
When to use Quantile Normalization? 
 
Stephanie C. Hicks1,2 and Rafael A. Irizarry1,2 
1Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute 
2Department of Biostatistics, Harvard School of Public Health 
 

Abstract 
Normalization and preprocessing are essential steps for the analysis of high-throughput 
data including next-generation sequencing and microarrays. Multi-sample global 
normalization methods, such as quantile normalization, have been successfully used to 
remove technical variation from noisy data. These methods rely on the assumption that 
observed global changes across samples are due to unwanted technical variability. 
Transforming the data to remove these differences has the potential to remove interesting 
biologically driven global variation and therefore may not be appropriate depending on 
the type and source of variation. Currently, it is up to the subject matter experts, for 
example biologists, to determine if the stated assumptions are appropriate or not. Here, 
we propose a data-driven method to test for the assumptions of global normalization 
methods. We demonstrate the utility of our method (quantro), by applying it to multiple 
gene expression and DNA methylation and show examples of when global normalization 
methods are not appropriate. We also perform a Monte Carlo simulation study to 
illustrate how our method generally outperforms the current approach. An R-package 
implementing our method is available on Bioconductor 
(http://www.bioconductor.org/packages/release/bioc/html/quantro.html). 
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Introduction 
 
Multi-sample normalization techniques such as quantile normalization [1, 2] have 
become a standard and essential part of analysis pipelines for high-throughput data. 
These techniques transform the original raw data to remove unwanted technical 
variation. Technical variation can cause perceived differences between samples 
processed on high-throughput technologies, irrespective of the biological variation. These 
differences are typically due to changes in experimental conditions that are hard or 
impossible to control [3] and confusing them with biological variability can lead to false 
discoveries [4, 5].  
 
Some of the first attempts at normalizing microarray data mimicked the use of so-called 
house-keeping genes [6] as was done by the established gene expression measurement 
technology that preceded microarrays. This approach did not work well in practice [7, 8], 
therefore data-driven approaches were developed such as median correction [9, 10], 
variance-stabilizing transformation [11], locally weighted linear regression (loess) [12] 
and spline based methods [13]. The general idea of these approaches is to assume that 
observed variability in global properties are due only to technical reasons and are 
unrelated to the biology of interest [2, 14]. Here we refer to these as global adjustment 
methods [15]. Examples of global properties include the total number of differentially 
expressed genes across groups, the median gene expression across genes and the 
statistical distribution of gene expression values. These types of assumptions are justified 
in many biomedical applications, for example in gene expression studies in which only a 
minority of genes (or targeted set of genes) are expected to be differentially expressed. 
However, if, for example, a substantially higher percentage of genes are expected to be 
expressed in only one group of samples, it may not be appropriate to use global 
adjustment methods. 
 
Quantile normalization was originally developed for gene expression microarrays [1, 2] 
but today it is applied in a wide-range of data types including genotyping arrays [16, 17], 
RNA-Sequencing (RNA-Seq) [18-20], DNA methylation [21], ChIP-Sequencing [22, 23] 
and brain imaging [24-26]. Quantile normalization is a global adjustment method that 
assumes the statistical distribution of each sample is the same. Normalization is achieved 
by forcing the observed distributions to be the same and the average distribution, 
obtained by taking the average of each quantile across samples, is used as the reference. 
This method has worked very well in practice but note that when the assumptions are not 
met, global changes in distribution that may be of biological interest will be wiped out 
and features that are not different across samples can be artificially induced [27]. A 
schematic of quantile normalization is provided in Figure 1.  
 
Previously, the burden of deciding if these assumptions hold have been left to the 
experimentalist. Here we propose a statistical test, referred to as quantro, for the 
assumptions of global adjustment methods, such as quantile normalization, that tests for 
global differences in distributions between groups of samples. Our test uses the raw 
unprocessed high-throughput data as input to calculate a test statistic comparing the 
variability of distributions within groups relative between groups. If the variability 
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between groups is sufficiently larger than the variability within groups, then this suggests 
there may be global differences in distributions between groups of samples and global 
adjustment methods may not be appropriate. We demonstrate the advantages of our 
method by applying it to several gene expression and DNA methylation datasets with 
targeted and global changes in distributions. We define global changes as an abundance 
of differences between two or more sets of samples affecting the shape or the location 
shift of the distributions across groups caused by a biological or a technical source of 
variation and targeted changes as differences between sets of samples not affecting the 
shape or location shift of the distributions caused by a biological or a technical source of 
variation. We also perform a Monte Carlo simulation study to illustrate how our method 
generally outperforms the current approach when there are global biological differences 
in the distributions between groups.  
 

