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homology overhangs: 1) the mKate2_EX1 (a.a 1-90) of mKate2; 2) mKate_EX2 (a.a 91-

239) of mKate2; and 3) gRNA1 containing a 20bp SDS followed by the S. pyogenes 

gRNA scaffold flanked by Csy4 recognition sites and the HSV1 acceptor, donor and 

branching sequences. Variations of the CMVp-mKate2_EX1-[28-gRNA1-28]HSV1-

mKate2_EX2-pA plasmid containing consensus and SnoRNA2 acceptor, donor, and 

branching sequences and with and without the Csy4 recognition sequences (Constructs 

8-12, Table S1) were built in a similar fashion. 

The ribozyme-expressing plasmids CMVp-mKate2-Triplex-HHRibo-gRNA1-

HDVRibo-pA and CMVp-mKate2-HHRibo-gRNA1-HDVRibo-pA plasmids (Constructs 

13 and 14, respectively, Table S1) were built by Gibson Assembly of XmaI-digested 

CMVp-mKate2, and PCR-extended amplicons of gRNA1 (with and without the triplex 

and containing HHRibo (Gao and Zhao, 2014) on the 5’ end and HDVRibo (Gao and 

Zhao, 2014) on the 3’ end). The plasmid CMVp-HHRibo-gRNA1-HDVRibo-pA (Con-

struct 15, Table S1) was built similarly by Gibson Assembly of SacI-digested CMVp-

mKate2 and a PCR-extended amplicon of gRNA1 containing HHRibo on the 5’ end and 

HDVRibo on the 3’ end. 

The plasmid CMVp-mKate2_EX1-[28-gRNA1-28]HSV1-mKate2_EX2-Triplex-28-

gRNA2-28-pA (Construct 16, Table S1) was built by Gibson Assembly of the following 

parts using appropriate homologies: 1) XmaI-digested CMVp-mKate2_EX1-[28-

gRNA1-28]HSV1-mKate2_EX2-pA (Construct 4, Table S1) and 2) PCR amplified Triplex-

28-gRNA2-28 from CMVp-mKate2-Triplex-28-gRNA1-28-pA (Construct 3, Table S1).  

The plasmid CMVp-mKate2-Triplex-28-gRNA1-28-gRNA2-28-pA (Construct 

17, Table S1) was built by Gibson Assembly with the following parts using appropriate 
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homologies: 1) XmaI-digested CMVp-mKate2-Triplex-28-gRNA1-28-pA (Construct 3, 

Table S1) and 2) PCR amplified 28-gRNA2-28. 

The plasmid CMVp-mKate2-Triplex-28-gRNA3-28-gRNA4-28-gRNA5-28-

gRNA6-28-pA (Construct 19, Table S1) was constructed using a Golden Gate ap-

proach using the Type IIs restriction enzyme, BsaI. Specifically, the IL1RN targeting 

gRNA3, gRNA4, gRNA5, gRNA6 sequences containing the 20 bp SDSs along with the 

S. pyogenes gRNA scaffold were PCR amplified to contain a BsaI restriction site on 

their 5’ ends and Csy4 ‘28’ and BsaI restriction sites on their 3’ ends. The PCR ampli-

fied products were subjected to 30 alternating cycles of digestion followed by ligation at 

37°C and 20°C, respectively. A 540 bp PCR product containing the gRNA3-28-gRNA4-

28-gRNA5-28-gRNA6-28 array was amplified and digested with NheI/XmaI and cloned 

into the CMVp-mKate2-Triplex-28-gRNA1-28-pA plasmid (Construct 3, Table S1). 

The CMVp-mKate2_EX1-[miRNA]-mKate2_EX2-pA plasmid containing an intron-

ic FF4 (a synthetic miRNA) was received as a gift from Lila Wroblewska. The synthetic 

FF4 miRNA was cloned into an intron with consensus acceptor, donor and branching 

sequences between a.a. 90 and 91 of mKate2 to create CMVp-mKate2_EX1-[miRNA]-

mKate2_EX2-Triplex-28-gRNA1-28-pA (Construct 20, Table S1) and CMVp-

mKate2_EX1-[miRNA]-mKate2_EX2-Triplex-28-gRNA1-28-4xFF4BS-pA  (Construct 

21, Table S1). 

