>Valid (≥30bp)</th>
<th>Invalid (≥30bp)</th>
<th>PPV (%) (≥30bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalpel</td>
<td>145</td>
<td>43</td>
<td>77.1</td>
<td>13</td>
<td>1</td>
<td>92.8</td>
</tr>
<tr>
<td>SOAPindel</td>
<td>101</td>
<td>99</td>
<td>50.5</td>
<td>8</td>
<td>129</td>
<td>5.8</td>
</tr>
<tr>
<td>HaplotypeCaller</td>
<td>45</td>
<td>155</td>
<td>22.5</td>
<td>7</td>
<td>62</td>
<td>11.3</td>
</tr>
</tbody>
</table>

We further investigated the low validation rate for the long INDELs category by inspecting the sequence composition of all false-positive long INDELs. Specifically, we selected all 129 SOAPindel long mutations that did not pass validation and reassembled them using Scalpel. The majority of these mutations (115) overlap repeat structures where the reference contains a perfect or near-perfect repeat structure (Supplementary Fig. 2), and the associated assembly graph contained a repeat induced cycle. In contrast, of the 62 false-positive long INDELs from HaplotypeCaller, only 16 overlap a repeat structure. The remaining false positive deletions appear to be due to an aggressive approach used by the algorithm when processing soft-clipped sequences. On careful inspection of these data, the soft-clipped reads in false positive INDELs for HaplotypeCaller have a different form from the validation data, are highly variable, and are conjectured to be mapping artifacts of reads from different genomic locations (Supplementary Fig. 3). Finally we investigated the relationship between the FDR and characteristic features (e.g., chi-square score and coverage) for a subset of 614 INDELs detected by Scalpel and validated by re-sequencing (Supplementary Note 4). In addition to highlighting some common trends, this analysis can be used as a recommendation on how to select a chi-square score cutoff to achieve a given FDR.
Detecting de novo and transmitted INDELs in the Simons Simplex Collection

The Simons Simplex Collection (SSC) is a permanent repository of genetic samples from 2,700 families operated by SFARI (http://sfari.org) in collaboration with 12 university-affiliated research clinics. Each simplex family has one child affected with autism spectrum disorder, and unaffected siblings. Each genetic sample also has an associated collection of phenotype measurements and assays. The results presented in this section are based on a subset of the SSC composed of 593 families (2372 individuals). Specifically this subset of the SSC collection corresponds to families that have been examined in three recent studies: 343 families from Iossifov et al. [6] (CSHL), 200 families from Sanders et al. [18] (Yale), and 50 families from O’Roak et al. [19] (University of Washington). We selected only family units of four individuals (father, mother, proband, one unaffected sibling), referred to as “quads,” for all analyses in this study.

Transmitted mutations

Using Scalpel we detected a total of 3.3 million INDELs in 593 families, corresponding to an average of ~1400 (~3388139/(4*593)) mutations per individual. Accounting for population frequencies of each INDEL, there were 27795 distinct transmitted INDELs across the exomes. Figure 4a shows the histogram of INDELs sizes by annotation category. Although we detected INDELs only within the exome-capture target regions, we find close agreement between the size distributions reported by us and the one reported by Montgomery et al. [8] on low coverage whole-genome data from 179 individuals from 3 different population groups (YRI, CEU, CHB/JPT). We also compared the set of INDELs detected by Scalpel with the GATK-UnifiedGenotyper based mapping pipeline used by Iossifov et al. [6], and observe superior power to detect longer insertions, which supports the results obtained on simulated data (Supplementary Fig. 4). This result is also in agreement with the observation that insertions are harder to detect than deletions when using short reads.

