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Abstract 
 
In the age of next-generation sequencing, the availability of increasing amounts and 
quality of data at decreasing cost ought to allow for a better understanding of how 
natural selection is shaping the genome than ever before. Yet, alternative forces such 
as demography and background selection obscure the footprints of positive selection 
that we would like to identify. Here, we illustrate recent developments in this area, 
and outline a roadmap for improved selection inference. We argue (1) that the 
development and obligatory use of advanced simulation tools is necessary for 
improved identification of selected loci, (2) that genomic information from multiple-
time points will enhance the power of inference, and (3) that results from 
experimental evolution should be utilized to better inform population-genomic 
studies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2014. ; https://doi.org/10.1101/009654doi: bioRxiv preprint 

https://doi.org/10.1101/009654
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

	
   3	
  

Identification of beneficial mutations in the genome: an ongoing quest 
 
The identification of genetic variants that confer an advantage to an organism, and 
that have spread by forces other than chance, remains as an important question in 
evolutionary biology. Success in this regard will have broad implications not only for 
informing our view of the process of evolution itself, but also for evolutionary 
applications ranging from clinical to ecological. Despite the tremendous quantity of 
polymorphism data now at our fingertips, which in principle ought to allow for a 
better characterization of such adaptive genetic variants, it remains a challenge to 
unambiguously identify alleles under selection. This is primarily owing to the 
difficulty in disentangling the effects of positive selection from those of other factors 
that shape the composition of genomes, including both demography as well as other 
selective processes.  
 
Approaches to identify positively selected variants from genomic data can be broadly 
divided into two categories: those that make use of within-population polymorphism 
data, and those that make use of between-population/species data. While each 
approach has its respective merits, we here focus on recent developments in 
population-genetic inference from polymorphism data in both natural and 
experimental settings (see [1,2] for more general reviews, and [3,4] for recent and 
specific literature on divergence-based selection inference). For population-genetic 
inference from single-time point polymorphism data (as is most commonly the case) 
this includes not only sophisticated statistical methods, but also simulation programs 
that enable us to model expected genomic signatures under a wide variety of possible 
scenarios. Alternatively, data from multiple-time points – such as those recently 
afforded by ancient genomic data as well as many clinical and experimental datasets - 
can be used to greatly improve inference by catching a selective sweep “in the act”. 
Finally, recent results from the experimental evolution literature have begun to better 
illuminate the expected distribution of fitness effects (DFE), the associated costs of 
adaptation, and the extent of epistasis. In this opinion piece, we present an overview 
of recent developments for selection inference in the above-mentioned areas, and 
offer a roadmap for future method development. 
 
Selection inference from a single-time point 
 
One of the earliest efforts to quantify selection in a natural population was based on 
multiple-time point phenotypic data [5,6]. With the onset of genomics however, new 
sequencing methods were both tedious and expensive, such that the vast majority of 
data collected were, and still are, of the single-time point variety. For this reason, one 
generally observes only the footprints of the selection process, making it more 
difficult to distinguish regions shaped by neutral processes from those shaped by 
selective processes. Over the past decades, population genetic theory has predicted the 
effects of different selection models on molecular variation. These predictions have 
given rise to test statistics designed to detect selection using polymorphism data, 
based on patterns of population differentiation (e.g., [7-10]), the shape of the site-
frequency spectrum (SFS) (e.g., [11-13]), and haplotype / linkage disequilibrium (LD) 
structure (e.g., [14-17]). 
 
Despite efforts to create statistics robust to demography, all currently available 
methods to detect selection are prone to misinference under non-equilibrium models 
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[18,19]. Therefore, in parallel to the production of statistics for inferring selection, a 
separate class of methods has been developed to estimate the demographic history of 
populations utilizing the same patterns of variation[20,21]. This lends itself to a two-
step approach when analyzing population-genetic data: first, demography is inferred 
using a putatively neutral class of sites, and that model is then used to test for 
selection among a putatively selected class of sites [13,16]. However, the assumptions 
enabling this inference are highly problematic because they rely on the correct 
identification of a class of sites that is both neutral and untouched by linked selection. 
Background selection (BGS), for example, may indeed influence a large fraction of 
the genome in many species [22]. Thus, the misidentification of such a class of sites in 
the genome may not only result in the misinference of the underlying demographic 
history, but also in misinference of selection owing to the incorrect estimation of the 
demographic null model – leading to both false positives and false negatives (Figure 
1). 
 