The plasmid CMVp-ECFP-Triplex-28-8xmiRNA-BS-28-pA (Construct 22, Table 

S1) was cloned via Gibson Assembly with the following parts: 1) full length coding se-

quence of ECFP and 2) 110 nt of the MALAT1 3’ triple helix sequence amplified via 

PCR extension with oligonucleotides containing eight FF4 miRNA binding sites and 
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Csy4 recognition sequences on both ends.  

Cell culture and transfections 

 HEK293T cells were obtained from the American Tissue Collection Center 

(ATCC) and were maintained in DMEM supplemented with 10% FBS, 1% penicillin-

streptomycin, 1% GlutaMAX, non-essential amino acids at 37°C with 5% CO2. 

HEK293T cells were transfected with FuGENE®HD Transfection Reagent (Promega) 

according to the manufacturer's instructions. Each transfection was made using 200,000 

cells/well in a 6-well plate. As a control, with 2 µg of a single plasmid in which a CMV 

promoter regulated mKate2, transfection efficiencies were routinely higher than 90% 

(determined by flow cytometry performed with the same settings as the experiments). 

Unless otherwise indicated, each plasmid was transfected at 1 µg/sample. All samples 

were transfected with taCas9, unless specifically indicated. Cells were processed for 

flow cytometry or qRT-PCR analysis 72h after transfection.  

Quantitative reverse transcription–PCR (RT-PCR) 

The experimental procedure followed was as described in (Perez-Pinera et al., 

2013a). Cells were harvested 72h post-transfection. Total RNA was isolated using the 

RNeasy Plus RNA isolation kit (Qiagen). cDNA synthesis was performed using the 

qScript cDNA SuperMix (Quanta Biosciences). Real-time PCR using PerfeCTa SYBR 

Green FastMix (Quanta Biosciences) was performed with the Mastercycler ep realplex 

real-time PCR system (Eppendorf) with following oligonucleotide primers:  IL1RN - for-

ward GGAATCCATGGAGGGAAGAT, reverse TGTTCTCGCTCAGGTCAGTG; GAPDH 

- forward CAATGACCCCTTCATTGACC, reverse TTGATTTTGGAGGGATCTCG. The 
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primers were designed using Primer3Plus software and purchased from IDT. Primer 

specificity was confirmed by melting curve analysis. Reaction efficiencies over the ap-

propriate dynamic range were calculated to ensure linearity of the standard curve. We 

calculated fold-increases in the mRNA expression of the gene of interest normalized to 

GAPDH expression by the ddCt method. We then normalized the mRNA levels to the 

non-specific gRNA1 control condition. Reported values are the means of three inde-

pendent biological replicates with technical duplicates that were averaged for each ex-

periment. Error bars represent standard error of the mean (s.e.m). 

Flow Cytometry 

Cells were harvested with trypsin 72h post-transfection, washed with DMEM me-

dia and 1xPBS, re-suspended with 1xPBS into flow cytometry tubes and immediately 

assayed with a Becton Dickinson LSRII Fortessa flow cytometer. At least 50,000 cells 

were recorded per sample in each data set. The results of each experiment represent 

data from at least three biological replicates. Error bars are s.e.m. on the weighted me-

dian fluorescence values (see Extended Experimental Procedures for detailed infor-

mation about data analysis). 
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FIGURE LEGENDS 

Figure 1. The ‘triplex/Csy4’ architecture (CMVp-mK-Tr-28-g1-28) produces functional 

gRNAs from RNAP II promoters while maintaining expression of the harboring gene. 