Despite targeting exons, INDELs are more abundant in introns than other genic locations in the collection [4,20] (Supplementary Fig. 5). Within the coding sequence (CDS), frame-preserving INDELs are more abundant than frame shifts (Fig. 4b). Also, in agreement with MacArthur et al. [20], we detected a large number of so-called loss-of-function (LOF) variants in protein-coding genes. Since these are all transmitted events in healthy parents and transmitted equally to autistic and non-autistic individuals, they demonstrate a high level of variation in functional gene content between healthy humans. Mutations are found at lower frequency in the population when located in protein-coding sequences compared to intronic regions (Fig. 4c). Finally, for each annotation category, we observe an enrichment of deletions over insertions (Supplementary Table 1), with an overall 2:1 ratio across all the classes. Similar trends were reported in previous studies [8,21].

To estimate the positive predictive rate of Scalpel to discover transmitted mutations, we performed targeted re-sequencing of 31 long (≥29bp) transmitted INDELs. Excluding INDELs that failed to sequence (4), 21 passed validation (out of 24), which gives an 87% true positive rate. For three INDELs we could not judge the result of the validation because they
were either too long (≥70bp) for being validated using 143bp reads or they were located in a very complex region that was not possible to confidently align.

De novo mutations

In our prior work, we had reported that de novo likely gene disruptions (LGD) mutations, including frame-shift INDELs, are significantly more abundant in affected children with autism than in unaffected siblings by nearly a 2:1 ratio [6]. Other smaller studies came to similar conclusions [18,19,22]. Here we reanalyzed these data with Scalpel to detect de novo INDELs with the goals of confirming such signal, predict additional candidates that could have been missed by the older pipeline, and extend the analysis to a larger number of families. In order to narrow down the list of candidate genes as best as possible, we excluded all mutations that are

Figure 4. Transmitted mutations in 593 families. (a) Size distribution of insertions and deletions by annotation category. (b) Size distribution of INDELs within coding sequence (CDS). A spike is clearly visible for INDELs with size of multiple of three. (c) Histogram of INDELs frequency by annotation category showing how frame-shifts are typically found at low frequencies in the population.
common in the population, and, used stringent coverage filters (see online Methods) to select a total of 97 high quality de novo INDELs. Table 2 shows that, even after extending the population size from 343 [6] to 593, the same 2:1 enrichment for LGD mutations is confirmed: 35 frame shifts in autistic children vs. 16 in siblings (p-value 0.01097).

Table 2. Summary of de novo INDELs in 593 SSC Families in different contexts. “Aut” stands for autistic child and “Sib” for his/her sibling; “M” stands for males and “F” for females.

<table>
<thead>
<tr>
<th>INDEL effect</th>
<th>Aut</th>
<th>Sib</th>
<th>Aut M</th>
<th>Aut F</th>
<th>Sib M</th>
<th>Sib F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame shift</td>
<td>35</td>
<td>16</td>
<td>25</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td>Intron</td>
<td>13</td>
<td>16</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Intergenic</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>No frame shift</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Splice-site</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>UTR</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>39</td>
<td>46</td>
<td>12</td>
<td>19</td>
<td>20</td>
<td>97</td>
</tr>
</tbody>
</table>

In addition to finding novel mutations, in a few cases Scalpel was able to correct the size of the INDEL reported by other algorithms. Notably a 2 bp intronic deletion reported by the GATK-based pipeline was revised and confirmed to be a 33 bp deletion (Supplementary Note 5 and Supplementary Figs. 6-8). Similarly two closely located candidate LGD deletions of 2 bp and 4 bp respectively, turned out to be a single longer non-deleterious 6 bp deletion (Supplementary Note 5 and Supplementary Figs. 9 and 10). Finally, we performed targeted re-sequencing of 102 candidate INDELs; 84 were confirmed as de novo mutations, 11 were invalid and 7 failed to sequence, giving an 88% positive predictive rate for Scalpel.

Table 3 shows the list of de novo frame-shift LGD mutations in autistic children (the complete list of 97 de novo INDELs in all 593 families is reported in Supplementary Table 2). Sanders et al. [18] had previously only reported SNVs in their study, but our analysis of only these 200 families reports the same strong enrichment for LGD INDEL mutations in autistic children: 11 frame-shift LGDs INDEL mutations in autistic children compared to only 4 in their healthy siblings. This reanalysis reveals an important novel component of deleterious INDEL mutations and their associated genes that had been previously missed. Over the entire set of 593 families, we find a significantly high overlap between the LGD target genes and the set of 842 FMRP-associated genes [23], in agreement with the previously reported results [6]. Specifically 8 out of 35 LGDs in autistic children overlap with the 842 FMRP-associated genes.

