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ABSTRACT 

Gene expression variation is well documented in human populations and its genetic 

architecture has been extensively explored. However, we still know little about the genetic 

architecture of gene expression variation in other species, particularly our closest living relatives, 

the nonhuman primates. To address this gap, we performed an RNA sequencing (RNA-seq)-

based study of 63 wild baboons, members of the intensively studied Amboseli baboon population 

in Kenya. Our study design allowed us to measure gene expression levels and identify genetic 

variants using the same data set, enabling us to perform complementary mapping of putative cis-

acting expression quantitative trait loci (eQTL) and measurements of allele-specific expression 

(ASE) levels. We discovered substantial evidence for genetic effects on gene expression levels in 

this population. Surprisingly, we found more power to detect individual eQTL in the baboons 

relative to a HapMap human data set of comparable size, probably as a result of greater genetic 

variation, enrichment of SNPs with high minor allele frequencies, and longer-range linkage 

disequilibrium in the baboons. eQTL were most likely to be identified for lineage-specific, 

rapidly evolving genes. Interestingly, genes with eQTL significantly overlapped between the 

baboon and human data sets, suggesting that some genes may tolerate more genetic perturbation 

than others, and that this property may be conserved across species. Finally, we used a Bayesian 

sparse linear mixed model to partition genetic, demographic, and early environmental 

contributions to variation in gene expression levels. We found a strong genetic contribution to 

gene expression levels for almost all genes, while individual demographic and environmental 

effects tended to be more modest. Together, our results establish the feasibility of eQTL mapping 

using RNA-seq data alone, and act as an important first step towards understanding the genetic 

architecture of gene expression variation in nonhuman primates. 
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INTRODUCTION 

 Gene regulatory variation has been shown to make fundamental contributions to 

phenotypic variation in every species examined to date. This relationship has been demonstrated 

most clearly at the level of gene expression, which captures the integrated output of a large suite 

of other regulatory mechanisms. Variation in gene expression levels has been linked to fitness-

related morphological, physiological, and behavioral variation in both lab settings and natural 

populations (e.g., [1-4]; reviewed in [5]), and is a robust biomarker of disease in humans (e.g, 

[6,7]). In addition, patterns of gene expression are often associated with signatures of natural 

selection [8-11], suggesting their functional importance even when their phenotypic significance 

remains unknown.  

 In primates, the majority of research on the evolution of gene expression has concentrated 

on cross-species comparisons, particularly using humans, chimpanzees, and rhesus macaques 

[8,12-22]. Such studies have been important for identifying patterns of constraint on gene 

expression phenotypes over long evolutionary time scales, and for suggesting candidate loci that 

might contribute to phenotypic uniqueness in humans or other species. For example, gene 

expression patterns associated with neurological development appear to have experienced an 

accelerated rate of change in primates relative to other mammals, with axonogenesis-related and 

cell adhesion-related genes accelerated specifically in the human lineage [15]. Similarly, 

differentially expressed genes in human liver are enriched for metabolic function [8], suggesting 

a potential molecular basis for arguments implicating dietary shifts in the emergence of modern 

humans [23-25].  

 Adaptively relevant changes in gene expression levels across species implicate selection 

on gene expression phenotypes within species, and particularly within populations, the basic unit 
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of evolutionary change. However, in contrast to cross-species comparisons, we still know little 

about the genetic architecture of gene expression levels in natural nonhuman primate populations. 

No estimates of the heritability of gene expression traits are available, even for populations that 

have been intensively studied for many decades. We also do not know whether segregating 

genetic variation that affects gene expression is common or rare, how the effect sizes of such 

variants are distributed, or whether they carry a signature indicative of natural selection. If gene 

regulatory variation has indeed been key to primate evolution, as classic arguments suggest [26], 

then large gaps therefore remain in our understanding of this process. 

 Three primary reasons combine to account for the absence of such data. First, until 

relatively recently, the only feasible approach for measuring genome-wide gene expression 

levels on a population scale was microarray technology. This constraint limited the diversity of 

systems that could be assessed because cost-effective, commercially available arrays have only 

been developed for a handful of taxa. Second, genomic resources, especially detailed catalogues 

of known genetic variants (e.g., [27,28]), are also limited to a small set of species. The lack of 

such resources creates major barriers to genome-scale studies of the genetics of gene expression 

in other organisms, which rely on complementary gene expression and genotype data. Finally, 

for many taxa, samples suitable for gene expression profiling can be challenging to collect. In 

nonhuman primates, for example, RNA samples are rarely available even for the most 

intensively studied natural populations.  

 Recently, sequencing-based methods for measuring gene expression levels (e.g., RNA-

seq) have eliminated the need for species-specific arrays. Comparative genomic studies using 

RNA-seq have thus vastly expanded the set of taxa for which genome-wide expression data are 

available (including primates: [15,22]). Importantly, because fragments of expressed genes are 
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resequenced many times in RNA-seq studies, data on genetic variation are also generated in the 

process. Although these data can be affected by technical biases, several studies have 

demonstrated the generally high reliability of genotypes inferred from RNA-seq reads [22,29]. 

Such data can provide important insight into genetic diversity in species for which little other 

information exists [22]. Additionally, they provide the two ingredients necessary for mapping 

gene expression traits to genotype, at moderate cost and without the requirement for previously 

ascertained genetic variants.  

 Here, we evaluate the potential for such work in an intensively studied wild primate 

population, the baboons (Papio cynocephalus) of the Amboseli basin in Kenya. Forty-three years 

of prior research on this population have established it as an important model for human social 

behavior, health, and aging [30], and have facilitated the development of protocols for collecting 

samples appropriate for gene expression analysis [31-33]. We generated RNA-seq data for 63 

individually recognized members of the Amboseli study population. We used these data to 

explore the frequency, impact, and potential selective relevance of variants associated with 

variation in gene expression levels, using complementary expression quantitative trait locus 

(eQTL) mapping and allele-specific expression (ASE) approaches. We found evidence for 

abundant functional regulatory variation in the Amboseli baboons, and a surprising amount of 

power to detect these variants even with a modest sample size. We also found that functional 

variants are depleted in highly conserved genes, consistent with constraint on gene expression 

patterns. However, among genes with eQTL, we did not find strong support for a relationship 

between effect size and minor allele frequency. Such a relationship would be consistent with 

pervasive negative selection on gene expression phenotypes (i.e., selection against variants that 

produce large perturbations in gene expression levels) and has been suggested by work in 
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humans [34]. Finally, we used our data set to provide the first estimates of the heritability of 

gene expression levels in wild primates, including the relative contributions of cis-acting and 

trans-acting genetic variation.  

