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Figure 3: (Caption on following page.)
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Data type Figure QUI CON FAC BRD SPC
Median

segment length
2C 0.6 MB 1.4 MB 0.4 MB 0.6 MB 0.2 MB

Histone
modifications

2A,D None H3K9me3 H3K27me3
Transcription

(i.e. H3K36me3)
Regulation

(i.e. H3K27ac)

Replication timing 2A,D
Switching

late
Constitutively

late
Mixed

Constitutively
early

Switching
early

GC content 3D Low Low High Mid High

Conservation 3E Conserved Nonconserved
Conserved or
accelerated

Conserved Conserved

Hi-C eigenvalue
compartment

3F Closed Closed Mixed Open Open

Gene density 3A Low Low High High High

Gene expression 3B N/A N/A Repressed Average Increased

Lamin 4 Core Core Boundaries Flanks Flanks

Table 2: Summary of learned domain types.

Figure 3: Characteristics of domain types. (A) Gene density in IMR90. (B) Gene expression relative
to average over 33 cell types, averaged over eight annotations (t-test 95% confidence interval error
bars). (C) Fraction of active genes also active in more than 15 other cell types, averaged over
eight annotations (binomial test 95% confidence interval error bars). All gene expression data is
from CAGE (Methods). (D-F) Histograms of (D) GC content, (E) conservation (PhyloP score)
(Siepel et al., 2005) and (F) Hi-C compartment eigenvalues in IMR90. Positive PhyloP scores
indicate evolutionary conservation, positive scores indicate accelerated evolution, and scores near
zero indicate neutral evolution. Hi-C compartment values are computed according to the method of
Lieberman-Aiden et al. (2009) (Methods). Positive values indicate open compartment, negative
values indicate closed compartment. (G) Enrichment of each domain type with respect to IMR90
replication time (early vs. late) and replication time dynamics across cell types (constitutive vs.
switching) (V Dileep, F Ay, J Sima, WS Noble, DM Gilbert et al., unpublished data) (Methods). (H)
CTCF motif density for each domain type. Dashed line indicates genome-wide average. (I) Fraction
of CTCF motifs bound (overlapping a CTCF peak) in IMR90 (binomial test 95% confidence interval
error bars). Dashed line indicates average over all motifs.

by the HP1 complex and associated with the histone modification H3K9me3 (Lachner et al., 2003).
Constitutive heterochromatin is thought to repress permanently silent regions such as centromeres
and telomeres. As expected, one output domain type “CON” exhibits all the known properties
of constitutive heterochromatin. CON domains are associated with H3K9me3 (Figure 2A,D),
are extremely depleted for genes (Figure 3A), are associated with low GC content and lack of
evolutionary conservation (Figure 3D,E), appear within the Hi-C eigenvector closed compartment
(Figure 3F, Methods), and cover regions which are constitutively late replicating in all cell types
(Figure 3G). CON domains are depleted both for transcription factor motifs and for transcription
factor binding at motifs (Figure 3H,I).

The second known type of repressive domain is best known as “facultative heterochromatin”
but is also sometimes referred to as BLOCs or Polycomb-repressed chromatin (Morey and Helin,
2010; Pauler et al., 2009). Facultative heterochromatin is regulated by the Polycomb complex and
is associated with the histone modification H3K27me3. Facultative heterochromatin is thought to
repress tissue-specific genes in cells where they are inactive. As expected, one output domain type
“FAC” has all the known properties of facultative heterochromatin. FAC domains are marked by
H3K27me3 (Figure 2A,D), and they are enriched for genes (Figure 3A), GC content (Figure 3D)
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and conservation (Figure 3E), but strongly depleted for gene expression relative to an average across
cell types (Figure 3B), indicating that FAC domains have a direct repressive e↵ect. FAC domains
are mixed between the open and closed compartments, indicating that facultative repression is
independent of compartment-driven repression (Figure 3F). However, FAC domains are almost
completely absent from the annotation of the embryonic stem cell line H1-hESC, consistent with
previous observations that H3K27me3 does not form domains in embryonic stem cells but rather
occurs only at so-called poised or bivalent promoters (Supplementary Figure 4) (Bernstein et al.,
2006).