Finally we compared the list of de novo variants detected by Scalpel with the ones previously discovered by GATK-UnifiedGenotyper based mapping pipeline used by Iossifov et al. [6] for a larger collection of 716 families sequenced at CSHL (not reported in this paper). We found 21 mutations, out of 175 reported by GATK, which were not found by Scalpel. After manual inspection of these loci, we observed that 7 of these mutations were below the coverage thresholds used by Scalpel, while the rest of the variants were located in regions hard to
assemble either because of the presence of a complex repeat or because of coverage dropping below the threshold required by Scalpel to generated a complete assembly.

Table 3. Likely Gene-Disrupting (LGD) frame-shift INDELs in children affected with autism. The “Family ID” column indicates the ID of the relevant family. The “Study” column shows the study in which the family was previously analyzed: CSHL, YALE or University of Washington (WASH). Under “Gender,” M stands for males and F for females. The “Location” column reports the location of the variant in chr:position format. The “Variant” column shows the position of the first incorrectly encoded amino acid within the encoded protein/the length of the protein. When a mutation affects multiple isoforms of a transcript, the earliest proportionate coordinate is given. “FMRP target” indicates whether the corresponding gene’s RNA was found to physically associate with FMRP [23].
Discussion

Assembly is the missing link towards high accuracy and increased power for INDEL mutation discovery for two reasons: (1) it allows the algorithm to break free from the expectations of the reference and (2) extends the power of the method to detect longer mutations. These features are crucial for the analysis of inherited and somatic mutations. Although these ideas have been explored recently in the literature, currently available tools for variant detection suffer from a high error rate. Scalpel is a powerful new method for detecting INDELS in NGS data that combines the power of assembly and mapping into a single unified framework. While featuring an enhanced power to detect longer mutations, Scalpel does not lose specificity thanks to a detailed repeat composition analysis combined with a self-tuning k-mer strategy. We demonstrate the superior specificity of Scalpel by comparing it with state-of-the-art INDEL callers on 1000 validated INDELS from one single exome. Such a large-scale re-sequencing experiment was fundamental to explain the sources of errors of current variant detection software, especially in regions containing near-perfect repeats. A large-scale application to detect de novo and transmitted INDELS in families with autistic children from the Simons Simplex Collection reveals the enhanced power of Scalpel to detect long (≥20bp) transmitted events and confirms a strong enrichment for de novo likely gene-disrupting (LGD) INDELS mutations in children with autism. Such results also hold for a larger collection of 1303 SSC families (not presented in this study). Although in this paper we show results only for exome-capture data, the Scalpel algorithm is agnostic to the sequencing protocol and can be used for whole-genome data as well. We envision that Scalpel will play an important role in the near future for the analysis of inherited and somatic mutation in human studies.

Acknowledgments

The project was supported in part by National Institutes of Health award (R01-HG006677) to M.C.S., the CSHL Cancer Center Support Grant (5P30CA045508), the Stanley Institute for Cognitive Genomics, and the Simons Foundation (SF51 and SF235988) to M.W. The DNA samples used in this work are included within SSC release 13. Approved researchers can obtain the SSC population dataset described in this study by applying at https://base.sfari.org. We thank S. Eskipehlivan for the technical assistance with the MiSeq validation experiments. We thank M. Bekritsky, S. Neuburgerand, M. Ronemus, D. Levy, B. Yamron, and B. Mishra for helpful discussions and comments on the paper. We thank R. Aboukhalil for testing the software.