In order to circumvent this problem, it is therefore necessary to develop methods that 
can jointly infer the demographic and selective history of the population 
simultaneously, recognizing that both processes are likely to shape the majority of the 
genome in concert [23]. The development of simulation software that can model both 
positive and negative selection in non-equilibrium populations (see below) is a step 
towards this goal, as it allows for the generation of expected patterns of variation 
under such scenarios. Recently, the introduction of likelihood-free inference 
frameworks such as Approximate Bayesian Computation (ABC) [24] has made it 
computationally feasible to combine demographic and selective inference. Recent 
advances in this field allow for management of the large number of summary statistics 
needed to achieve this goal [25,26], and the pieces appear largely in place for 
significant progress to be made on this front. 
 
Selection inference from multiple-time points 
 
As noted above, although temporal data was considered in the infancy of population 
genetics, it was not until the late 1980’s that multi-time point genetic datasets became 
available, spurring the development of related statistics. These approaches focused 
first on the estimation of changes in population size [27-30]; later, new methods were 
developed specifically for time-serial data to co-estimate parameters such as the 
intensity of selection and the effective population size [31]. 
 
Multi-time point methods have a major advantage over single-time point based 
approaches in that knowledge of the trajectory of an allele provides valuable 
information about the underlying selection coefficient. Owing to advances in 
sequencing technologies, there is now an increased availability of multi-time point 
data of not only an experimental but also a non-experimental nature (ranging from 
ancient samples to those from longitudinal medical studies or field work). This 
temporal dimension spurred the development of multiple-time point based methods 
over the last few years – all seeking to estimate some combination of selection 
coefficient and a) effective population size [32,33], b) migration [34] c) the age of the 
selected mutation [31], or d) the recombination rate [35]. These methods differ both in 
the underlying models and in their respective performance, and hence in the 
conditions to which they are best suited (cf. Table 1, Supplementary Table 1). In  
Malaspinas et al. [31] and Mathieson and McVean [34], the trajectory of the selected 
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allele is modeled as a hidden Markovian process, and the observations are represented 
as binomial observations from the population. Subsequently, Malaspinas et al. [31] 
use an approximate transition density to compute the likelihood, whereas Mathieson 
and McVean [34] use an expectation-maximization algorithm to maximize the 
likelihood, which speeds up the estimation procedure. By contrast, Foll et al. [32,33] 
do not use a Hidden Markov Model (HMM) but an ABC approach to obtain the 
posterior distribution of the selection coefficient after simulating allele frequency 
trajectories using the Wright-Fisher model under a range of selection coefficients. 
This approach results in lower accuracy for very small selection coefficients, but also 
represents the fastest and least biased method to date. 
  
Although current multi-time point methods are better at inferring the parameters of 
positive selection than single-time point methods, a number of challenges remain. 
Although maximum-likelihood estimators (MLE) may have higher accuracy for small 
selection coefficients than an ABC-based approach, currently available 
implementations are extremely computationally intensive and thus cannot be readily 
used as scans of selection (i.e., a candidate site must be known a priori – a generally 
unlikely scenario), and the number of time points necessary to achieve sufficient 
power still remains largely unexplored. Also, owing to the recent development of 
these methods, a relatively small number of selection models have been considered – 
primarily those of consistent and directional positive or negative selection acting on 
the candidate site. As such, they suffer from the same limitation described above for 
single-time point inference in that they are unable to jointly estimate selection and the 
demographic history of the population. Secondly, such methods have also thus far 
been unable to effectively tease apart the effects of direct vs. linked selection. On the 
other hand, given the computational efficiency of recently proposed ABC-based 
approaches [32,33], it has indeed become possible to effectively utilize such 
approaches in order to identify candidate sites from whole genome polymorphism 
data, thereby avoiding the first limitation. Also, because of its efficiency and ability to 
handle multiple summary statistics, ABC appears as the most promising framework in 
which to consider more complex selection models under non-equilibrium 
demographic scenarios.  
 