Results 
 
quantro: Test for global differences in distributions between groups. 
Consider a set of raw high-throughput data !!" representing ! ∈ (1,… ,!!) samples in 
each of the ! ∈ (1,… ,!) groups (!! total samples) from a gene expression or DNA 
methylation experiment. We assume !!" has some common distribution (!!" ∼ ℱ!) 
where ℱ! is the theoretical distribution for the !!! group. We define !!"!!!as the observed 
quantile distribution for the !!! sample in the !!! group. As a first step, we use an 
ANOVA to test if the average of the medians of the distributions are different across 
groups and median normalize the samples accordingly. Let !.!!! = !

!!
!!"!!!!

!!!  be the 
quantile distribution averaged across all samples in the !!! group and let !..!! =
!
!

!
!!

!!"!!!!
!!!

!
!!!  be the quantile distribution averaged across all samples and groups.  

 
To quantify the differences between two distributions, we use Mallow’s distance [28], 
which is defined as the distance between two probability distributions over a region 
(Supplementary Eq. 1). We define the total variance of the distributions as the sum of 
squared differences between !!"!! and !..!! using Mallow’s distance (in the case where p = 
2) as !!!"!#$ = (!!"!! − !..!!)!!!

!!!
!
!!! .  The total variance can be decomposed 

(Supplementary Eqs. 2-7) into the variance between groups (!!!"#$""%)!and the variance 
within groups (!!!"#!!"): 

(!!"!! − !..!!)!
!!

!!!

!

!!!
= ! (!.!!! − !..!!)!

!!

!!!

!

!!!
+ ! (!!"!! − !.!!!)!

!!

!!!

!

!!!
 

 
We propose using a data-driven test statistic, referred to as !!"#$%&', to test for global 
differences in the distributions between the K groups. The null hypothesis is that there are 
no global differences in the distributions between the groups and the alternative 
hypothesis is that at least one group is different from the rest.   
 

!!:!ℱ! = ℱ! = ⋯ = ℱ! 
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!!:!ℱ! ≠ ℱ! !for$at$least$one#!,"! 
 
If there are no global differences in the distributions between the groups (due to technical 
or biological variation), we can apply a global adjustment method, such as quantile 
normalization, to remove any unwanted technical variation. If there are global differences 
in the distributions between the groups, quantile normalization may not be an appropriate 
normalization technique depending on the source of variation (technical or biological 
variation).  
 
The !!"#$%&'!test statistic (Supplementary Eq. 8) is a ratio of the mean squared error 
between groups (!"!"#$""%) to the mean squared error within groups (!"!"#!!"): 
 

!!"#$%&' =
!"!"#$""%
!"!"#!!"

= !!!"#$""%/(! − 1)
!!!"#!!"/(!! − !)

 

 
We use permutation testing to assess the statistical significance of !!"#$%&' and reject the 
null hypothesis if the p-value (Supplementary Eq. 9) from the permutation test is less 
than some ! significance level. 
 
Targeted and global changes in gene expression. 
We applied quantro to several publicly available gene expression datasets based on both 
microarray and RNA-Seq platforms (Supplementary Table 1) to investigate targeted and 
global differences in distributions across groups. We used an ! = 0.05 significance level 
as the threshold to test for global changes in the distributions across groups. Examples of 
targeted changes in distributions across groups are the gene expression of samples from 
the Yoruba (YRI) population stratified by genotype based on an expression quantitative 
trait loci (eQTL) (p = 0.917, Figure 2a and Supplementary Fig. 1), samples from two 
inbred mouse strains (p  = 0.245, Supplementary Fig. 2), samples of alveolar 
macrophages from nonsmokers, smokers and patients with asthma (p = 0.562, Figure 2b 
and Supplementary Fig. 3), samples of bronchial brushings from individuals with and 
without COPD (p = 0.218, Supplementary Fig. 4) and samples from two regions of the 
brain in patients with Parkinson’s disease (p = 0.264, Supplementary Fig. 5). In all of the 
above examples, quantile normalization is considered appropriate because no global 
differences in the distributions across groups were detected at the ! = 0.05 significance 
level.  