Other semi-automated genome annotation analyses have reported a third type of repressive
domain, characterized by a lack of signal from any mark, termed “quiescent domains” (Ho↵man
et al., 2012; Ernst and Kellis, 2010; Filion et al., 2010; Julienne et al., 2013). We identified this
domain type as the QUI label (Figure 2A). Note that Segway marginalizes over missing data rather
than setting the values to zero (Supplementary Note 3), so the QUI label is not simply an artifact of
unmappable regions. QUI domains are highly depleted for genes (Figure 3A) and occur in the closed
compartment (Figure 3F). QUI domains are depleted for transcription factor motifs but, unlike
FAC and CON domains, are not depleted for transcription factor binding at motifs, indicating that
QUI chromatin does not have a direct repressive e↵ect (Figure 3H,I). The mechanism behind the
activity of QUI domains is unknown, but these results are consistent with a model in which QUI
domains lack any activating signals but are not directly repressed.

Active domains are divided between broad and specific gene expression

Previous studies of human domains have focused on various types of repressive domains but have
assigned all active chromatin to one domain category (Julienne et al., 2013; Wen et al., 2009; Pauler
et al., 2009). However, studies in other organisms have reported multiple types of active domains
(Filion et al., 2010; Liu et al., 2011). We therefore investigated whether our IMR90 annotation can
be used to identify types of human active domains. We found that active domains in IMR90 can be
split into BRD (“broad expression”) domains, characterized by transcription-associated marks such
as H3K36me3, and SPC (“specific expression”) domains, characterized by regulatory marks such as
H3K27ac. Both domain types are highly enriched for genes (Figure 3A). However, while genes in
BRD domains are mostly expressed across all cell types, a much larger fraction of active genes in
SPC domains are expressed only in a small number of cell types (Figure 3C). Furthermore, when a
gene is in a SPC domain, that gene is expressed at a much higher level than that gene’s average
across cell types, suggesting that SPC domains are highly activating (Figure 3B). In contrast, while
genes in BRD domains are highly expressed, this high expression generally occurs consistently across
cell types, indicating that BRD domains do not necessarily directly promote expression (Figure 3B).
Moreover, while both BRD and SPC domains are generally early-replicating in IMR90, regions
covered by SPC domains typically switch replication time between cell types, while regions covered
by BRD domains are typically early replicating in all cell types (Figure 3G). These results suggest a
model in which genes performing housekeeping functions such as DNA repair have strong promoters
but little other regulation, whereas genes specific to a given tissue are regulated by a complex web
of regulatory elements, allowing the genome to specify precise conditions under which the gene is
active.

To test this hypothesis, we computed the enrichment of Gene Ontology (GO) terms for genes in
BRD and SPC domains respectively (Gene Ontology Consortium, 2000; Boyle et al., 2004). We
found that genes in BRD domains were enriched for housekeeping functions such as cell cycle and
DNA repair, while genes in SPC domains were enriched for IMR90-specific developmental functions
such as vasculature development and stimulus response (Supplementary Tables 3–4, Supplementary
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Figure 4: Enrichment of each domain type with respect to lamina-associating domain boundaries.
X axis indicates position with respect to lamina-associating domains, with each domain stretched
or shortened to the median length of 0.8 MB. Y axis indicates label enrichment or depletion
(log(obs/expected)).

Figure 5). In order to avoid hindsight bias, before looking at these GO term enrichments, we mixed
the enriched terms with an equal number of decoy terms matched according to the number of genes
associated with each term, and manually labeled which terms matched our hypothesized functions
for each domain (housekeeping for BRD, IMR90-specific for SPC). We correctly identified 21/32
BRD enrichments (p = 0.055) and 54/64 SPC enrichments (p = 1.4⇥ 10�6). This demonstrates that
active regions can be divided into domains of broadly-expressed housekeeping genes and domains of
specifically-expressed developmental genes. To our knowledge, this is the first time a split between
domains of broad and specific expression has been reported in human cells.

Lamina association is driven by a complex structure of domains

Previous work has shown that some repressive domains are marked with the histone modification
H3K9me2, associate with the factor lamin B1 and localize to the nuclear lamina (Guelen et al., 2008;
Wen et al., 2009). We found that comparing lamina association to domain annotations based on
many data sets reveals a much more complex interaction than comparing to each mark individually
(Figure 4). As expected, repressive domains (QUI and FAC) are enriched inside lamina-associating
chromatin domains, while active domains are depleted. However, this analysis also reveals that
CON domains are depleted immediately inside lamina-associating domain boundaries while being
comparatively enriched at their centers. In contrast, FAC domains are highly enriched at lamina-
associating domain boundaries while being comparatively depleted at their centers. In addition,
while active domains (SPC and BRD) are depleted inside lamina-associating domains, they are
highly enriched directly outside their boundaries. These observations suggest that lamina-associating
domains form around a core of repressed chromatin and spread until they hit a strong active element.