Authors contributions
G.N. developed the software and conducted the computational experiments. G.N. and M.C.S. designed and analyzed the experiments. Y.W. assisted in designing the primers and performed the MiSeq validation experiments. J.A.O. designed the primers and analyzed the MiSeq data. H.F. and J.A.O. assisted with the computational experiments for the comparative analysis between different variant detection pipelines. G.J.L. planned and supervised the experimental design for INDEL validation. Z.W. designed the primers and performed experiments for the validation of de novo and transmitted INDELs in the SSC. I.L., Y.L., and M.W. assisted with the analysis of the SSC. G.N. and M.C.S. wrote the manuscript with input from all authors. All of the authors have read and approved the final manuscript.

References

Online Methods

The Scalpel pipeline

Scalpel is designed to perform localized micro-assembly of specific regions of interest in a genome with the goal of detecting insertions and deletions with high accuracy. It is based on the de Bruijn graph assembly paradigm where the reads are decomposed into overlapping *k*-mers, and directed edges are added between *k*-mers that are consecutive within any read [24]. Figure 1 shows the high level structure of the pipeline. (1) The pipeline begins with a fast alignment of the reads to the reference genome using BWA [25,26]. Importantly, these alignments are not directly used to call variations, but only to localize the analysis by identifying all the reads that have similarity to a given locus. Reads are then extracted in the region of interest (e.g., exon) including: (i) well-mapped reads, (ii) soft-clipped reads, and (iii) reads that fail to map, but are anchored by their mate. The latter two classes correspond to locations where the mapper encountered trouble aligning the reads, especially because of the large INDELs present, so it’s necessary to include them in the assembly. (2) Once localized, the algorithm computes an on-the-fly assembly of the reads in the current region using the de Bruijn graph paradigm, specifically, reads are decomposed into overlapping *k*-mers (starting with a default *k*=25) and the associated graph is constructed. (3) Using the reference sequence, one source node and one sink node are then selected according to the procedure described later in the “Graph traversal” section. (4) An on-the-fly analysis of the repeats in each region is used to automatically select the *k*-mer size to be used for the assembly, described in section “Repeat analysis”. (5) The graph is then exhaustively examined to find end-to-end paths that span the region. (6) After the sequences are assembled, they are aligned to the reference to detect candidate mutations using a sensitive gapped sequence aligner based on the Smith Waterman algorithm [27] targeted at the reference window. Finally, the above assembly process is applied using a sliding window approach over each target region. By default a window size of 400bp is used with a sliding factor of 100bp. The sliding window strategy is fundamental to handle the highly non-uniform read distribution across the target (see Supplementary Fig. 11). A window size of 400bp is large enough to assemble the majority of the exons into a single contig since ~95% of the human exon-targets are shorter than 400bp (see Supplementary Fig. 12), however each assembly task is small enough for using in-depth techniques to optimize the assembly.
Graph construction

Two critical components of the Scalpel algorithm are (i) construction of the de Bruijn graph and (ii) detection of sequence paths spanning the targeted region. Reads aligning to the region are extracted and decomposed into overlapping k-mers. In order to model the double stranded nature of the DNA, a bidirected de Bruijn graph is constructed [28,29]. The graph is then compressed by merging all non-branching chains of k-mers into a single node. Tips and low coverage nodes are removed according to input threshold parameters to remove obvious sequencing errors. Note that, differently from traditional de Bruijn graph assemblers, Scalpel does not use any threading strategy to resolve collapsed repeats. Threading allows resolution of repeats whose lengths are between k and the read length. However we observed in both real and simulated data that, due to the localized graph construction, if a bubble were not covered end-to-end by the reads, threading would either disconnect the graph or introduce errors. Repeats are instead handled differently, as explained in the next section.