When comparing the gene expression of two tissues, we found striking global differences 
in the distributions between brain and liver tissues (p = 0.004, Figure 2c and 
Supplementary Fig. 6). We considered multiple studies from GEO to represent each 
tissue to prevent batch effects [29] of different studies from GEO being confounded with 
differences in tissues. We also compared the gene expression of normal and tumor 
samples. We obtained multiple studies from GEO and found global differences in the 
distributions between the normal and tumor samples of lung (p < 0.001, Figure 2D), 
breast (p < 0.001), prostate (p < 0.001), thyroid (p < 0.001), stomach (p < 0.001) and liver 
tissues (p = 0.044) (Supplementary Figs. 7-12). We also found global changes in the 
distributions of liver tissues between four groups of patients (control, healthy obese, 
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steatosis and nash samples) from a study investigating the gene expression of Non-
Alcoholic Fatty Liver Disease  (p = 0.004, Supplementary Fig. 13).   

Targeted and global changes in DNA methylation. 
In addition to gene expression, we considered three publicly available DNA methylation 
data sets. We detected no global differences in distributions of adipose tissues from 
patients before and after six months of exercise (p = 0.132, Figure 3a and Supplementary 
Fig. 14) and pancreatic tissues from non-diabetic and Type 2 diabetes (T2D) (p = 0.069, 
Supplementary Fig. 15). In contrast, quantro detected global differences in the 
distributions across six purified cell types from whole blood (p < 0.001, Figure 3b and 
Supplementary Fig. 16), which may be relevant for the studies estimating the cell 
composition of whole blood using DNA methylation [30, 31].  
 
quantro improves the accuracy of detecting differentially methylated CpGs. 
Here we evaluate the performance of using quantro in the context of targeted and global 
changes in distributions with the goal of detecting differentially methylated CpGs. We 
performed a Monte Carlo simulation study to compare the relative improvement of using 
quantro to the naïve approach of always using quantile normalization where quantro uses 
the !!"#$%&'!test statistic to decide if quantile normalization is appropriate (no 
normalization otherwise). For the simulation study, we simulate DNA methylation arrays 
with a goal of detecting differentially methylated CpGs, but note these results also 
translate for differential gene expression.  
 
If there is only a minority of differentially methylated CpGs, quantile normalization 
reduces the bias and mean squared error (MSE) in detecting true differences between 
groups of samples because it removes unwanted technical variation (Supplementary Fig. 
21-22). As the number of differentially methylated CpGs increases, quantile 
normalization will remove both the unwanted technical and interesting biological 
variation resulting in higher bias and MSE when detecting differential methylation. In 
contrast, quantro reduces the bias and MSE compared to using quantile normalization 
because the method is able to detect when there are global differences (Supplementary 
Fig. 21-22). Similarly, the number of false discoveries is reduced when using quantro 
when there are global differences between groups. For example, when considering a 
450K DNA methylation array if there are only a small number of differentially 
methylated CpGs (1% of CpGs or 4,500 CpGs), quantro and quantile normalization are 
comparable in the number of false discoveries (873 and 873, respectively), but if there are 
global differences in the distributions between groups (10% of CpGs or 45,000 CpGs), 
quantro is able to detect those global differences and reduce the number of false 
discoveries compared to quantile normalization (4887 and 6583, respectively) 
(Supplementary Fig. 23). Using quantro to test if global normalization methods are 
appropriate gives researchers a data-driven test that yields smaller bias, MSE and less 
false discoveries compared to naively using quantile normalization when detecting 
differentially methylated CpGs. 
 