 

RESULTS 

Functional regulatory variation is common in the Amboseli baboons  

 We obtained blood samples from 63 individually recognized adult baboons in the 

Amboseli population (Figure 1). From these samples, we produced a total of 1.89 billion RNA-

seq reads (mean of 30.0 ± 4.5 s.d. million reads per individual: Table S1). On average, 67.2% of 

reads mapped to the most recent release of the baboon genome (Panu2.0), 69.2% of which could 

be assigned to a unique location. We used the set of uniquely mapped reads to estimate gene-

wise gene expression levels for NCBI-annotated baboon RefSeq genes. After subsequent read 

processing and normalization steps (Methods, Figure S1-S2), we considered variation in gene 

expression levels for 10,409 genes expressed in whole blood (i.e., all genes for which we could 

test for cis-acting genetic effects on gene expression).  

We also used the RNA-seq reads to identify segregating genetic variants in the Amboseli 

population. We considered only high confidence sites that were variable within the Amboseli 

population (Methods and Text S1; Figure S3). As expected [29], these sites were highly enriched 

in annotated gene bodies (Figure 2; Figure S4). Based on parallel analyses applied to human 

RNA-seq data, we estimated approximately 97% of these sites to be true positives, and a median 

correlation between true genotypes and inferred genotypes of 98.7% (Text S2; Figure S5-S6). To 

identify putative expression quantitative trait loci (eQTL), we focused on variants that passed 

quality control filters, within 200 kb of the gene of interest. Such variants represent likely cis-
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acting eQTL, which are more readily identifiable in small sample sizes than trans-eQTL. To 

identify cases of allele-specific expression, which provide independent but complementary 

evidence for functional cis-regulatory variation, we focused on genes for which multiple 

heterozygotes were identified for variants in the exonic regions of expressed genes. We also 

required a minimum total read depth at exonic heterozygous sites of 300 reads (which should 

provide high power to detect modest ASE: [35]), resulting in a total set of 2,280 genes tested for 

ASE. 

Both analyses converged to reveal extensive segregating genetic variation affecting gene 

expression levels in the Amboseli population. At a 10% false discovery rate, we identified eQTL 

for 1,787 (17.2%) of the genes we analyzed, and evidence for ASE for 510 (23.4%) of tested 

genes. Consistent with reports in humans (e.g., [36,37]), eQTL were strongly enriched near gene 

transcription start sites and in gene bodies (Figure 2; controlling for the background distribution 

of sites tested, which were also enriched in and around genes). Within gene bodies, eQTL were 

particularly likely to be detected near transcription end sites; this potentially reflects enrichment 

in 3’ untranslated regions, which are poorly annotated in baboon. Also as expected, genes with 

eQTL were more likely to exhibit significant ASE and vice-versa (hypergeometric test: p < 10-25; 

Figure 3a). The magnitude and direction of ASE and eQTL were significantly correlated when 

an eQTL SNP could also be assessed for ASE (n = 123 genes; r = 0.719, p < 10-20, Figure 3b), 

and when ASE SNPs were assessed as eQTL (n = 510 genes; r = 0.575, p < 10-45, Figure 3c).  

Combined, the two approaches yielded more information about genetic effects on gene 

expression than either approach alone. A total of 2,057 genes were associated with either an 

eQTL or significant ASE, with 240 genes common to both sets (of the 2,280 genes tested in both 

analyses, 901 of which were associated with an eQTL or significant ASE). Further, the set of 
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genes for which we detected ASE but not a significant eQTL (when tested for both; n = 270) 

were associated with significantly stronger evidence for harboring an eQTL than genes without 

ASE (p = 1.7 x 10-7), suggesting that these genes likely have moderate effect eQTL that were 

undetectable given our sample size. The 391 genes identified only in the eQTL analysis were 

similarly enriched for evidence of ASE (p = 2.4 x 10-4). Further investigation revealed that 

whereas detection of ASE was most strongly favored for highly expressed genes (i.e., higher 

RPKM: Wilcoxon test: p < 10-208; Figure 3d), detection of eQTL was most strongly favored for 

genes with high local SNP density (p < 10-72; Figure 3e). This pattern likely emerges because 

power to detect ASE is dependent on sequencing read coverage at heterozygous sites [35], which 

scales with gene expression level. In contrast, power to detect eQTL is affected by the likelihood 

of performing a test for association against at least one SNP in linkage disequilibrium with a 

causal variant(s). Functional regulatory variants were thus least likely to be detected for lowly 

expressed genes with low genetic diversity, potentially reflecting selective constraint on these 

genes as well as reduced power to identify genetic variants, test for ASE, and map eQTL.  