Repeat Analysis

Due to the highly non-uniform read depth distribution across the targeted region and the presence of near-perfect repeats that can mislead the assembly (Supplementary Note 6 and Supplementary Fig 13), Scalpel implements a detailed repeat composition analysis coupled with a self-tuning k-mer strategy. Specifically, when assembling a window, Scalpel inspects both the base pair composition of the corresponding reference sequence as well as the resulting de Bruijn graph for the presence of cycles in the graph or near-perfect repeats in the assembled sequences. If a repeat structure is detected, the graph is discarded and a larger k-mer is selected. This process continues until a maximum k-mer length is reached, which is a function of the read length. If no k-mer value can be chosen to avoid the presence of repeats, the region is skipped and the next available region from the sliding window scheme is analyzed. This conservative strategy reduces the number of false-positive calls in highly repetitive regions, and, according to our experiments, skips less than 2% of possible windows in the human exome. Note also that, once k is selected by the self-tuning k-mer strategy, the graph is “repeat free”, and there is no need to use threading to resolve small repeats.

The proposed self-tuning k-mer strategy is similar to the dynamic approach used by SOAPindel and TIGRA to reconnect a broken path in low coverage regions. However, SOAPindel searches for unused reads with gradually shorter k-mers until a path is formed or the lower bound on k-mer length has been reached; while TIGRA allows only 2 possible values for the k (15 and 25). Scalpel instead starts from a small k-mer value (input parameter) first and then gradually increases it, such that the smallest possible k-mer value is used for each region. This strategy has the advantage of better handling of repetitive sequences, highly polymorphic regions, and sequencing errors: source and sink have higher chance to be selected (see section “Graph traversal”) and a smaller k-mer reduces the chance of fragmented assembly in low coverage regions.

Graph traversal

Once a valid de Bruijn graph is constructed, Scalpel examines the graph to find end-to-end sequence paths that span the target window. Because the coverage from exome capture data is
highly non-uniform, a special selection algorithm is used to find the edges of each window where coverage is present. First, two nodes in the graph are labeled as source and sink according to the following procedure: the reference sequence of the target region is scanned left-to-right to detect the first sequence of k bases that exactly matches one of the k-mers from the nodes in the graph, this node will be marked as the source. In a similar fashion the sink node is detected scanning the reference sequence right-to-left. Since every region is first inspected for repeats, source and sink can be safely selected at this stage. The automated strategy used by Scalpel to select the boundaries of the reference sequence improves over TIGRA’s approach, where the reference region is selected based only on input parameters. After the source and sink nodes are identified, all possible source-to-sink paths are enumerated up to a max number (default 100,000) using a depth-first search (DFS) traversal of the graph, similarly to Sutta assembly algorithm [30]. Note that since the regions to assemble are very small, time and space computational complexities associated with large-scale whole-genome assembly are not relevant and an exact brute-force strategy can be efficiently applied. If there are no repeat structures in the graph, all the candidate paths are enumerated and aligned to the portion of the reference sequence delimited by source and sink k-mers using the standard Smith-Waterman-Gotoh alignment algorithm with affine gap penalties. The list of candidate mutations is then generated. Under typical conditions, the assembler reports a single path for homozygous mutations and two paths for heterozygous mutations. For example, if the sample has an insertion in only one of the two haplotypes, the assembler would discover the INDEL and also the unmodified reference sequence. Note that a traditional sequence assembler would have selected only one of these two paths (usually with higher coverage) and discarded the other one. Scalpel instead examines both paths to distinguish, for example, between homozygous and heterozygous mutations. However, in practice, various factors in real data complicate the detection process and, sometimes, multiple paths are reported in the case of more exotic variations. For example, the Illumina sequencing platform is particularly error prone around microsatellites (e.g., homopolymer runs) and, as a consequence, multiple candidate alleles are elucidated by the data at these loci. Highly polymorphic regions are also prone to generate multiple paths and could be computationally demanding: if the distance between multiple nearby mutations is larger than the (automatically) selected k-mer value, each of the associated bubbles in the graph will give rise to two different paths.

Exome capture data

Exome capture for the sample K8101-49685 was carried out using the Agilent 44MB SureSelect protocol and then sequenced on Illumina HiSeq2000 with average read length of 100bp. More than 80% of the target region was covered with depth of 20 reads or more. All of the HiSeq data have been submitted to the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under project accession number SRX265476.