In addition, we considered the true positive rate and false positive rate of the two 
normalization approaches while varying the threshold of the number of top differentially 
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methylated CpGs selected. If there are only a small number of differentially methylated 
CpGs, quantile normalization and quantro are comparable in performance, but when the 
proportion of differentially methylated CpGs increases, quantro outperforms using 
quantile normalization because it can detect when there are global differences between 
groups (Supplementary Fig. 24). Using quantro as a tool to determine which type of 
normalization approach to employ results in higher sensitivity and specificity when 
detecting true differentially methylated CpGs compared to naively using quantile 
normalization.  
 
 

Discussion 
 
The advent of high-throughput technologies brought the opportunity for researchers to 
investigate and assess biological variability at the genomic level, but it also introduced 
unwanted technical variability that can cause perceived differences between samples 
processed on high-throughput technologies, irrespective of the biological variation. These 
differences may be due to differences in the way the samples were processed (such as 
batch effects) or be due to platform-dependent technical variation. Because global 
changes in distributions between groups can be caused by both technical variation and 
biological variation, it is important to note that our test statistic !!"#$%&' will detect 
global differences caused by both technical variation (e.g. batch effects) and biological 
variation. Data alone cannot determine if global changes are caused by technical variation 
or biological variation (Figure 2), but quantro offers researchers a new tool to detect 
when there are global changes in distributions across groups.  
 
Here we have shown if there are global changes in the distributions across a set of 
groups, normalization methods with global adjustments may not be appropriate 
depending on the type and source of variation. If global adjustment methods are not 
appropriate, other methods such as application-specific methods [15] can be used. These 
are normalization methods where the adjustments are directly incorporated into the 
experiment or main analysis. Examples of these methods include the use of positive and 
negative control genes, the use of spike-in controls and explicitly modeling known or 
unknown effects of unwanted variation in a linear model (see Supplementary Section 5 
for more a more detailed discussion on application-specific methods).  
 
Previous studies have evaluated and discussed normalization methods with and without 
global adjustments [2, 15, 32], but the decision of which type of normalization method to 
use depends on the outcome of interest. For example, a recent study [27] discussed the 
use of normalization procedures in global gene expression analysis comparing two 
schematics: targeted changes in gene expression and global changes in gene expression 
such as transcriptional amplification [33] or transcriptional shutdown [34]. Not 
surprisingly, the authors show normalization methods with global adjustments are not 
appropriate if the total RNA is not the same across the samples. In this case, if 
normalization is performed at the experimental level (introducing similar amounts of 
RNA into the assay from the two groups with global changes), then we suggest using 
control genes or spike-ins controls as no differences between the distributions will be 
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detected (Supplementary Fig. 25). However, for the great majority of studies such 
strategies are not available. Furthermore, if one knows a priori that most genes are 
differentially expressed then it is not clear why one would use these high-throughput 
technologies.  
 
To test if normalization methods with global adjustments are appropriate, we developed 
method to test a priori to the data analysis for the assumptions of global normalization 
methods, such as quantile normalization. We have demonstrated the utility of our method 
by applying it to several gene expression and DNA methylation datasets revealing 
examples of both targeted and global changes in distributions across groups such as the 
global changes in distributions detected between the gene expression of brain and liver 
tissues. We demonstrated that quantro outperforms the current approach because the 
method is able to detect when there are global differences in distributions and therefore 
prevent removing potentially interesting biological variation. We have implemented our 
method into the quantro R-package providing researchers a tool to test the assumptions 
of global normalization methods in the analysis of their own data.  
 
 

Methods 
 
Data analysis.  
The method introduced here has been implemented into the quantro R-package available 
on Bioconductor. To test for global differences in distributions between groups of 
samples from high-throughput data sets, we applied quantro to several publicly available 
gene expression and DNA methylation data sets. Supplementary Table 1 contains a list of 
all the data sets. For this analyses, we use the ! = 0.05 significance level as the threshold 
to detect global changes in the distributions across groups. 
 