Developmentally-consistent domain boundaries are marked by identifiable se-
quence elements

Previous research has shown that domain boundaries tend to be consistent between cell types even
when the state of the domain changes. For example, when a region’s replication time is perturbed
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Figure 5: (A) Example of consistent domains. (B) Distribution of number of overlapping boundaries
compared to a permutation control (binomial test 95% confidence interval error bars). Vertical
dashed line denotes consistent boundary threshold. (C,D) Cumulative density of distances from
consistent domain boundaries to the nearest (C) promoter and (D) distal CTCF motif. Distal
CTCF motifs are defined as all CTCF motifs more than 5 kb from a promoter.

by leukemia, the boundaries of the resulting replication domain tend to occur at the same positions
as developmental replication timing domain boundaries (Ryba et al., 2012). However, the cause of
these consistent domain boundaries remains unclear. We investigated the consistency of domain
boundaries using our domain annotations. As expected, domain boundaries frequently occurred at
consistent positions across cell types, even when the domains’ state changed (Figure 5A). To identify
these consistent domain boundaries, we combined all boundaries occurring in at least one cell type
and merged boundaries within 50 kb. We defined groups of five or more boundaries as consistent
(Methods) (Figure 5B). As expected, these consistent boundaries are enriched for replication domain
boundaries, but many consistent domain boundaries do not overlap a replication domain boundary
(Supplementary Figure 6). We additionally found that consistent domain boundaries are highly
enriched for promoters and CTCF motifs, suggesting that these elements may drive domain boundary
formation (Figure 5C,D).

Using GBR to transfer information between cell types improves accuracy of
predicting functional elements

Graph-based regularization can also be used for the seemingly-unrelated task of transferring
information from well-studied cell types for the annotation of cell types with limited available data
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Figure 6: (A) Strategy for using GBR to transfer information between cell types. (B,C) Performance
of predicting the locations of GM12878 (B) p300 and (C) CTCF ChIP-seq peaks with and without
using GBR to integrate information from K562. Each plot shows the fraction of elements detected
as a function of the number of bases predicted (Methods). Results are shown on the test set (10
Mbp). Model training and label ordering was performed on the training set (10 Mbp). The X axis is
plotted up to 1 kbp times the total number of elements. These plots can be interpreted, for example,
in the context of an enhancer validation experiment, in which case it shows how many sequences
would need to be tested in order to discover a certain number of enhancers.

(Figure 6A). Existing SAGA methods work well on data from a single cell type, but integrating
information between cell types remains an open problem. Existing methods for using data from
multiple cell types for genome annotation fail to e↵ectively address this problem (Supplementary
Note 4). We propose a novel strategy for leveraging information from well-studied cell types using
the pairwise prior that if two positions received the same label in many well-studied cell types, then
they should be more likely to receive the same label in the target cell type (Figure 6A). To express
this pairwise prior, we first perform a Segway annotation (without GBR) of each well-studied cell
type and create a GBR graph which connects each pair of positions with weight proportional to the
number of cell types in which the pair receive the same label, placing higher weight on cell types
similar to the cell type of interest (Methods). We then use this graph in combination with the data
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Figure 7: Models of (A) domain types and (B) co-regulated regions.

sets available in the target cell type to produce an annotation of this cell type. Note that this GBR
graph represents an entirely di↵erent type of information from the graphs used to represent Hi-C
data in the previous sections, despite the fact that both types of data are represented as a graph.

To demonstrate the e�cacy of this approach, we evaluated whether GBR improves an annotation’s
ability to predict enhancers and insulators. We simulated the case where the lymphoblastoid cell
type GM12878 has only eight histone modifications available, a panel of data types similar to that
assayed by Roadmap Epigenomics on hundreds of human tissues (Supplementary Note 2). Because
there are enough well-studied cell types to ensure that at least one reference is reasonably closely
related to any cell type of interest, we used the related leukemia cell type K562 as reference. We
annotated GM12878 using these eight histone modifications and a GBR graph derived from an
annotation of K562 (Methods). Incorporating information from K562 this way greatly improved the
accuracy with which the annotation detected enhancers and insulators (Figure 6B,C). We evaluated
the performance with which the GM12878 annotation predicts a certain type of functional element
by ordering the labels by their enrichment for the element on a training set and evaluating the
recall as more labels are added (Methods). The GBR annotation detects one third of p300 binding
sites (a proxy for enhancers (Visel et al., 2009)) by predicting just 25 kb as p300-binding, while the
annotation produced without GBR predicts 43 kb before it detects this many sites (Figure 6B).
Likewise, the GBR annotation detects one third of CTCF binding sites (a proxy for insulators
(Burgess-Beusse et al., 2002)) by predicting 124 kb, compared to 241 kb without GBR (Figure 6C).
Because the algorithm was not given any knowledge of enhancers or insulators as input, it is
reasonable to expect that the annotations achieve similar performance at detecting other types of
functional elements, for which we do not have gold-standard examples and therefore cannot evaluate
against. These results demonstrate that GBR e↵ectively leverages information from a reference cell
type and therefore provides a method for producing high-quality annotations of the hundreds of cell
types with limited available data.