 

Increased power to detect eQTL in baboons relative to humans 

 The number and effect sizes of the eQTL we detected indicate that our power to detect 

eQTL in the Amboseli population was surprisingly high, especially given that our genotyping 

data set was limited only to those sites represented in RNA-seq data (i.e., primarily within 

transcribed regions of moderately to highly expressed genes). Further, while thousands of cis-

eQTL have been mapped in single human populations, doing so has generally required sample 

sizes several fold larger than ours [34,38].  
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 To provide a more informative estimate of the difference in power to detect eQTL in 

baboons relative to humans, we applied the same mapping, data processing, variant calling, and 

eQTL modeling pipeline to a similarly sized RNA-seq data set on 69 Yoruba (YRI) HapMap 

samples, in which samples were sequenced to a similar depth [36]. Using our approach for 

estimating and modeling the gene expression data, but obtaining the genotype data from an 

independent array platform, we could identify 700 genes with significant eQTL in the YRI data 

set at a 10% FDR. Approximately half (51%) could be recovered if we only focused on SNPs in 

transcribed regions. This number (n = 357) therefore reflects the likely theoretical limit of 

detection for performing eQTL mapping in which SNPs are called based on RNA-seq data (that 

is, when sequence coverage considerations are not taken into account). Indeed, when eQTL 

mapping for the YRI was conducted using genotype data obtained from RNA-seq reads (i.e., the 

same pipeline used for the baboons), we identified 290 genes with eQTL (41.4% of those 

identified using independently collected genotype data). The RNA-seq-based pipeline therefore 

reduces the number of genes with detectable eQTL by 50 – 60%. Extrapolation of this estimate 

suggests that, if genotyping array data had been available for the baboons, we might have 

identified eQTL for ~3500 - 4000 genes, comparable to results from human data sets with more 

than 350 samples [38]. To better understand the reasons behind this difference, we investigated 

three possible explanations.  

 Shifts in the minor allele frequency spectrum. We observed that the minor allele 

frequency (MAF) spectrum of variants called in the baboon data set included proportionally 

more intermediate frequency variants and proportionally fewer low frequency variants than in 

the human data set (Figure 4a, inset). To investigate the degree to which this shift conferred 
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greater power to detect eQTL in the baboons, we simulated eQTL for 10% of the genes in the 

study by randomly choosing a SNP near each of these genes.  

 We did so in two ways. First, we simulated the effect size of the eQTL, with possible 

effect sizes ranging from 0.25 to 2.5, in intervals of 0.25 (effect sizes are relative to a standard 

normal distribution). The power to detect an eQTL of a given effect size is contingent on the 

relative representation of different genotype classes in a population, and hence MAF (larger 

MAFs produce a more balanced set of alternative genotypes, and thus more power). Second, we 

simulated the proportion of variance in gene expression levels (PVE) explained by the eQTL, 

with possible PVE values ranging from 5% to 50%, in intervals of 5%. In this case, power to 

detect an eQTL does not depend on MAF because simulating the PVE directly integrates across 

the combined impact of effect size and MAF (a simulated high PVE eQTL with low MAF 

implies a large effect size variant). Thus, the impact of the MAF spectrum on the power to detect 

eQTL is reflected in the differences in power between the baboon data set and the YRI data set in 

the effect size-based versus the PVE-based simulations. In all cases, we calculated power as the 

proportion of genes with simulated eQTL recovered at a 10% FDR. 

 In PVE-based simulations, power to detect simulated eQTL was greater in the YRI data 

set (Figure 4a, dashed orange line vs dashed purple line), although this advantage disappeared 

when the YRI data set was subsampled to the same size as the baboon data set (Figure 4a, dashed 

gray line). However, the baboon data set provided more power to detect eQTL than the YRI data 

set (whether subsampled or not) when simulations were based on effect size, where power scales 

with MAF (Figure 4a, solid lines). Based on these differences, we estimate that the power to 

identify an eQTL of effect size equal to the mean estimated beta in baboons (0.96), is increased 
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in the Amboseli baboons by approximately 1.34-fold (Figure 4a, solid purple line vs solid orange 

line) as a function of differences in the MAF spectrum alone.  

Differences in genetic diversity and linkage disequilibrium. Because our RNA-seq-based 

approach does not identify variants outside of transcribed regions, causal SNPs were probably 

often not typed. To quantify the power to detect eQTL under this scenario, we again simulated 

eQTL among genes in the baboon and YRI data sets, but masked the causal sites. Doing so 

revealed much greater power to identify eQTL in baboons than in humans, across all values of 

simulated PVE or effect size (Figure 4b; Figure S7). One possible explanation for this 

observation stems from increased genetic diversity in the baboons compared to the YRI. Indeed, 

in baboons we tested an average of 45.4 (± 57.0 s.d.) genetic variants for each gene, whereas 

applying the same pipeline in YRI yielded an average of 20.3 (± 21.4 s.d.) testable variants per 

gene. An alternative explanation relates to patterns of LD, which we estimate to decay somewhat 

more slowly in the baboons (Figure 4b, inset). Higher SNP density in baboons increases the 

likelihood that, when a causal SNP is not typed, a nearby SNP will be available that tags it. 

Longer range LD suggests that a given SNP could also tag distant causal variants more 

effectively. 

To assess the contributions of SNP density and LD, we refined our simulations by first 

thinning the SNP density in the baboons to match SNP density in the YRI, and again masking the 

simulated causal eQTL. As expected, reducing genetic diversity in the baboons reduced the 

power to detect genes with a true eQTL (Figure 4b, purple dashed line vs pink dashed line). 

However, it did not completely account for the difference between the human population and the 

baboon population, suggesting that LD patterns probably contribute to higher eQTL mapping 

power in baboons as well as SNP density. Specifically, for an eQTL that explains 28% of the 
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variance in gene expression levels (the mean PVE detected in baboons for genes with significant 

eQTL), we estimate that SNP density and LD effects increase power by 1.21-fold (Figure 4b, 

purple dashed line vs pink dashed line) and 1.43-fold (Figure 4b, pink dashed line vs orange 

dashed line), respectively, when causal SNPs are not typed.  

Together, our simulations suggest that the MAF spectrum, genetic diversity, and LD 

patterns increase the number of genes with detectable eQTL in baboons versus the YRI by 2.35-

fold overall (1.34x from the MAF, 1.21x from SNP density effects, and 1.43x from LD effects). 

Further, considering that the effect size estimates in baboons tended to be larger than in the YRI 

(mean of 0.96 in baboons versus mean of 0.80 in YRI), the actual fold increase estimated from 

simulations is approximately 6-fold (Figure S7: ratio of purple versus orange lines at these effect 

sizes). This estimate is remarkably consistent with empirical results from our comparison of the 

real baboon and YRI data, in which we identified 6.16-fold the number of eQTL in the baboons. 