To compare the gene expression on microarrays of cancer samples and brain and liver 
tissues, we considered multiple studies from GEO [35] to represent each tissue to prevent 
batch effects of different studies from GEO being confounded with differences between 
cancer samples or between tissues. For the gene expression samples using microarrays, 
we extracted the raw Perfect Match (PM) values from the CEL files using the affy 
R/Bioconductor package [36]. To visualize the true biological variation in the 
experimentally normalized samples from Loven et al. (2012), we divided the raw PM 
values by the sample mean of the PM values across the spike-ins on the log2 scale. For 
the gene expression samples using RNA-Seq, we used the rlogTransformation provided 
in the DESeq2 R/Bioconductor package [37] to transform the raw counts to the log2 
scale. The RNA-Seq data was obtained from ReCount [38], which pre-processes the raw 
sequencing data and provides a table of raw counts for each gene. We removed all the 
rows with zero counts across all the samples. For the DNA methylation samples using 
microarrays, we used the minfi R/Bioconductor package [39]. We extracted the raw 
methylated and unmethylated signal using and computed the “beta”-values using 
Illumina’s default setting of the offset parameter equal to 100. 
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Details for simulation studies. 
We developed an R package, referred to as quantroSim (Supplementary Section 3), which 
is available on github, to simulate gene expression and DNA methylation data, but here 
we just focus on DNA methylation. To simulate samples on a microarray platform 
technology, we use the Langmuir adsorption model [40] to model the chemical saturation 
in the hybridization of the probes. Each of the simulation studies considered two groups 
with five samples each (total of 10 samples).  
 
With the goal of detecting differentially methylated CpGs, we compared the performance 
of quantro to the naïve approach of always using quantile normalization where quantro 
uses the !!"#$%&'!test statistic to decide if quantile normalization is appropriate (no 
normalization otherwise) (Supplementary Section 4). For the permutation testing in 
quantro, we used 100 permutations and a cutoff threshold of ! = 0.05, unless specified 
otherwise. After normalization, the difference between the group means were estimated 
and the top differentially methylated probes were found using a t-test.  
 
We assessed the relative bias (bias from quantro to the bias from quantile normalization) 
and relative mean squared error (MSE) while varying the cutoff threshold  from 
quantro and for a fixed threshold at ! = 0.05. We simulated DNA methylation samples 
with a varying proportion of differentially methylated CpGs between the two groups and 
a varying level of technical variation (see Supplementary Sections 3 and 4 for more 
details).  
 
To select a list of top differentially methylated probes, we adjusted the p-values from a t-
test using the Benjamini & Hochberg adjustment to correct for multiple testing. The 
number of false discoveries was calculated using as the number of incorrectly selected 
probes from a given set of top differentially methylated probes. The true positive rate 
(TPR) was calculated as the number of correctly selected probes from the set of true 
differentially methylated probes. In contrast, the false positive rate (FPR) was calculated 
as the number of incorrectly selected probes from the set of probes that are not 
differentially expressed.  
 
 

Software 
The R-package quantro implementing our method is available in Bioconductor 3.0 
(http://www.bioconductor.org/packages/release/bioc/html/quantro.html) and the  
quantroSim R-package to simulate gene expression and DNA methylation data is 
available on Github (https://github.com/stephaniehicks/quantroSim).  
 
 

Supplementary Material 
Supplementary materials are available in a single pdf.  All scripts containing the code for 
these analyses are available on Github (http://stephaniehicks.github.io/quantroPaper/). 
 
 

α
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Figure Legends 
 
Figure 1: A schematic of quantile normalization. Quantile normalization is a non-
linear transformation that replaces each feature value (row) with the mean of the features 
across all the samples with the same rank or quantile. To quantile normalize a raw high-
throughput data set with multiple samples: (1) order the feature values within each 
sample (2) for each feature, average across the rows (3) substitute the raw feature value 
with the average (4) re-order the transformed values by placing in the original order.  
 
Figure 2: When to use quantile normalization? Examples of gene expression data with 
targeted changes and global changes in distributions across groups. (a) Transformed read 
counts from n = 65 RNA-Seq samples from the YRI population and colored by genotype 
based on the eQTL rs7639979: GG (blue), GA (green) and AA (red). As no global 
differences in distributions were detected, this suggests quantile normalization is 
appropriate, but not necessary as there is a low level of variation within and between 
groups. (b) Raw PM values from n = 45 arrays comparing the gene expression of alveolar 
macrophages from nonsmokers (green), smokers (red) and patients with asthma (blue). 
No global differences in distributions were detected which indicates quantile 
normalization is appropriate, as it will remove any platform-based technical variability or 
batch effects within groups. (c) Raw PM values from n = 82 arrays comparing brain and 
liver tissue samples. The samples are colored by tissue (brain [red] and liver [green]), and 
the shades represent different GEO IDs. The global differences in distributions detected 
across brain and liver tissues indicate quantile normalization is not appropriate. Global 
changes caused by technical variation (e.g. batch effects across groups) will also be 
detected by quantro, but raw data alone cannot detect this difference.  
 