Discussion

We introduced graph-based regularization (GBR), a method which allows probabilistic models to
integrate a pairwise prior while maintaining e�cient inference. We used GBR to model chromatin
conformation data and thereby jointly model all available data types for the study of chromatin
domains. To our knowledge, this represents the first method for integrating chromatin conformation
information into SAGA methods without resorting to simplifying transformations. We showed that
modeling Hi-C data with GBR improved the annotation’s ability to predict replication time and
topological domains. In addition, because graph-based regularization is a general method, it will
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likely prove useful for other applications involving dynamic Bayesian networks, such as methods for
locating genes or predicting copy number.

The ability to integrate Hi-C data into an annotation allowed us to study the relationship
between types of domains by integrating all available data into a single annotation (Figure 7A).
This analysis revealed a set of five domain types that encompass all previously-described domain
types: (1) quiescent domains, which lack any activity, (2) constitutive heterochromatin, which
represses permanently silent regions and is marked with the histone modification H3K9me3, (3)
facultative heterochromatin, which represses cell type-specific regions and is marked with the histone
modification H3K27me3, (4) broadly-expressed domains, which cover genes that are highly expressed
in all cell types, and (5) specifically-expressed domains, which exhibit high regulatory activity and
cover genes that are expressed in a small number of cell types.

To our knowledge, domains of specific expression (SPC) have not been identified previously
in human cells. These domains are likely the result of complex regulatory programs designed to
precisely control the condition and level of genes important for a certain cell state or function.
SPC domains are similar in some ways to dense clusters of regulatory elements important for cell
identity known as superenhancers (Whyte et al., 2013; Lovén et al., 2013). However, there are
only small number of known superenhancers (⇠300) and each is much smaller than a SPC domain
(⇠10 kb compared to ⇠200 kb). Therefore, SPC domains and superenhancers may result from
similar mechanisms, but on very di↵erent scales. However, the mechanisms underlying of both types
of regions must be studied further in order to understand this relationship.

One likely mechanism of domain formation involves the spreading of heterochromatin (Weiler and
Wakimoto, 1995; Talbert and Heniko↵, 2006). Under this hypothesis, heterochromatin nucleates at
silencing elements such as telomeres, repeats or repressed promoters and sequentially assembles along
chromatin. Spreading heterochromatin has been demonstrated mechanistically in Saccharomyces
and Drosophila and for the SIR, HP1 and Polycomb complexes. While SIR is unique to yeast, HP1
and Polycomb have orthologs in humans that drive constitutive and facultative heterochromatin,
respectively. Under the spreading hypothesis, heterchromatin can be halted by the presence of
a strong active element. This halting mechanism is consistent with the observation that active
domains (especially SPC) are strongly enriched directly outside of lamina-associating domains.

The consistency of domain boundaries between cell types also suggests a model in which core
regions are regulated as a unit (Phillips and Corces, 2009; Dixon et al., 2012) (Figure 7B). Under this
hypothesis, these units self-interact as topological domains and are co-regulated through availability
of regulatory factors and elements such as enhancers. These co-regulated units are thought to be
delimited by localizing sequences, particularly CTCF sites. Under this model, each of our annotated
domains is actually composed of several such neighboring co-regulated regions with the same state.
Therefore, while profiling a small number of cell types has allowed us to define a small number
of consistent domain boundaries, profiling more cell types may lead to a complete catalogue of
potential boundary sites.