Simulating selection 
 
Simulation programs have long been an important tool in population genetics, both for 
validating theoretical work and for characterizing real data. In the area of selection 
inference, simulations are used to investigate appropriate critical values of test 
statistics under non-trivial models and for detecting deviations from the standard 
neutral model [11,36,37]. Recently, the importance of efficient simulation under 
complex models has become relevant both for understanding expected patterns of 
variation and for direct inference using likelihood free ABC [24]. 
 
Currently, there are a number of simulation programs available that can simulate a 
wide range of scenarios and are applicable to different types of models and data (see 
Table 2). Broadly speaking, simulation programs can be split into two different types. 
Forward simulators can include a wide range of demographic and selective models 
[38-43]. However, since every gamete needs to be tracked and every generation 
simulated, they tend to be computationally costly and thus slow. By contrast, 
coalescent simulators are very fast as only the sample’s genealogy needs to be 
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considered, and thus only events for the genealogy in question need to be tracked [44-
47]. Unfortunately, including arbitrary selection models in coalescent simulations is 
difficult, because coalescent models rely on the assumption that mutations are 
independent of the genealogy of the sample – an assumption that is violated in 
essentially any model including selection. While certain scenarios can be modeled 
circumventing this problem (such as modeling a selected allele as an additional 
population connected by migration [48]), the integration of more complex scenarios 
represents a challenge [48,49]. 
 
In the development of both forward and backward simulation tools, a major recent 
focus has been on modeling positive selection under arbitrary non-equilibrium 
models. As it is difficult to analytically obtain expectations for patterns of variation 
under these conditions, simulations become important: these models are indeed 
tractable to simulate, and both forward [50] and coalescent simulation programs [46] 
have recently been released that provide better performance under models of arbitrary 
demographic history. Utilizing today’s computational resources, application of more 
complex models is feasible, allowing for highly parameterized demographic histories 
[32,51,52], and permitting direct inference of selection using ABC.   
 
More recently, there is growing awareness of the effects of BGS [53,54] in shaping 
genomic patterns and on the performance of methods designed for detecting positive 
selection. Intermediate levels of BGS pose a difficult problem in modeling, at least 
with coalescent simulators, despite the relative ease of simulating BGS in a forward-
simulation framework [40]. While strongly deleterious mutations are purged from the 
population immediately, and very slightly deleterious mutations behave neutrally, 
intermediately deleterious mutations (cf. Figure 2) accumulate according to non-
neutral dynamics that have yet to be studied in more detail [55]. 
The growing awareness of the importance of accounting for BGS in future studies is 
comparable to recent progress in the consideration of demography – where previously 
it was common to assume an equilibrium population history when performing tests of 
selection, and now demography is commonly considered in such inference. BGS thus 
appears to be the next frontier to be considered in the development of simulation 
tools. However, as computing speed and algorithmic developments improve, it should 
become a priority to develop full inference schemes for co-estimation of demography 
and BGS in the future [56]. In particular, direct estimation of the DFE in both 
experimental and natural populations would lead to new insights into the evolutionary 
process. Variation of estimated parameters over the genome, and when applicable, 
over time, can lead to a deeper understanding of how the dynamics of demography, 
recombination, selection and mutation drive evolution in natural populations. 
Complementary to such inference is the potential for validation of statistical methods 
under known demographic and selection models via experimental-evolution studies.  
 
Experimental evolution as a new source of information 
 
Through advances in sequencing techniques and bioengineering, experimental-
evolution approaches (see Box 1) have become a flourishing area of development in 
evolutionary biology, catching increasing interest from the field and enabling a large-
scale evaluation of mutational effects that was previously unthinkable. Two general 
types of approaches dominate this area, one relying on the accumulation of naturally 
arising mutations over many generations, and one based on the simultaneous 
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introduction and competition of hundreds or thousands of engineered mutations. 
Below, we highlight three implications emerging from recent studies that we believe 
are particularly relevant for those interested in selection inference. 
 