 

Mixed evidence for natural selection on gene expression levels 

 Interestingly, we found that genes harboring eQTL in baboons were also more likely to 

have detectable eQTL in the YRI (hypergeometric test, p = 2.39 x 10-7). Given the sample size 

limitations of the data sets we considered, this overlap suggests that large effect eQTL tend to be 

nonrandomly concentrated in specific gene orthologues. This pattern could arise if the regulation 

of some genes has been selectively constrained over long periods of evolutionary time, whereas 

others have been more permissible to genetic perturbation. Indeed, we found that the mean per-

gene phyloP score calculated based on a 46-way primate comparison was significantly reduced 

(reflecting less conservation) for genes with detectable eQTL in both species, and greatest for 
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genes in which eQTL were not detected in either case (p < 10-53; Figure 5a). We obtained similar 

results using phyloP scores based on a 100-way vertebrate comparison (p < 10-21; Figure S8). 

 eQTL were more likely to be identified for genes with higher genetic diversity (Figure 3), 

which may account for the relationship between phyloP score and eQTL across species: highly 

conserved genes are less likely to contain many variable sites. However, genes with eQTL in 

both species were also less likely to have orthologues in deeply diverged species, based on 

conservation in Homologene (β = -0.036, p = 1.78 x 10-8; Figure 5b). Genetic diversity within 

the baboons is very weakly correlated with Homologene conservation (r2 = 0.004). Thus, 

sequence-level conservation scores and depth of homology across species combine to suggest 

that eQTL—or at least those with relatively large effect sizes—are least likely to be detected for 

strongly conserved loci, and most likely to be detected for lineage-specific, rapidly evolving 

genes. Consistent with this idea, genes involved in basic cellular metabolic processes were 

under-enriched among the set of genes with eQTL in both species, and enriched among the set of 

genes for which no eQTL were detected in either species (Tables S2-S3). The set of genes with 

eQTL in either or both species, on the other hand, were enriched for loci involved in antigen 

processing, catalytic activity, and interaction with the extracellular environment (e.g., receptors, 

membrane-associated proteins). 

 Widespread selective constraint on gene expression levels has been suggested in previous 

eQTL analyses in humans, with evidence supplied by a strong negative correlation between 

minor allele frequency and eQTL effect size [34]. This pattern could arise if selection acts 

against large genetic perturbations, such that variants of large effect would be present only at low 

frequencies. Consistent with this idea, plotting eQTL effect size versus MAF in the baboons 

results in a very strong, highly significant negative correlation (r = -0.723, p < 10-280; Figure 5c), 
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with no large effect eQTL detected at higher MAFs. However, such a relationship could also be a 

consequence of the so-called winner’s curse (in which sampling variance leads to upwardly 

biased effect size estimates: [39]) because the degree of bias in effect size estimation is itself 

negatively correlated with MAF. Indeed, when we simulated sets of eQTL with constant small 

effect sizes (β = 0.75, close to the mean effect size detected for SNPs with MAF ≥ 0.4), we found 

that the relationship between estimated effect size and MAF among detected eQTL almost 

perfectly recapitulated the observed negative correlation. Hence, the correlation between 

estimated eQTL effect size and MAF in the baboons does not provide strong support for 

widespread negative selection on gene expression phenotypes within species. 

 

Genetic and environmental contributions to gene expression variation in wild baboons  

 Finally, we took advantage of our data set to generate the first estimates of genetic, 

demographic (age and sex), and environmental contributions to gene expression variation in wild 

nonhuman primates (Table S4). While our limited sample size leads to high variance around 

estimates for any individual gene, the median estimates across genes should be unbiased [40], so 

we concentrated on these overarching patterns. We focused specifically on three social 

environmental variables of known importance in this population, all of which have been 

extensively investigated as models for human social environments. These were: i) early life 

social status, which predicts growth and maturation rates [41,42]; ii) maternal social 

connectedness to other females, which predicts both adult lifespan and the survival of a female’s 

infants [43-46]; and iii) maternal social connectedness to males, based on recent evidence that 

heterosexual relationships have strong effects on survival as well [43].  
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 Overall, we found that genetic effects on gene expression levels tended to be far more 

pervasive than demographic and environmental effects. Specifically, the median additive genetic 

PVE was 28.4%, similar to, or slightly greater than, estimates from human populations [47-51]. 

We applied a Bayesian sparse linear mixed model (BSLMM: [40]) to further partition this 

additive genetic PVE into two components: a component attributable to cis-SNPs (here, all SNPs 

within 200 kb of a gene) and a component attributable to trans-SNPs (all other sites in the 

genome). Again similar to humans [50,51], we found that more of the additive genetic PVE is 

explained by the trans component (median PVE = 23.8%) than the cis component (median PVE 

= 2.9%) (Figure 6). Unsurprisingly, we estimated a larger cis-acting component for genes in 

which functional cis-regulatory variation was detected in our previous analysis (median PVE = 

10.2% among eQTL genes and median PVE = 5.0% among ASE genes).  

In contrast to the substantial genetic effects we detected, the median PVE explained by 

age and sex were 1.89% and 0.82% respectively (Figure S9). The distribution of PVE explained 

by age was significantly greater than expected by chance (Kolmogorov-Smirnov test on binned 

PVEs, in comparison to permuted data: p < 10-11), whereas that explained by sex was not (p = 

0.100); large sex effects tended to be constrained to a small set of genes on the X chromosome 

(Figure S9). Of the early environmental variables we investigated, only maternal social 

connectedness to males explained more variance in gene expression levels than expected by 

chance (p = 4.19 x 10-3), with a median PVE of 1.9%. Notably, while social connectedness to 

males (i.e., heterosexual bonds) and social connectedness to females (i.e., same-sex bonds) are 

both known predictors of longevity in the Amboseli baboons, previous analyses suggest that their 

effects are largely independent [43]. Our result extends this observation to the early life effects of 

maternal social connectedness on variance in gene expression levels. 
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 Taken together, our data suggest that while almost all genes are influenced by genetic 

variation, the effects of demographic and environmental parameters generally modest for any 

single aspect of the environment. However, in at least some cases, we find evidence that early 

environmental effects on gene expression levels appear to persist across the life course, as has 

previously been demonstrated in laboratory settings and in response to severe early adversity in 

humans (e.g., [52-54]). 