We have described five domain types because we this model allowed us to concisely summarize
domain regulation, but we do not claim that this represents the “true” number of domain types. It
is likely that new domain subtypes will be discovered in the future, thus increasing the number of
known domain types. In addition, methods that discover the optimal number of domain types or
that allow mixtures of domain types are an interesting direction for future work. To our knowledge,
all existing SAGA methods require either a fixed number of labels (Day et al., 2007; Ho↵man
et al., 2012; Ernst and Kellis, 2010; Thurman et al., 2007; Lian et al., 2008; Filion et al., 2010)
or a hyperparameter that indirectly controls the number of labels (Ho et al., 2014). A method
that allows for “mixed” domain labels at a given process could potentially circumvent the manual
merging process that we used to reduce an eight-label model to a five-label one.
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Finally, we presented a method for transferring information from well-studied cell types using
GBR in order to improve the quality and interpretability of annotations of cell types with limited
available data. This method enables a new strategy for understanding cell types, in which a small
number of assays are performed on each cell type of interest to determine the unique characteristics
of this cell type, then Segway with GBR is used to combine this data with the large body of available
information from well-studied cell types. This method has the additional benefit of matching the
label semantics of the target cell types to the semantics of the reference annotations, which allows
the label interpretation process to be performed automatically. Because consortia such as ENCODE
and Roadmap Epigenomics are already analyzing a large number of cell types with a small number of
assays each, this strategy is immediately applicable. Determining which assays are most informative
as input to this strategy is an interesting question for future work.

Methods

Histone modification, open chromatin and replication timing signal data

We acquired histone ChIP-seq, DNase-seq, and FAIRE-seq data for A549, K562, H1-hESC, GM12878,
HeLa-S3, HepG2 and HUVEC from ENCODE and for IMR90 from Roadmap Epigenomics (ENCODE
Project Consortium, 2012; Bernstein et al., 2010). We used a uniform signal-processing pipeline
to generate a genome-wide vector for each data set, as described in (Ho↵man et al., 2013). We
also acquired Repli-seq data for IMR90 from ENCODE and smoothed this data using wavelet
smoothing as described in (Thurman et al., 2007). We applied the inverse hyperbolic sine transform
asinh(x) = ln(x+

p
x2 + 1) to all signal data. This transform is similar to the log transform in that

it depresses the magnitude of extremely large values, but it is defined at zero and amplifies the
magnitude of small values less severely than the log transform does. This transform has been shown
to be important for reducing the e↵ect of large values in analysis of genomics data sets (Johnson,
1949; Ho↵man et al., 2012).

We acquired transcription factor ChIP-seq data from ENCODE. Peaks were called for each
factor using MACS using an IDR threshold of 0.05 (Zhang et al., 2008; Landt et al., 2012).

We acquired CAGE expression data for 33 cell types from GENCODE (Harrow et al., 2012).
The full list of data sets used is available in Supplementary Table 1.

Hi-C data

We used publicly available Hi-C data sets for two human cell lines (IMR90 and H1-hESC) (Dixon
et al., 2012). We processed raw paired-end libraries with a pipeline that combines reads from
two replicates per cell line, maps these reads, extracts the read pairs for which each end maps
uniquely, and removes potential PCR duplicates. We then partitioned the human genome into a
collection of non-overlapping 10 kb windows and assigned each end of a read pair to the nearest
10 kb window mid-point. This process yielded a 303,641⇥303,641 whole genome contact map. These
contact maps consisted of both intra and interchromosomal contacts and contained only ⇠0.3%
non-zero entries. We assigned statistical confidence estimates to these contact counts using the
method Fit-Hi-C, which jointly models the random polymer looping e↵ect and technical biases (Ay
et al., 2014a). First, we applied the bias correction method ICE to the contact map to estimate a
bias associated with each 10 kb locus, after eliminating all loci that have less than 50% uniquely
mappable bases (Imakaev et al., 2012). Second, using these computed biases and raw contact maps
as input, we estimated a p-value of interaction for each pair of 10 kb loci with non-zero contact
counts (p-value was set to 1 for pairs with zero contacts). We used a slightly modified version of the
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Figure 8: GBR model. Squares and circles denote discrete and continuous random variables
respectively. Filled-in and unfilled shapes denote observed and unobserved variables, respectively.

original Fit-Hi-C algorithm which handles inter- as well as intrachromosomal contacts and omits
the refinement step for fast computation. Because Fit-Hi-C normalizes for 1D genomic distance,
the majority of significant contacts were at long distances (Supplementary Figure 7). Note that
while the data sets we used have insu�cient coverage to identify many high-confidence contacts at
10kb resolution, Segway with GBR aggregates information over roughly 400kb in order to make
each domain call, so individual high-confidence interactions are not necessary.

We computed the genome chromatin compartment using eigenvalue decomposition on the
normalized contact maps of IMR90 and H1-ESC cell lines at 1 Mb resolution as described in
(Lieberman-Aiden et al., 2009). For each chromosome, we calculated the Pearson correlation between
each pair of rows of the intrachromosomal contact matrix and applied eigenvalue decomposition to
the correlation matrix. Similar to (Lieberman-Aiden et al., 2009), we used the second eigenvector
in cases where the first eigenvector values were either all positive or all negative to define the
compartments. We used average GC content to map signs of eigenvectors to either open (higher
GC content) or closed chromatin compartments.