Firstly, approaches using engineered mutations in viruses or microbes allow for a 
systematic picture of the DFE of all possible point mutations in a chosen region of a 
gene, hence enabling an assessment of the proportions of beneficial, neutral, 
deleterious, and even lethal mutations (e.g., [57,58]). The general picture thus far 
confirms the one proposed by the nearly-neutral theory [59], postulating a bimodal 
DFE with one mode centered at wild-type-like, and another at strongly deleterious 
fitness. Notably, however, most studies identify a wide wild-type-like mode strongly 
skewed towards deleterious selection coefficients (cf. Figure 2). This suggests the 
heavy influence of effective population size in dictating the neutral class of sites, and 
further highlights the importance of considering the effects of BGS. Integrating our 
emerging knowledge of the shape of the DFE into simulation tools will be an 
important step towards better selection inference.  
 
Secondly, as the scale of experimental-evolution experiments increases, it is more 
feasible to study not only the effects of single, but also those of double and multiple-
step mutations. A pattern of common epistasis emerges (in particular within genes or 
pathways), in which the combined effects of mutations are very difficult to predict 
from the measured singular effects of a given mutation. This might result in the 
“missing heritability” commonly observed in genome-wide association studies [60]. 
In particular, this suggests that the genetic background must be considered when 
trying to detect single alleles under selection. 
 
Thirdly, although lab environments cannot reproduce natural conditions (cf., e.g. 
[61]), there are numerous cases in which laboratory evolution experiments have re-
identified known antibiotic or antiviral resistance mutations from natural populations, 
even if grown under quite unnatural conditions (e.g.,  [32]), or have provided other 
important results regarding the evolution of resistance (reviewed in [62]) – indicating 
that experimental-evolution results are indeed informative for inference about natural 
populations. In addition, experimental-evolution approaches allow for the study of the 
effects of the same mutations in different environments. Several such studies have 
indicated pervasive costs of adaptation, including both mutations of large effect 
(reviewed in [63,64]) and of small effect [65]. These results suggest that if, upon a 
change of the environment, adaptation is common from standing genetic variation 
instead of new mutations, the variation may likely be rare and segregating under 
mutation-selection balance [66]. 
 
A roadmap for improved selection inference 
 
Despite over one hundred years of population-genetic research, major advances in our 
understanding of genetics, and huge amounts of polymorphism data across organisms 
and populations, many of the initial challenges that faced Fisher and Wright still 
persist today. However, it is fair to say that many of the necessary next steps are clear, 
and encouragingly, many of the essential pieces appear ready to be assembled to make 
such advances. We suggest the following as guidelines for moving the field forward: 
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1) Continued improvements of simulation tools are allowing increasingly relevant 
models to be considered – but computationally efficient programs capable of 
simulating a wide range of complex models represent an ongoing challenge. 
Relatedly, simulations should become an obligatory instrument to assess the power of 
inference, to test new methods, and to consider alternative models. 
 
2) ABC is a fast and efficient inference method that is likely the way forward for co-
estimating demography and BGS with positive selection. However, the identification 
of summary statistics that are capable of distinguishing between these processes, 
particularly given that there may not be genomic sites impacted by only a single one 
of these effects, remains a pressing challenge. 
 
3) Results from experimental evolution complement population genomics by yielding 
important insights into the DFE and the extent of epistatic interactions. An explicit 
and realistic shape of the DFE can now be incorporated both into simulation 
algorithms and in inference methods applied to genomic polymorphism data in natural 
populations. 
 
This opinion piece thus represents a roadmap for improved selection inference – 
utilizing novel theory/method development combined with the tremendous amount of 
data currently being made available via next-generation sequencing. As such, we may 
for example draw information from experimental-evolution studies, and leverage it 
against time-sampled population data allowing for entire mutational trajectories to be 
studied within the context of the underlying distribution of fitness effects. With these 
theoretical and experimental tools, population genetics is indeed on the verge of 
important breakthroughs in not only our general understanding of the process of 
adaptation, but also in the ability of evolutionary analysis to provide important 
insights to related fields ranging from ecology to medicine. 
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Tables, Figures, Boxes, Glossary: 
 
Abbreviations 
ABC Approximate Bayesian computation 
BGS  Background selection 
DFE  Distribution of fitness effects 
HMM  Hidden Markov model 
MLE Maximum-likelihood estimator 
SFS  Site-frequency spectrum 
 
Glossary 

-­‐ Background selection: reduction of genetic diversity due to selection against 
deleterious mutations at linked sites. 