 

DISCUSSION 

 Much of what we know about genetic contributions to variation in gene expression levels 

in primates (and vertebrates more generally) comes from the extensive body of research on 

humans. However, increasing evidence indicates that humans are demographically unusual: 

compared to other primates, humans exhibit low levels of neutral genetic diversity and a low 

long-term effective population size [22,55,56]. Further, humans are distinguished from other 

primates by recent explosive population growth [57,58]. While late Pleistocene population 

expansion has been suggested for some nonhuman primates, including chimpanzees and 

Chinese-origin rhesus macaques [56,59], none have undergone the extreme levels of population 

increase that characterized humans. Indeed, evidence from microsatellite data suggests that the 

long-term effective population size of baboons actually may have contracted during this period 

[60].  

 These differences are not simply of historical interest, but also important for 

understanding the genetic architecture of traits measured in the present day. Differences in 

demographic history not only affect overall levels of genetic variation and the minor allele 

frequency spectrum, but also the mean effect size of sites that contribute to phenotypic variation 
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[61]. Interestingly, demographic history does not impact overall trait heritability [61,62], perhaps 

explaining why we estimated mean additive genetic PVEs for gene expression levels in baboons 

that are similar to those estimated for humans. However, demographic history can influence the 

power to detect individual genetic contributions to phenotypic variation. Large-scale population 

expansion of the type that occurred in human history appears to reduce power to identify 

genotype-phenotype correlations for fitness-related traits [61]. This observation may account, in 

part, for our ability to identify many more functional regulatory variants in the baboons than we 

expected based on previous studies in humans.  

 However, while our analysis extends previous observations that large effect eQTL are 

non-randomly distributed, we found mixed evidence for widespread negative selection on gene 

expression levels. Specifically, within the baboons alone, we found that the negative relationship 

between eQTL effect size and minor allele frequency was explicable based on winner’s curse 

effects alone. Thus, increased power to identify functional regulatory variants in the baboons is 

probably not due to pervasive associations between gene expression levels and fitness. In 

contrast, stronger evidence for selection on gene expression patterns stems from our cross-

species comparisons. In particular, we observed that genes with eQTL in baboons significantly 

overlapped with genes with eQTL in humans, and that these genes as a class also tended to be 

less constrained at the sequence level. This result suggests that genes vary in their tolerance of 

functional regulatory genetic variation, and, intriguingly, that gene-specific robustness to genetic 

perturbation may be a conserved property across species.  

 Because no comparable data are yet available for other large mammal populations, 

including for other baboons, it is unclear whether our results are typical or instead a consequence 

of the Amboseli population’s own unique history. In particular, the population has experienced 
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recent admixture between yellow baboons, the dominant taxon, and closely related anubis 

baboons (Papio anubis) [63,64]. Admixture, which appears to be relatively common in natural 

populations [65], can have important consequences for genetic diversity and LD patterns, and 

may have contributed to our ability to readily map gene expression phenotypes. Comparison to a 

non-admixed baboon population could help resolve this question. More generally, our results 

encourage further investigation of the relationship between demography and trait genetic 

architecture in other populations, as has been suggested for humans [61] but could also be 

profitably extended to nonhuman model systems. Such comparisons would provide an empirical 

basis for testing predicted relationships between demographic history and the power to identify 

genotype-phenotype associations. From an applied perspective, they could also help identify 

animal models that favor more highly powered association mapping studies, a strategy that has 

already been heavily exploited in domestic dogs [66,67] and suggested for rhesus macaques [56]. 

While the same sites will probably rarely be associated with the same traits across species, this 

strategy could help identify molecular mechanisms that are conserved across humans and animal 

models (e.g., [68]).  

Finally, our data—the first profile of genome-wide gene expression levels in a wild 

primate population—serve as a useful proof of principle of the ability to concurrently generate 

genome-wide gene expression phenotype and genotype data, and to relate them to each other 

using eQTL and ASE approaches. Intensively studied natural primate populations—some of 

which have been studied continuously for thirty or more years—have emerged as important 

phenotypic models for human behavior, health, and aging. The approach we used here provides a 

way to leverage these models for complementary genetic studies as well, especially if eQTL 

prove to be strongly enriched for sites associated with other traits, as in humans [69]. Although 
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preliminary, our results highlight the increasing feasibility of integrating functional genomic data 

with phenotypic data on known individuals in the wild. For example, our data set revealed a 

number of genes in which variation in gene expression levels could be mapped to an identifiable 

eQTL, validated using an ASE approach, and also linked to early life environmental variation. 

Such cases suggest the potential for future investigations of the molecular basis of persistent 

environmental effects, including whether genetic and environmental effects act additively or 

interact.  

 

METHODS 

Study subjects and blood sample collection 

 Study subjects were 63 individually recognized adult members (26 females and 37 males) 

of the Amboseli baboon population. All study subjects were recognized on sight by observers 

based on unique physical characteristics. To obtain blood samples for RNA-seq analysis, each 

baboon was anesthetized with a Telazol-loaded dart using a handheld blowpipe. Study subjects 

were darted opportunistically between 2009 and 2011, avoiding females with dependent infants 

and pregnant females beyond the first trimester of pregnancy (female reproductive status is 

closely monitored in this population, and conception dates can be estimated with a high degree of 

accuracy). Following anesthetization, animals were quickly transferred to a processing site 

distant from the rest of the group. Blood samples for RNA-seq analysis were collected by 

drawing 2.5 mL of whole blood into PaxGene Vacutainer tubes (Qiagen), which contain a lysis 

buffer that stabilizes RNA for downstream use. Following sample collection, study subjects were 

allowed to regain consciousness in a covered holding cage until fully recovered from the effects 
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of the anesthetic. They were then released within view of their social group; all subjects 

promptly rejoined their respective groups upon release, without incident. 