Graph-based regularization

In a SAGA method, we are given a set of vertices V that index a set of n = |V | random variables
XV = {X1, . . . , Xn} and a probability distribution parameterized by ✓, p✓(XH , XO). Di↵erent
SAGA methods employ di↵erent distributions p✓. Graph-based regularization could be applied
to any probabilistic model, but in this work we use the Segway model (Supplementary Methods)
because it can handle real-valued and missing data, and it can use non-geometric segment length
distributions. We denote random variables with capital letters (e.g., XH) and instantiations of
variables with lower-case (e.g., xH 2 domain(XH)). We use capitals to denote sets and lowercase to
denote values (e.g., Xh for h 2 H).

Training the model involves a set of observed data x̄O, where a subset of variables O ✓ V is
observed, and the remainder H = V \O are hidden. The maximum likelihood training procedure
optimizes the objective

maximize✓ J(✓) , L(✓) +R(✓) (1)

where L(✓) , log p✓(x̄O) = log
X

xH

p✓(xH , x̄O), (2)

where R(✓) is a regularizer that expresses prior knowledge about the parameters. Many regularizers
are used in practice, such as the `2 or `1 norms, which encourage parameters to be small or sparse
respectively.
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Dynamic programming algorithms such as the forward-backward algorithm can be used to
perform inference in SAGA models, because all such existing models have dependencies in the form
of a chain. That is, the variables associated with position i depend only on the variables associated
with positions i� 1 and i+ 1. Examples of such chain-structured models include hidden Markov
models and dynamic Bayesian networks. However, these dynamic programming algorithms do not
apply if a pairwise prior is added to the model, since the prior may have an arbitrary structure.
Several techniques have been proposed to handle models with arbitrary structure (Supplementary
Note 5). However, none of these techniques are optimal for expressing a pairwise prior.

Therefore, we instead employ a novel strategy based on posterior regularization (Ganchev et al.,
2010) to integrate this prior. This is done by introducing an auxiliary joint distribution q(XH),
placing a regularizer on q(XH), and encouraging q to be similar to p✓ through a KL divergence
penalty. The regularizer is

RPR(✓) , max
q

R0
PR(✓, q) (3)

R0
PR(✓, q) , �D(q(XH)kp✓(XH |x̄O)) + PR(q), (4)

where D(·k·) is the KL divergence D(p(XH)kq(XH)) =
P

xH
p(xH) log(p(xH)/q(xH)) and PR(q)

is a posterior regularizer that expresses prior knowledge about the posterior distribution. KL
divergence measures the dissimilarity of probability distributions, such that D(pkq) is zero if the
distributions are identical and can be arbitrarily large if they are not. Several posterior regularizers
have been proposed in the past, such as those that require posteriors to satisfy constraints in
expectation (Ganchev et al., 2010).

We propose a new type of posterior regularizer that expresses a pairwise prior (Figure 8). We are
given a weighted, undirected regularization graph over the hidden variables GR = (H,ER), where
ER ✓ H ⇥H is a set of edges with non-negative similarity weights w : ER ! R+, such that a large
w(u, v) indicates that we have strong belief that Xu and Xv should be similar. (We describe how
we generate this graph in the next two sections.) For a distribution p(XH), let pMh (Xh) indicate the
marginal distribution over Xh, pMh (xh) =

P
xH\h

p(xH). Let �G be a hyperparameter controlling

the strength of regularization. The posterior regularizer is

PRGBR(q) , ��G

X

(u,v)2ER

w(u, v)D(qMu (Xu)kqMv (Xv)). (5)

Thus the full objective is

maximize✓,q JGBR(✓) , L(✓)�D(q(XH)kp✓(XH |x̄O))� �G

X

(u,v)2ER

w(u, v)D(qMu (Xu)kqMv (Xv)).

(6)

We term this strategy of adding graph-based penalties graph-based regularization (GBR).

GBR optimization

We have developed a novel algorithm for e�ciently optimizing JGBR in q. This algorithm alternates
between using a method for probabilistic inference such as the forward-backward algorithm and
applying a message passing algorithm over the regularization graph GR. In the inference step, the
model receives evidence from the message passing step in the form of a “virtual evidence” distribution
rMh (Xh) over each variable h. These virtual evidence distributions are used in conjunction with the
original SAGA model to compute a posterior distribution over the labels using any algorithm for
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probabilistic inference on dynamic Bayesian networks, such as belief propagation or the forward-
backward algorithm.