MiSeq validation

A total of 1,400 INDELs were selected for MiSeq validation over the course of this study. MiSeq validation was initially performed on 1,000 INDELs prior to the release of GATK v3.0 (see the Results section for detailed selection criteria). After the release of GATK v3.0, we selected an additional 400 INDELs for MiSeq validation (see Supplementary Note 3 for detailed selection criteria).
criteria). Out of these 400 INDELs, 215 were covered with more than 1,000 reads in the initial MiSeq dataset or in another MiSeq dataset reported by O’Rawe et al. [3]. Thus, the second MiSeq validation experiment was performed on the remaining 185 INDELs. For both of the MiSeq validation experiments performed during the course of this study, PCR primers were designed using Primer 3 (http://primer3.sourceforge.net) to produce amplicons ranging in size from 200 to 350 bp, with INDELs of interest located approximately in the center of each amplicon. Primers were obtained from Sigma-Aldrich® in 96-well mixed plate format, 10 µmol/L dilution in Tris per Oligo. Upon arrival, all primers were tested for PCR efficiency using a HAPMAP DNA sample (Catalog ID NA12864, Coriell Institute for Medical Research, Camden, NJ, USA) and LongAmp® Taq DNA Polymerase (New England Biolabs, Beverly, MA, USA). PCR products were visually inspected for amplification efficiency using agarose gel electrophoresis. For the validation experiment, this same PCR was performed using sample K8101-49685 genomic DNA as template. PCR product was verified on E-Gel® 96 gels (Invitrogen Corp., Carlsbad, CA, USA) and subsequently pooled for ExoSAP-IT® (Affymetrix Inc., Santa Clara, CA, USA) cleanup. The cleanup product was further purified using QIAquick PCR Purification Kit (QIAGEN Inc., Valencia, CA, USA) and quantified by Qubit® dsDNA BR Assay Kit (Invitrogen Corp.). Library construction for the MiSeq Personal Sequencer platform (Illumina Inc.) was performed based on Illumina® TruSeq® DNA Sample Prep LS protocol (for the initial 1,000 INDELs) and TruSeq® Nano DNA Sample Preparation Guide (for the additional 185 INDELs), omitting the DNA fragmentation step. Finally, before being loaded onto the MiSeq machine, the quality and quantity of the sample was again verified using the Agilent DNA 1000 Kit on the Agilent Bioanalyzer and with quantitative PCR (Kapa Biosystems Inc., Woburn, MA, USA). This protocol generated high quality 250 bp reads (paired end). The reads were aligned with BWA-MEM (v0.7.5a) to the reference human genome hg19. The alignment was sorted with SAMtools (v0.1.18) and PCR duplicates were marked with the Picard tool set (v1.91). INDELs were realigned with the GATK (version v2.6-4) using the IndelRealigner and base quality scores were recalibrated. Variants were then called with GATK UnifiedGenotyper. All of the MiSeq data have been submitted to the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under project accession number SRX386284.

Alignment
Sequencing reads from K8101-49685 exome-capture data were aligned using BWA (v0.6.2-r126) with default parameters to the human reference hg19. Alignments were converted from SAM format to sorted, indexed BAM files with SAMtools (v0.1.18). The Picard tool set (v1.91) was used to remove duplicate reads. These BAM files were used as input for all the INDEL callers used in this study. Reads coming from the re-sequencing experiments were also aligned using BWA. However, if the INDEL approaches half the size of the read length, even after target re-sequencing, mapping the reads containing the INDEL is problematic. The problem is emphasized if the INDEL is located towards the ends of the read (instead of in the middle). To avoid this problem we aligned sequencing reads containing long INDELs (≥30 bp) using Bowtie2 [31] instead of BWA. Bowtie2 offers an end-to-end alignment mode that searches for alignments involving all of the read characters, also called an "untrimmed" or "unclipped" alignment. Specifically, we used the following parameter settings: “--end-to-end --very-sensitive --score-min L,-0.6,-0.6 --rdg 8,1 --rfg 8,1 --mp 20,20".
Variant Calling
INDELs for K8101-49685 were called using Scalpel, GATK HaplotypeCaller and SOAPindel as follows:

Scalpel. Scalpel (v0.1.1 beta) was run on the indexed BAM using the following parameter setting: “--single --lowc 1 --minc 3 --out 0.1 --intarget”. INDELs showing high coverage unbalance were then removed (chi-square k-mer score > 20).