The gRNAs can activate synthetic promoters (A-C) as well as endogenous promoters 

(D-E). (A) gRNA1 was flanked by two Csy4 recognition sites (‘28’) and placed down-

stream of an mKate2 gene followed by an RNA triple helix (triplex). The entire transcript 

was expressed by a CMV promoter (CMVp). Csy4 enables the generation of functional 

gRNAs which can be incorporated into a transcriptionally active dCas9-VP64 (taCas9) 

that can activate a synthetic promoter (P1) driving EYFP expression (P1-EYFP). (B) 

The presence of Csy4 enabled a 60-fold increase in EYFP levels, demonstrating the 

generation of functional gRNAs. Furthermore, increased concentrations of the Csy4-

expressing plasmid led to increasing mKate2 levels. Fluorescence values were normal-

ized to the maximum respective fluorescence between the data in this figure and Figure 

2B-D to enable cross comparisons between the ‘triplex/Csy4’ and ‘intron/Csy4’ architec-

tures. (C) Csy4 and taCas9 have opposite effects on mKate2 fluorescence generated 

by the CMVp-mK-Tr-28-g1-28 construct. The taCas9 construct alone reduced mKate2 

levels while the Csy4 construct alone enhanced mKate2 fluorescence. The mKate2 ex-

pression levels were normalized to the maximum mKate2 value observed (Csy4 only) 

across the four conditions tested here. (D) The human RNAP II promoters, CXCL1p, 

H2A1p, and UbCp, as well as the RNAP II promoter CMVp were used to drive expres-

sion of four different gRNAs (gRNA3-6, Table S2) previously shown to activate the 

IL1RN promoter (Perez-Pinera et al., 2013a) from the ‘triplex/Csy4’ construct. These 

results were compared to the RNAP III promoter U6p driving direct expression of the 
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same gRNAs. Four different plasmids, each containing one of the indicated promoters 

and gRNAs 3-6, were co-transfected along with a plasmid encoding taCas9 and with or 

without a plasmid expressing Csy4. Relative IL1RN mRNA expression, compared to a 

control construct with non-specific gRNA (NS, CMVp-mK-Tr-28-g1-28), was monitored 

using qRT-PCR. The RNAP II promoters resulted in a wide range of IL1RN activation, 

with the presence of Csy4 greatly increasing activation compared with the absence of 

Csy4. Interestingly, IL1RN activation was achieved by the RNAP II promoters even in 

the absence of Csy4, albeit at much lower levels than in the presence of Csy4. (E) The 

input-output transfer curve for the activation of the endogenous IL1RN loci by the ‘tri-

plex/Csy4’ construct was determined by plotting the mKate2 levels (as a proxy for the 

input) versus the relative IL1RN mRNA expression levels (as the output). The data indi-

cate that tunable modulation of endogenous loci can be achieved with RNAP II promot-

ers of different strengths. The IL1RN data is the same as shown in D).  

 

Figure 2. The ‘intron/Csy4’ architecture (CMVp-mKEX1-[28-g1-28]intron-mKEX2) generates 

functional gRNAs from introns expressed by RNAP-II-expressed transcripts while main-

taining modulation of the harboring gene. (A) gRNA1 is flanked by Csy4 recognition 

sites and encoded within an intron, leading to functional gRNA1 generation with Csy4 

and activation of a downstream P1-EYFP construct. In contrast to the ‘triplex/Csy4’ con-

struct in Figure 1, the ‘intron/Csy4’ architecture leads to decreased expression of the 

harboring gene with increased Csy4 levels, which may be due to cleavage of pre-mRNA 

prior to splicing. (B-D) Three introns, a consensus intron (B), snoRNA2 intron (C), and 

an HSV1 intron (D), combined with Csy4, resulted in functional gRNAs as assessed by 
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EYFP expression. Fluorescence values were normalized to the maximum fluorescence 

between this data and Figure 1B. (E) A single Csy4 binding site located upstream of the 

gRNA within an HSV1 intron did not produce functional gRNAs but did lead to reduced 

mKate2 fluorescence with greater Csy4 levels. (F) A single Csy4 binding site located 

downstream of the gRNA within an HSV1 intron produced low levels of functional gRNA 

and also generated reduced mKate2 levels with greater Csy4-expressing plasmid con-

centrations. The fluorescence values for (E-F) were normalized to the maximum fluo-

rescence levels between these experiments and a [28-g1-28]HSV1 control (Figure S4). 