In the message passing step, the algorithm updates rM to minimize the Kullback-Leibler penalties
in the objective function JGBR. This message passing step is itself performed using an alternating
optimization algorithm, which passes messages over the regularization graph GR. This algorithm
is similar to one originally developed for the field of semi-supervised learning (Subramanya and
Bilmes, 2011).

The inference and message passing steps are iterated until convergence. These two updates are
linear in the number of variables (for chain-structured models, which include all existing SAGA
methods) and linear in the degree of the regularization graph, respectively. The algorithm exhibits
monotonic convergence, similar to the EM algorithm. We derive the algorithm for optimizing JGBR

and prove its convergence in Supplementary Note 1.

GBR graph for incorporating Hi-C data

When we are using GBR to incorporate Hi-C data, we are given a matrix of contact p-values
P 2 Rn⇥n, generated from a matrix of contact counts as described above. To remove noise and
decrease the degree of the graph, we removed all contacts with uncorrected p-value p > 10�6 and
multiplied the remaining p-values by 106, similar to a Bonferroni correction. Note that due to
the large number of hypotheses, performing a full Bonferroni correction would result in very few
contacts. Moreover, the graph weights allow the algorithm to take into account the strength of each
connection, so the choice of 106 was made for computational, not statistical, reasons. We computed
the weights as

w(i, j) , max(0,� loge(p(i, j)/10
6)). (7)

As with the graph for transferring information between cell types, the multiplicative scale of the
weights is arbitrary, since it is controlled by the graph weight hyperparameter �G. We used only
intrachromosomal contacts for forming the GBR graph. To produce a GBR graph representing cell
type-consistent chromatin conformation used in the domain annotation of eight cell types, we added
the edge weights from the IMR90 and H1-hESC Hi-C GBR graphs.

GBR graph for annotation of multiple cell types

When we are using GBR to transfer information about cell type A to improve annotation of cell
type B, we are given an annotation aA1:n 2 {1 . . . k}n of cell type A, produced without GBR. We
construct a GBR graph from this annotation by connecting each pair of positions that received the
same label in aA with an undirected edge of weight 1. Note that the weight is arbitrary, since it
is scaled by the regularization parameter �G. To mitigate the problem of quadratic growth in the
degree of this graph, we randomly subsampled this graph such that each node had outgoing degree
17 ⇡ loge(n). We chose this graph degree because a randomly-subsampled graph with n loge n
edges has the same connected components as the full graph with high likelihood (Erdős and Rényi,
1960), and our experiments on synthetic data (not shown) showed that the sparse graph performed
similarly to a complete graph.

Circular permutation

As a null model for several experiments, we performed a circular permutation of the genome along
each chromosome arm as follows. We randomly choose a translation fraction ✓ 2 [0, 1]. For each
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coordinate i 2 {1 . . . n} within a chromosome arm that spans the range [a, b), we translate i to t(i),
where

t(i) = mod(b�a)(i+ b✓(b� a)c) + a. (8)

To circularly permute a genome feature, such as an annotation or a Hi-C contact map, we translate
each element from position i to t(i). Thus, when a circularly-permuted feature is compared to an
un-permuted feature, all positional correspondence between permuted and un-permuted features
are removed, but each feature’s spatial patterns are preserved. In each case, we performed this
permutation 200 times and report the average over all permutations. If the feature includes any
centromere- or telomere-defined elements, we remove these as a preprocessing step.

Topological domain agreement

To evaluate the degree to which an annotation A matches a set of topological domains, we computed
the number cd,` of bases by which domain d is covered by label `. We then computed c⇤d = max` cd,`
to be the number of bases covered by the highest-coverage label for domain d, and divided c⇤d by the
length of d to produce f⇤

d , the fraction of d covered by its plurality label. The agreement f⇤
d takes

its maximum value of 1 if the domain d is covered by exactly one annotation label. We computed
the raw genome-wide agreement fraw = (1/|d|)

P
d f

⇤
d .

This raw genome-wide agreement fraw can be improved simply by increasing the length of
segments and decreasing the number of labels. Therefore, we circularly permuted A to form Ap,
and used this permuted annotation to compute fp

raw. Finally, we computed the topological domain
agreement a = fraw/f

p
raw as the ratio of unpermuted and permuted raw agreements. This normalized

agreement is large when the annotation has small segments that exactly match the topological
domains and is small when the annotation’s segments are not correlated with topological domains.