-­‐ Coalescent simulator: simulation tool that reconstructs the genealogical 
history of a sample backwards in time. This greatly reduces computational 
effort, but only models in which mutations are independent of the sample’s 
genealogy can be implemented. 

-­‐ Cost of adaptation: the deleterious effect that a beneficial mutation can have 
in a different environment. Prominent examples are antibiotic resistance 
mutations, which have often been observed to cause reduced growth rates (as 
compared with the wild type) in the absence of antibiotics. 

-­‐ Demographic history: the population history of a sample of individuals, 
which can include population size changes, differing sex ratios, migration 
rates, splitting and reconnection of the population, as well as variation over 
time in these parameters. 

-­‐ Distribution of fitness effects (DFE): The statistical distribution of selection 
coefficients of all possible new mutations, as compared with a reference 
genotype. 

-­‐ Epistasis: the interaction of mutational effects, resulting in a dependence of 
the effect of a mutation on the background it appears in.   

-­‐ Forward simulator: simulation tool that models the evolution of populations 
forward in time. This allows for implementation of complex models, but also 
usually results in much longer computation times because all 
individuals/haplotypes must be tracked. 

-­‐ Non-equilibrium model: any model that incorporates violations of the 
assumptions of the standard neutral model (see below). 

-­‐ Selection coefficient: A measure of the strength of selection on a selected 
genotype. Usually, the selection coefficient is measured as the relative 
difference between the reproductive success of the selected and the ancestral 
genotypes. 

-­‐ Selective sweep: the process of a beneficial mutation (and its closely linked 
chromosomal vicinity) being driven (“swept”) to high frequency or fixation by 
natural selection. Selective sweeps result in a genomic signature including a 
local reduction in genetic variation, and skews in the SFS. 

-­‐ Standard neutral model: under this model [67], the population resides in an 
equilibrium of allele frequencies determined by the (constant) mutation rate 
and population size. The model assumptions include random mating, binomial 
sampling of offspring, and no selection.  
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Table 1. An overview of currently available multiple-time point selection estimators 
and their strengths and weaknesses.  
 
Author	
   Ref	
   Type	
   Advantages	
   Disadvantages	
  
Bollback	
  et	
  
al.,	
  2008	
  

[68]	
   MLE	
   	
   Severely	
  biased.	
  

Malaspinas	
  
et	
  al.,	
  2012	
  

[31]	
   MLE	
   Can	
  estimate	
  allele	
  age.	
  
Very	
  accurate	
  for	
  small	
  s	
  
values.	
  

Slow,	
  in	
  particular	
  for	
  
large	
  Ne	
  s	
  values.	
  
Biased	
  for	
  large	
  s	
  values.	
  
Assumes	
  that	
  the	
  allele	
  is	
  
segregating	
  at	
  the	
  last	
  
sampling	
  point,	
  leading	
  to	
  
some	
  bias	
  in	
  other	
  
scenarios.	
  
Ne	
  poorly	
  estimated	
  
independently	
  at	
  each	
  
locus.	
  	
  

Mathieson	
  &	
  
McVean	
  
2013	
  

[34]	
   MLE	
   Fast.	
  
Jointly	
  estimates	
  
migration	
  rate	
  and	
  
spatially	
  varying	
  
selection	
  coefficients	
  in	
  
different	
  populations.	
  

Ne	
  assumed	
  known.	
  
No	
  model	
  of	
  
ascertainment	
  
implemented,	
  leading	
  to	
  
some	
  bias	
  under	
  realistic	
  
scenarios.	
  
Ne	
  poorly	
  estimated	
  
independently	
  at	
  each	
  
locus.	
  

Foll,	
  Shim	
  et	
  
al.,	
  2014	
  

[33]	
   ABC	
   Ne	
  estimated	
  using	
  all	
  loci	
  
together.	
  
Very	
  fast.	
  
Unbiased	
  for	
  all	
  range	
  of	
  
s.	
  
Can	
  estimate	
  dominance	
  
level	
  in	
  some	
  cases.	
  
Wide	
  range	
  of	
  
ascertainment	
  scenarios	
  
implemented.	
  

Ne	
  estimate	
  assumes	
  
most	
  loci	
  are	
  neutral.	
  