 Blood samples were stored at approximately 20 C overnight at the field site. Samples 

were then shipped to Nairobi the next day for storage at -20 C until transport to the United States 

and subsequent RNA extraction.  

 

Ethics statement 

Samples and data used in this study were collected from wild baboons living in the 

Amboseli ecosystem of southern Kenya. All behavioral, environmental, and demographic data 

are gathered as part of noninvasive observational monitoring of known individuals within the 

study population. This research is conducted under the authority of the Kenya Wildlife Service 

(KWS), the Kenyan governmental body that oversees wildlife (permit number 

NCST/5/002/R/777 to SCA and NCST/RCD/12B/012/57 to JT). As the animals are members of 

a wild population, KWS requires that we do not interfere with injuries to study subjects inflicted 

by predators, conspecifics, or through other naturally occurring events (e.g., falling out of trees). 

To collect blood samples, we perform temporary immobilizations using the anesthetic Telazol, 

delivered via a handheld blowgun. Permission to perform this procedure was granted through 

KWS, and was performed under the supervision of a KWS-approved Kenyan veterinarian, who 

monitored anesthetized animals for hypothermia, hyperthermia, and trauma (no such events 

occurred during our sample collection efforts). Observational and sample collection protocols 

were approved though IACUC committees at Duke University (current protocol is A028-12-02 

to SCA and JT) and the University of Chicago (ACUP 72080 to YG). 
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Gene expression profiling using RNA-seq 

 For each RNA sample (one per individual), we constructed an RNA-seq library suitable 

for measuring whole genome gene expression using Dynal bead poly-A mRNA purification and 

a standard Illumina RNA-seq prep protocol. Each library was randomly assigned to one lane of 

an Illumina Genome Analyzer II instrument and sequenced to a mean depth of 30 million 76-

base pair reads (± 4.5 million reads s.d., Table S1). The resulting reads were mapped to the 

baboon genome (Panu2.0) using the efficient short-read aligner bwa [70]. To recover reads that 

spanned putative exon-exon junctions, and therefore could not be mapped directly to the genome, 

we used the program jfinder on reads that did not initially map [36]. Finally, we filtered the 

resulting mapped reads data for low quality reads (quality score < 10) and for reads that did not 

map to a unique position in the genome. To assign reads to genes, we used the RefSeq exon 

annotations for Panu 2.0 (downloaded Sept 6, 2012). In downstream analyses, we considered 

only highly expressed genes that had non-zero counts in more than 10% individuals, and that had 

mean read counts greater than or equal to 10 (excluding the gene for beta-globin).  

We then performed quantile normalization across samples followed by quantile 

normalization for each gene individually, resulting in estimates of gene expression levels for 

each gene that were distributed following a standard normal distribution. This procedure 

effectively removed GC bias in gene expression level estimates (Figure S2). For eQTL mapping, 

ASE analysis, and PVE estimation for sex and age we used all 63 individuals. For PVE 

estimation for maternal rank and social connectedness, missing data meant that we conducted our 

analysis on n = 52 and n = 47 individuals, respectively. 

 

Variant identification and genotype calls 
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 To identify genetic variants in the baboon data set, we used the Genome Analysis Toolkit 

(v. 1.2.6; [71,72]). Because no validated reference set of known genetic variants are available for 

baboon, we performed an iterative bootstrapping procedure for base quality score recalibration 

(SI). In the final call set, we removed all sites i) that were monomorphic in the Amboseli 

samples; ii) for which genotype data were missing for more than 12 individuals (19%) in the data 

set; iii) that deviated from Hardy-Weinberg equilibrium; and iv) that failed filters for variant 

confidence, mapping quality, strand bias, and read position bias (Text S1). We then retained sites 

with a minimum quality score of 100 located within 200 kb of a gene of interest, and that were 

sequenced at a mean coverage ≥5x across all samples in the data set. We validated our quality 

control and filtering steps by performing the same procedure on an RNA-seq data set from the 

HapMap Yoruba population (Text S2). These steps resulted in a set of 64,432 single nucleotide 

polymorphisms carried forward into downstream analysis (30,938 for the YRI). For eQTL 

mapping analysis, missing genotypes in this final set were imputed using BEAGLE [73]. 

 To estimate genome-wide LD, we followed the approach of Eberle and colleagues [74], 

which uses allele frequency-matched SNPs to calculate pair-wise LD. Specifically, we selected 

SNPs with MAFs greater than 10% and divided them into four subgroups (MAF between 10%-

20%; MAF between 20%-30%; MAF between 30%-40%; and MAF between 40%-50%). We 

then calculated pair-wise r2 for all SNP pairs within 100kb in each subgroup using VCFtools 

[75] and combined values from all four subgroups.  

 

eQTL mapping 

 To identify cis-acting eQTLs in the baboon data set, we used the linear mixed model 

approach implemented in the program GEMMA [76]. This model provides a computationally 
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efficient method for eQTL mapping while explicitly accounting for genetic non-independence 

within the sample; in our case, some individuals in the data set are related (although overall 

relatedness was low: the median kinship coefficient across all pairs was 0.015 (mean = 0.024 ± 

0.033 s.d.).  

For each gene, we considered all variants within 200kb of the gene as candidate eQTLs. 

For each variant, we fitted the following linear mixed model: 

y = μ + xβ + u +ε,

u ~ MVN(0,σ u
2K ),

ε ~ MVN(0,σ e
2I ),

 

and tested the null hypothesis H0: β=0 versus the alternative H1: β≠0. Here, y is the n by 1 vector 

of gene expression levels for the n individuals in the sample; μ is the intercept; x is the n by 1 

vector of genotypes for the variant of interest; and β is the variant’s effect size. The n by 1 vector 

of u is a random effects term to control for individual relatedness and other sources of population 

structure, where the n by n matrix K=XXT/p provides estimates of pairwise relatedness derived 

from the complete 63 x 64,432 genotype data set X. Residual errors are represented by ε, an n by 

1 vector, and MVN denotes the multivariate normal distribution.  