 

Figure 3. Ribozyme architectures can produce active gRNAs while maintaining expres-

sion of the harboring gene. (A) gRNA1 was flanked with a hammerhead (HH) ribozyme 

and an HDV ribozyme. This construct was encoded downstream of mKate2 with an 

RNA triplex and expressed from the CMV promoter (CMVp-mK-Tr-HH-g1-HDV). (B) 

gRNA1 was flanked with a hammerhead (HH) ribozyme and an HDV ribozyme. This 

construct was encoded downstream of mKate2 with no RNA triplex and expressed from 

the CMV promoter (mK-HH-g1-HDV). (C) gRNA1 was flanked with a hammerhead (HH) 

ribozyme and an HDV ribozyme. This construct was expressed from the CMV promoter 

(HH-g1-HDV). (D) Functional gRNA1 generation was assessed by EYFP expression 

resulting from the activation of P1-EYFP. The three ribozyme-based architectures were 

able to efficiently activate EYFP expression. The ‘triplex/Csy4’ construct (mK-Tr-28-g1-

28), with and without Csy4, as well as the RNAP III promoter U6p driving gRNA1 (U6p-

g1) are shown for comparison. 
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Figure 4. Multiplexed gRNA expression from a single transcript can be achieved with 

the ‘triplex/Csy4’ and ‘intron/Csy4’ architectures, thus enabling compact encoding of 

synthetic circuits with multiple outputs. (A) In the first design (Input A, ‘intron-triplex’), we 

encoded gRNA1 within a HSV1 intron and gRNA2 after an RNA triplex. Both gRNAs 

were flanked by Csy4 recognition sites. Functional gRNA expression was assessed by 

activation of a gRNA1-specific P1-EYFP construct and a gRNA2-specific P2-ECFP con-

struct. (B) In the second design (Input B, ‘triplex tandem’), we encoded both gRNA1 and 

gRNA2 in tandem, with intervening and flanking Csy4 recognition sites, downstream of 

mKate2 and an RNA triplex. Functional gRNA expression was assessed by activation of 

a gRNA1-specific P1-EYFP construct and a gRNA2-specific P2-ECFP construct. (C) 

Both multiplexed gRNA expression constructs exhibited efficient activation of EYFP and 

ECFP expression in the presence of Csy4, thus demonstrating the generation of multi-

ple active gRNAs from a single transcript. Furthermore, as expected from Figure 1 and 

Figure 2, mKate2 levels decreased in the first design due to the intronic architecture 

whereas mKate2 levels increased in the second design due to the non-intronic architec-

ture. 

 

Figure 5. Multiplexed gRNA expression from a single transcript enables efficient activa-

tion of endogenous loci with a compact architecture. (A) Four different gRNAs (gRNA3-

6) were encoded in tandem, with intervening and flanking Csy4 recognition sites, down-

stream of mKate2 and an RNA triplex (mK-Tr-(28-g-28)3-6). (B) The multiplexed mK-Tr-

(28-g-28)3-6 construct exhibited high-level activation of IL1RN expression in the pres-

ence of Csy4 compared with the same construct in the absence of Csy4. Relative 
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IL1RN mRNA expression was determined compared to a control construct with non-

specific gRNA1 (NS, CMVp-mK-Tr-28-g1-28) expressed via the ‘triplex/Csy4’ architec-

ture. For comparison, a non-multiplexed set of plasmids containing the same gRNAs 

(gRNA3-6), each expressed from separate, individual plasmids is shown. 