GATK. GATK software tools (v2.4-3) were used for improvement of alignments and genotype calling and refining with recommended parameters. BAM files were re-aligned with the GATK IndelRealigner, and base quality scores were re-calibrated by the GATK base quality recalibration tool. Genotypes were called by the GATK UnifiedGenotyper and HaplotypeCaller. According to the GATK recommendations, the Variant Quality Score Recalibration (VQSR) was not used for the K8101-49685 single exome experiment. Also hard filtering criteria (such as "QD < 2.0, ReadPosRankSum < -20.0 FS > 200.0") were not used as they were aggressively removing long indels from the HaplotypeCaller calls (see **Supplementary Note 3**). It is important to report that the bias towards deletions for HaplotypeCaller has been extensively reduced with the release of the unpublished GATK 2.8 and 3.0 in December 2013 and March 2014 after our initial MiSeq re-sequencing experiments were completed (see **Supplementary Note 3**). However, many research groups have already employed the older version of HaplotypeCaller for genetic studies and they are still extensively using it. So the insights on the GATK 2.4-3 single-exome experiment reported here are very valuable to the scientific community. We expect GATK, along with our own and other algorithms, to improve over time as new insights are made into the mutation mechanisms and error profiles.

SOAPindel. SOAPindel (v2.0.1) was run on the indexed BAM file using default parameters. According to SOAPindel documentation, putative INDELs are initially assumed to be located near the unmapped reads whose mates mapped to the reference genome. SOAPindel then executes a local assembly (k-mer=25 by default) on the clusters of unmapped reads. The assembly results were aligned to reference in order to find the potential INDELs. To distinguish true and false positive INDELs, SOAPindel generates Phred quality scores, which take into consideration the depth of coverage, INDEL size, number of neighboring variants, distance to the edge of contig, and position of the second different base pair. Only those INDELs filtered by internal threshold are retained in the final INDEL call set.

Finally, for all pipelines we selected only INDELs located within the regions targeted by the exome capture protocol.

Analysis of de novo INDELs related to Autism
After eliminating all candidate positions that are common in the population, and thus unlikely to be related to the disorder, we re-assembled each region associated with the candidates INDELs across the family members using a more sensitive parameter setting for Scalpel. Specifically we reduce the starting k-mer value to 10 and turned off the removal of low coverage nodes. This step was important to adjust for possible allele imbalance favoring the reference allele over the
mutation in the parents, but was impractical to do initially for the whole collection: lowering the k-mer and keeping all the nodes in the graph significantly increase the computation complexity of the algorithm. Then we selected de novo INDELs with chi-square k-mer score \(\leq 10.84 \). The chi-square k-mer score is computed using the standard formula for the chi-square test statistics \(\chi^2 \) but applied to the k-mer coverage of the reference and alternative alleles for the mutation according to the following formula:

\[
\chi^2 = \frac{(C^R_o - C^R_e)^2}{C^R_e} + \frac{(C^A_o - C^A_e)^2}{C^A_e}
\]

where \(C^R_o \) and \(C^A_o \) are the observed k-mer coverage for the reference and alternative alleles, and \(C^R_e \) and \(C^A_e \) are the expected coverage such that \(C^R_e = C^A_e = \text{totCov}/2 \). Finally we enforced parents to have at least a k-mer coverage of 15 over the assembled region.

System requirements and software availability

Scalpel is written in C++ and Perl. The source code is freely available as an open-source software project on the SourceForge website at https://sourceforge.net/projects/scalpel/. It usually takes 2-3 hours to process one exome-capture data set (80% of target at \(\geq 20X \)) using 10 cores and requiring a minimum of 3GB of RAM.

References