We took the variant with the best evidence (i.e., lowest p-value) for association with gene 

expression levels for each gene, and then calculated corrected gene-wise q-values (with a 10% 

false discovery rate threshold) via comparison to the same values obtained from permuted data 

(similar to [36,77]). We discuss possibly confounding effects of using RNA-seq data for this 

analysis in the Supplementary Information (Text S3). 

 

ASE detection 
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 To identify ASE, we focused on SNPs within gene exons with Phred-scaled quality 

scores greater than 10. We further required that these sites have more than five reads in more 

than two individuals and more than 300 total reads across all heterozygous individuals. After 

these filtering steps, we retained 8,154 SNPs associated with 2,280 genes for ASE analysis.  

 For each variant, we considered a beta-binomial distribution (following [36]) to model 

the number of reads from the (+) haplotype (denoted as xi
+) or the number of reads from the (-) 

haplotype (denoted as xi
-), conditional on the number of total reads (denoted as yi=xi

++xi
-), for 

each individual i, or 

xi
+ | y

i
~ binomial(y

i
,θ ),

θ ~ beta(α, β ).
 

We tested the null hypothesis H0: α=β versus the alternative H1: α≠β using a likelihood ratio test, 

where we maximized the likelihoods in the null and alternative models using the R function 

optim. Again, we took the variant with the lowest p-value for each gene, and then calculated 

corrected gene-wise q-values (using a 10% false discovery rate threshold) via comparison to the 

same values obtained from an empirical null distribution. To construct the empirical null 

distribution, we performed the same analysis after substituting the xi
+ value for each variant of 

interest, for each heterozygous individual, with a randomly selected xi
+ value from a 

heterozygous site elsewhere in the genome (contingent on that site having the same number of 

total reads, yi).  

 

Power simulations 

 To assess the relative power of eQTL mapping in baboons versus the YRI data set, we 

randomly selected 10% of the genes in each data set to harbor eQTL. For each of these simulated 

eQTL genes, we then randomly chose a SNP among all the cis-SNPs tested (i.e., all variable sites 
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that passed quality control filters and fell within 200 kb of a gene of interest) and assigned it as a 

causal eQTL. The impact of the eQTL was simulated using either effect size, in which we 

simulated a constant effect size between 0.25 and 2.5 (in intervals of 0.25) or PVE, in which we 

chose an effect size that explained a specific proportion of variance in gene expression levels 

(from 5% to 50%, in intervals of 5%). We then simulated gene expression levels by adding the 

effect of the simulated cis-eQTL SNP to residual errors drawn from a standard normal 

distribution. To calculate the FDR, we also simulated a set of genes with no eQTL. For each 

combination of effect sizes and population (baboon or YRI), and for each simulation scenario 

(e.g., with the causal SNP masked or unmasked, with SNP density thinned in the baboons, or 

using PVE versus a constant effect size), we performed 10 replicates. For each replicate, we 

calculated the power to detect eQTL as the proportion of simulated eQTL genes recovered at a 

10% empirical FDR.  

 

Evidence for patterns consistent with natural selection on gene expression levels 

 We investigated the relationship between conservation level and the presence of 

detectable eQTL in the Amboseli baboons or the YRI using phyloP conservation scores [78] and 

Homologene conservation of orthology across species. For the former, we extracted the per-site 

phyloP score from the 46-way primate comparison or 100-way vertebrate comparison on the 

UCSC Genome Browser for each base contained within the annotated exons (including 

untranslated regions) used for mapping RNA-seq reads in the YRI. We then calculated the 

average phyloP score across all exons associated with a given gene. We obtained Homologene 

scores from the CANDID database [79]. In both cases, we used linear models to test for a 

relationship between conservation level and three categories of genes: those with no detectable 
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eQTL in either the baboons or YRI; those with a detectable eQTL in one of the two species; and 

those with a detectable eQTL in both species. 

 To investigate whether the correlation between minor allele frequency and eQTL effect 

size could be a result of winner’s curse effects, we extracted the results from our simulations in 

which the causal variant was masked and the true effect size was fixed at a small value (beta = 

0.75). We then calculated the correlation between the estimated effect size (�� ) from these 

simulations against minor allele frequency, for detected eQTL only. 

 

Estimation of genetic contributions to gene expression. 

We used the Bayesian sparse linear mixed model (BSLMM) approach implemented in 

the GEMMA software package [76] to estimate the genetic contribution to gene expression 

variation. Specifically, for each gene, we fit the following model 

y = μ + xcisβcis + xtransβtrans +ε
βcis,i ~ π N(0,σ a

2 )+ (1− π )δ0

βtrans,i ~ N(0,σ b
2 )

 

where y is the n by 1 vector of gene expression levels for n individuals; μ is the intercept; xcis is 

an n by pcis matrix of genotypes for pcis cis-SNPs and βcis are the corresponding effect sizes; xtrans 

is an n by ptrans matrix of genotypes for ptrans trans-SNPs and βtrans are the corresponding effect 

sizes; and ε is an n by 1 vector of i.i.d. residual errors. We used different priors for cis-acting 

effects and trans-acting effects to capture different properties for the two components. 

Specifically, the spike-slab prior on the cis effects βcis captures our prior belief that only a small 

proportion of local SNPs have cis effects and these effects are relatively large. The normal prior 

on the trans effects captures our prior knowledge that trans-acting SNPs tend to be relatively 

difficult to find and have relatively small effects. In addition, because pcis is small and ptrans 
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approximately equals p, the number of total SNPs, we used p instead of ptrans to facilitate 

computation. We used Markov chain Monte Carlo (MCMC) to fit the model with 1000 burn-in 

and 10000 sampling steps. We obtained posterior samples of βcis and βtrans to calculate the PVE 

attributed by each of the two components, as well as the total additive genetic PVE contributed 

by both components.  