 

Figure 6. Multi-layer regulation is important for sophisticated behaviors in artificial and 

natural gene circuits. Multi-stage transcriptional cascades can be implemented with 

CRISPR-TFs using the architectures described here. (A) A three-stage transcriptional 

cascade was implemented by using intronic gRNA1 (CMVp-mKEX1-[28-g1-28]HSV-mKEX2) 

as the first stage. gRNA1 specifically targeted the P1 promoter to express gRNA2 (P1-

EYFP-Tr-28-g2-28), which then activated expression of ECFP from the P2 promoter 

(P2-ECFP). (B) A three-stage transcriptional cascade was implemented by using a ‘tri-

plex/Csy4’ architecture to express gRNA1 (CMVp-mK-Tr-28-g1-28). gRNA1 specifically 

targeted the P1 promoter to express gRNA2 (P1-EYFP-Tr-28-g2-28), which then acti-

vated expression of ECFP from P2 (P2-ECFP). (C) The complete three-stage transcrip-

tional cascade from A) exhibited expression of all three fluorescent proteins. The re-

moval of one of each of the three stages in the cascade resulted in the expected loss of 

fluorescence of the specific stage and dependent downstream stages. (D) The complete 

three-stage transcriptional cascade from B) exhibited expression of all three fluorescent 

proteins. The removal of one of each of the three stages in the cascade resulted in the 

expected loss of fluorescence of the specific stage and dependent downstream stages. 

 

Figure 7. CRISPR-based transcriptional regulation can be integrated with mammalian 
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microRNAs and RNA processing mechanisms as well as with Csy4-dependent RNA 

processing to implement feedback loops and multi-output circuits that can be rewired at 

the RNA level. (A) We created a single transcript that encoded both miRNA and 

CRISPR-TF-based regulation by expressing a miRNA from an intron within mKate2 and 

gRNA1 from a ‘triplex/Csy4’ architecture (CMVp-mKEx1-[miR]-mKEx2-Tr-28-g1-28). In the 

presence of taCas9 but in the absence of Csy4, this circuit did not activate a down-

stream gRNA1-specific P1-EYFP construct and did repress a downstream ECFP tran-

script with 8x miRNA binding sites flanked by Csy4 recognition sites (CMVp-ECFP-Tr-

28-miR8xBS). In the presence of both taCas9 and Csy4, this circuit was rewired by acti-

vating gRNA1 production and subsequent EYFP expression as well as by separating 

the ECFP transcript from the 8xmiRNA binding sites, thus ablating miRNA inhibition of 

ECFP expression. (B-C) The results demonstrate that Csy4 expression can change the 

behavior of the circuit in A) by rewiring circuit interconnections. A circuit motif diagram 

illustrates the Csy4-catalyzed rewiring. (D) We incorporated an autoregulatory feedback 

loop into the network topology of the circuit described in A) by encoding 4x miRNA bind-

ing sites at the 3’ end of the input transcript (CMVp-mKEx1-[miR]-mKEx2-Tr-28-g1-28-

miR4xBS). This negative feedback suppressed mKate2 expression in the absence of 

Csy4. However, in the presence of Csy4, the 4x miRNA binding sites were separated 

from the mKate2 mRNA, thus leading to mKate2 expression. (E-F) The results demon-

strate that Csy4 expression can change the behavior of the circuit in D) by rewiring cir-

cuit interconnections. In contrast to the circuit in A), mKate2 was suppressed in the ab-

sence of Csy4 but was highly expressed in the presence of Csy4 due to elimination of 

the miRNA-based autoregulatory negative feedback. (F) A circuit motif diagram illus-

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/004432doi: bioRxiv preprint first posted online Apr. 23, 2014; 

http://dx.doi.org/10.1101/004432


40 
 

trates the Csy4-catalyzed rewiring. Each of the mKate, EYFP, and ECFP levels in B) 

and E) were normalized to the respective maximal fluorescence levels amongst all the 

tested scenarios. We note that the controls in column 3 and 4 in B) and E) are duplicat-

ed, as the two circuits in A) and D) were tested in the same experiment with the same 

controls. 
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