Not	
  as	
  accurate	
  as	
  MLE	
  
methods	
  for	
  small	
  s.	
  

 
s – selection coefficient 
Ne – effective population size 
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Table 2: A selection of commonly used simulation tools and included features.  
 

 
 
Y = supported; N = not available. 
ASupport of explicit (but not necessarily arbitrary) DFE 
BNot a general restriction, but for performance reasons whole chromosomes are 
impractical 
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Box 1: Experimental-evolution approaches. 
 
In traditional experimental-evolution studies, a lab strain of an organism (typically a 
virus, bacterium, microbe, or fly) is exposed to a new and potentially challenging 
environment, and after a number of generations, its fitness (often measured as relative 
growth rate in competition with the original wild type) is evaluated. The first 
laboratory evolution experiment of that kind was performed by William Henry 
Dallinger between 1880 and 1886 – growing microbes in an incubator under 
increasing temperature, and observing that they evolved to tolerate previously lethal 
conditions (reviewed in[69]). Today’s approaches fall into two categories that diverge 
from the original experiment in their increasing use of biotechnology and next-
generation sequencing: 

1. Mutation-accumulation experiments. With the most prominent being 
Lenski’s long-term selection experiment in E. coli (e.g., [70]) that has been 
running for more than 50,000 generations, these experiments are very similar 
to the one explained above, now with the added perspective of whole-genome 
sequencing that enables identification of mutations accumulated or 
segregating, and with robots enabling maintenance of hundreds of replicates 
(reviewed in [71,72]).  

2. Mutagenesis experiments. Here, hundreds or thousands of individuals are 
created that carry only one or a few (random or specific) mutations, usually 
only in a single gene (reviewed in [73]). These are grown for a short period of 
time and fitness is assessed either by sequencing and estimation of relative 
growth rate (e.g., [58]), or by assessing other fitness-related phenotypes (e.g., 
[74,75]). 

Advantages and limitations. Experimental-evolution studies offer not only new 
insights into mutational effects, but also a systematic way of testing population-
genetic models and theories under controlled conditions – hence bridging theory and 
nature. They are ideally suited to inform us about expected statistical patterns of the 
DFE and to study resistance evolution. On the other hand, they are restricted to certain 
organisms, and it is generally impossible to reproduce the ecology of a natural 
environment in the lab. 
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Figures 
 

Figure 1: An example of the ability of background selection to mimic neutral non-
equilibrium (here, exponential growth) SFS-based patterns  
 
Assuming an absence of BGS effects when they are present (as is common in 
demographic inference), may result in substantial misinference of the underlying 
demographic model – here inferring population growth when the population is in fact 
at equilibrium. Simulations were performed using SFSCode [40], with 50 samples 
from a single-time point, conditioned on 100 single-locus polymorphisms per locus. 
The BGS coefficient is α=2Ns=-4 and the probability of a deleterious mutation is 0.1, 
with recombination rate ρ=2Nr=50 between chromosome ends. The SFS shows the 
frequency of occurrence (y-axis) of a number of derived alleles (x-axis) in the 
simulated sample. Site classes 14-49 were binned for illustrative purposes. 
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Figure 2: Two hypothetical DFEs that result in different expectations regarding the 
importance of background selection. 
 
(A) A sharp mode around neutrality (here represented as exponential decay in both the 
negative and positive direction), as frequently assumed in population-genomic studies 
of the DFE (e.g., [76]), results in little potential for BGS (indicated by the red area 
under the curve). (B) Experimental-evolution studies of the DFE suggest a wider 
mode of the DFE around neutrality that is skewed (and sometimes shifted) towards 
deleterious mutations (here represented by a shifted negative gamma distribution as 
suggested in [77]). This results in a much higher proportion of slightly deleterious 
mutations that can contribute to BGS. The intensity of the red shading indicates which 
area under the curve is most likely to contribute to relevant effects of BGS (see also 
[66]). The second, strongly deleterious mode of the DFE is depicted as exponentially 
distributed. This is an arbitrary choice, because the accuracy of currently available 
methods is not sufficient to detect its actual shape, which should, however, be of little 
importance due to the severity of the deleterious effects of mutations in that mode. 
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