Signal variance explained

To evaluate the similarity between a genome-wide signal vector and a genome annotation, we use the
following measure, which we term the variance explained. We are given a genome annotation with
k labels a1:n 2 {1 . . . k}n and a vector x1:n 2 Rn. We compute the signal mean over the positions
assigned a given label ` as

µ` ,
Pn

i=1 1(ai = `)xiPn
i=1 1(ai = `)

for ` 2 {1 . . . k}. (9)

We define a predicted signal vector xpi = µai and compute the the prediction error as di = xi � xpi .
We compute the residual standard deviation of the signal vector as

s , stdev(d1:n) =

vuut 1

n

nX

i=1

(di �mean(d1:n))2 =

vuut 1

n

nX

i=1

d2i (10)

The last equality holds because mean(d1:n) = 0 by construction. We define the variance explained
(VE) for annotation a and signal vector x as VE , stdev(d1:n)� stdev(x1:n). VE is bounded by the
range [0, stdev(x1:n)]. VE is a measure of the extent to which a genome-wide signal data set and
annotation are similar, where higher values indicate better agreement.
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Genomic element prediction

We form a classifier for a set of genomic elements based on an annotation using the following strategy.
We are given a genome annotation with k labels a1:n 2 {1 . . . k}n and a set of positions S ✓ {1 . . . n}
which represent some set of elements of interest, such as enhancers or CTCF binding sites. Define
A` = {i | ai = `} to be the positions annotated by label ` To avoid biases caused by di↵ering-size
elements, we assume that each element occupies just 1 bp. In the case of larger elements (such as
MACS-called TF binding sites, which are ⇠200 bp), we define each element as the middle base pair
of the range.

For each label, we compute the predictive precision of label ` as

precision(`) =
|S \A`|
|A`|

for ` 2 {1 . . . k}. (11)

We rank the labels in decreasing order of their precision on a training set to get an order s1:k 2
{1 . . . k}k.

Using this ordering, we form k predictors, Pj =
Sj

i=1Asi for j 2 {1 . . . k}. The true positives
and false positives of a predictor P are TP(P ) = P \S and FP(P ) = P \ ({1 . . . n} \S) respectively.
The predictors are in order of decreasing stringency—that is, Pj�1 ✓ Pj .

We can trace out the full sensitivity-specificity tradeo↵ (such as for an ROC or PR curve), by
interpolating between each successive pair of predictors. To interpolate between a pair of predictors
Pj and Pj+1, we form an interpolated predictor Pj,j+1,✓ by sampling each position i 2 Pj \Pj�1 with
probability ✓ 2 [0, 1]. The expected number of true positives and false positives of an interpolated
predictor Pj,j+1,✓ can be shown to be

E[|TP(Pj,j+1,✓)|] = |TP(Pj)|+ ✓|TP(Aj+1)| and (12)

E[|FP(Pj,j+1,✓)|] = |FP(Pj)|+ ✓|FP(Aj+1)|, (13)

respectively. We report our performance using a test set disjoint from the training set used to order
the labels.

Developmental replication domains

In order to evaluate the replication timing dynamics of di↵erent types of domains, we used a
four-label (constitutive early/late, switching early/late) annotation of the human genome using
published replication timing data for 16 di↵erent human cell types, gathered by V Dileep, F Ay,
J Sima, WS Noble, DM Gilbert et al. (unpublished). This annotation first windowed replication
timing data into 40 kb bins and then determined for each window whether it replicates early (RT
value > 0.5) or late (RT value < -0.2) in all cell types. Such windows with consistent timing profiles
across all cell types were labeled as “constitutively early” and “constitutively late”, respectively.
The remaining windows were labeled as either switching or left unlabeled. Switching windows are
determined as those with an absolute value of replication timing larger than 0.5 in all cell types but
with an opposite sign than others in at least one cell type. Switching windows that are early and
late replicating in IMR90 were labeled as switching early and switching late, respectively.

Consistent domain boundaries

When we annotated domains in eight cell types, we found that domain boundaries were shared be-
tween annotations much more often than would be expected by chance. To identify developmentally-
consistent domain boundaries, we first formed a list of all segment boundaries that occurred in at
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least one cell type. For each boundary, we computed the number of cell types with boundaries within
50 kb. We formed a set of representative by greedily selecting the boundary with the most nearby
boundaries as a representative, removing all boundaries near the representative from the list, and
repeating the process until no two boundaries in the list were within 50 kb of one another. While
this problem is an instance of the NP-hard set cover problem, the greedy approach is guaranteed
to result in a constant-factor approximation of optimal (Nemhauser et al., 1978). This yielded a
set of 13,906 boundary groups, each more than 50 kb from all other groups. We defined the 2,967
boundary groups composed of at least five boundaries as consistent boundaries.

Data access

Domain annotations and code for Segway with GBR is available online at http://noble.gs.

washington.edu/proj/gbr.
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