 To calculate PVE values for demographic and environmental predictors (described in 

detail in Text S3), we again used the linear mixed model approach implemented in GEMMA to 

control for additive genetic effects. For each gene, we fit the following model: 

 

where x is the n by 1 vector of values for the demographic or environmental predictor of interest 

and β is its coefficient. The n by 1 vector of u is a random effects term with K=XXT/p controlling 

for additive genetic effects. We calculated the PVE estimate as var(x��)/var(y), where var denotes 

the sample variance.  
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FIGURE LEGENDS 

 

Figure 1. Workflow for identification of functional cis-regulatory variants using RNA-seq 

data.  

 

Figure 2. Baboon eQTLs are enriched in and near genes. The locations of all SNPs tested in 

the eQTL analysis are shown in gold relative to the 5’ most gene transcription start site (TSS) 

and the 3’ most gene transcription end site (TES) for all 10,409 genes. SNPs detected as eQTL 

are overplotted in blue, and are enriched, relative to all SNPs tested, near transcription start sites, 

transcription end sites, and within gene bodies. Gray shaded rectangle denotes the region 

bounded by the TSS and TES, with gene lengths divided into 20 bins for visibility (because the 

gene body is thus artificially enlarged, SNP density within genes cannot be directly compared 

with SNP density outside of genes). Note that SNPs that fall outside of one focal gene may fall 

within the boundaries of other genes. Inset: Distribution of all SNPs tested relative to the location 

of genes, highlighting the concentration of SNPs in genes (the peak at the center of the plot).  

 

Figure 3. Agreement between eQTL and ASE approaches for identifying functional 

variants. (A) Venn diagram depicting the overlap between genes with significant eQTL and 

ASE, among genes tested in both cases. Genes with significant eQTL are more likely to have 

significantly detectable ASE and vice-versa (p = 6.02 x 10-27). (B) eQTL SNPs in exonic regions 

that could also be tested for ASE reveal correlated effect sizes (n = 123; p < 7.47 x 10-21). (C) 

Similarly, ASE SNPs exhibit effect sizes that are correlated with evidence for eQTL at the same 

sites (n = 510; p < 2.60 x 10-46). (D) Detection of ASE is favored for genes with higher 
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expression levels (p = 3.99 x 10-209), (E) whereas detection of eQTL is favored for genes with 

greater cis-regulatory SNP density (p = 1.05 x 10-73). 

 

Figure 4. Power to detect eQTL in the Amboseli baboons compared to the HapMap YRI 

population. (A) Simulated eQTL data sets demonstrate that the baboon data set has greater 

power to detect eQTL (at a 10% FDR threshold) when eQTL are simulated based on effect size 

(solid lines and triangles) but not when eQTL are simulated based on proportion of variance in 

gene expression levels explained (PVE: dashed lines and circles). This result likely stems from 

differences in the minor allele frequency (MAF) spectrum between baboons and YRI (inset), 

which favors eQTL mapping in the baboons; simulations based on effect size are sensitive to 

MAF, but simulations based on PVE are not. (B) Masking the simulated eQTL SNP 

demonstrates that the baboon data set has greater power to detect eQTL due to both increased 

cis-regulatory SNP density and more extended LD (inset). Subsampling the SNP density in the 

baboon data set to the level of the YRI data set reduces the difference in power but does not 

remove it completely. In B, all results are shown for PVE-based simulations to exclude the 

effects of the MAF.  

 

Figure 5. Mixed evidence for negative selection on variants affecting gene expression level. 

(A) Genes that harbor detectable eQTL in baboons, the YRI, or both are more likely to be 

conserved across long stretches of evolutionary time, based on mean phyloP scores in a 46-way 

primate genome comparison. (B) These genes are also more likely to be lineage specific, based 

on Homologene annotations. (C) Although we detect a strong negative correlation between 

eQTL effect size and eQTL minor allele frequency, in support of pervasive selection against 
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alleles with large effects on gene expression levels, this correlation also appears when simulating 

constant eQTL effect sizes, suggesting winner’s curse effects. 

 

Figure 6. Genetic contributions to variance in gene expression levels in wild baboons. 

Proportion of variance in gene expression levels estimated for all genes, genes without detectable 

eQTL, and genes with detectable eQTL. Additive genetic effects on gene expression variation, 

especially cis-acting effects, are larger for eQTL genes than for other genes.  

 

SUPPORTING INFORMATION CAPTIONS 

Text S1: Read mapping and SNP quality filtering pipeline 

Text S2: Estimated accuracy of SNP genotypes using human RNA-seq data 

Text S3: Possible confounds associated with eQTL mapping using RNA-seq data 

Text S4: Demographic and environmental variables 

Table S1: Read mapping summary 

Table S2: Gene Ontology analysis for genes with no eQTL in baboon or YRI 

Table S3: Gene Ontology analysis for genes with eQTL in either or both baboon and YRI 

Table S4: Demographic and environmental data  

Figure S1: Detailed workflow for gene expression level estimation  

Figure S2: Elimination of GC bias via quantile normalization 

Figure S3: Detailed workflow for SNP genotyping 

Figure S4: Location of analyzed SNPs relative to genes 

Figure S5: Accuracy of genotype calls for SNPs independently typed in HapMap3 
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Figure S6: PCA projection of YRI samples using the RNA-seq-based pipeline versus 

independently typed SNPs 

Figure S7: Power simulations for masked eQTL based on effect size 

Figure S8: Correlation between eQTL detection and mean phyloP scores based on 100-way 

vertebrate comparison 

Figure S9: PVE explained by demographic and early environmental variables 

Figure S10: Coverage by genotype call 

 

ACCESSION NUMBERS 

All gene expression data will be deposited into the Gene Expression Omnibus upon publication; 

raw RNA-seq reads will also be deposited into NCBI’s Short Read Archive. 
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