Figure 3: Biological variation in distributions of raw DNA methylation microarrays. 
(a) Example of targeted changes in distributions: raw beta values from n = 46 arrays 
comparing adipose tissue samples from healthy men before and after 6 months of 
exercise. Global changes: (b) Example of global changes in distributions: raw beta values 
from n = 35 arrays comparing six purified cell types from whole blood: CD14+ 
Monocytes (Mono), CD19+ B-cells (Bcell), CD4+ T-cells (CD4T), CD56+ NK-cells 
(NK), CD8+ T-cells (CD8T), and Granulocytes (Gran). 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2014. ; https://doi.org/10.1101/012203doi: bioRxiv preprint 

https://doi.org/10.1101/012203
http://creativecommons.org/licenses/by/4.0/


Raw data 
Order values  

within each sample 
(or column) 

Re-order averaged 
values in original 

order 
2 4 4 5

5 14 4 7

4 8 6 9

3 8 5 8

3 9 3 5

2 4 3 5

3 8 4 5

3 8 4 7

4 9 5 8

5 14 6 9

3.5 3.5 5.0 5.0

8.5 8.5 5.5 5.5

6.5 5.0 8.5 8.5

5.0 5.5 6.5 6.5

5.5 6.5 3.5 3.5

3.5 3.5 3.5 3.5

5.0 5.0 5.0 5.0

5.5 5.5 5.5 5.5

6.5 6.5 6.5 6.5

8.5 8.5 8.5 8.5

Average across rows 
and substitute value 

with average 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2014. ; https://doi.org/10.1101/012203doi: bioRxiv preprint 

https://doi.org/10.1101/012203
http://creativecommons.org/licenses/by/4.0/


−5 0 5 10 15

0.
00

0.
02

0.
04

0.
06

0.
08

rlogTransformation counts

de
ns

ity

GG (n=18)
AG (n=32)
AA (n=15)

6 8 10 12 14 16

0.
0

0.
1

0.
2

0.
3

log2 PM values

de
ns

ity

Nonsmoker (n=15)
Smoker (n=15)
Asthmatic (n=15)

6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log2 PM values

de
ns

ity

Brain (GSE17612, n=23)
Brain (GSE21935, n=19)
Liver (GSE29721, n=10)
Liver (GSE14668, n=20)
Liver (GSE39841, n=10)

a b c

O
bs

er
ve

d 
va

ri
at

io
n

Re
as

on
?

Small technical variability; 
no global changes

Large technical variability or 
batch effects within groups;  

no global changes

Global technical 
variability or batch 

effects across groups

Global biological 
variability across 

groups

W
ha

t t
o 

do
?

Use quantile 
normalization 

(but not necessary)

Small variability within groups, 
Small variability across groups

Large variability within groups, 
Small variability across groups

Small variability within groups, 
Large variability across groups

Use quantile 
normalization

Use quantile 
normalization

Do not use quantile 
normalization

quantro will detect global differences due to both 
technical and biological variation

 

Global changes
 

Targeted changes
 

Targeted changes

Raw data alone cannot 
detect difference

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2014. ; https://doi.org/10.1101/012203doi: bioRxiv preprint 

https://doi.org/10.1101/012203
http://creativecommons.org/licenses/by/4.0/


 

Targeted changes

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

beta values

de
ns

ity

Before 6 months exercise (n=23)
After 6 months exercise (n=23)

a

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

beta values
de

ns
ity

Bcell (n=6)
CD4T (n=6)
CD8T (n=5)
Gran (n=6)
Mono (n=6)
NK (n=6)

b
 

Global changes

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2014. ; https://doi.org/10.1101/012203doi: bioRxiv preprint 

https://doi.org/10.1101/012203
http://creativecommons.org/licenses/by/4.0/

