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Abstract

HISAT isanew, highly efficient system for alignment of sequences from RNA
seguencing experiments that achieves dramatically faster performance than previous
methods. HISAT uses a new indexing scheme, hierarchical indexing, which isbased on
the Burrows-Wheeler transform and the Ferragina-Manzini (FM) index. Hierarchical
indexing employs two types of indexes for alignment: (1) awhole-genome FM index to
anchor each alignment, and (2) numerous local FM indexes for very rapid extensions of
these alignments. HISAT’s hierarchical index for the human genome contains 48,000
local FM indexes, each representing a genomic region of ~64,000 bp. The algorithm
includes several customized alignment strategies specifically designed for mapping
RNA-seq reads across multiple exons. In tests on avariety of real and simulated data sets,
we show that HISAT isthe fastest system currently available, approximately 50 times
faster than TopHat2 and 12 times faster than GSNAP, with equal or better accuracy than
any other method. Despiteits very large number of indexes, HISAT requires only 4.3
Gigabytes of memory to align reads to the human genome. HISAT supports genomes of
any size, including those larger than 4 billion bases. HISAT is available asfree, open-
source software from http://www.ccb.jhu.edu/software/hisat.

Background

Sinceits introduction in 2008, high-throughput RNA sequencing technology (RNA-seg)*
has become ubiquitous as atool for the study of gene expression. It has been
successfully applied to a variety of scientific questions including determining the
structure of transcripts, quantifying expression changes, identifying long non-coding
RNAs, and discovering fusion genes, among others™. As RNA-seq has matured,
sequencing throughput and read lengths have increased dramatically: in 2008 asingle
RNA-seq run would comprise several million reads approximately 25-40 bp long, while
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today arun might contain 100-500 million reads with lengths of 100 bp or longer. These
large and ever-increasing data volumes necessitate fast and scalable computational
analysis systems.

RNA-seq analysis begins by aligning reads against a reference genome to determine the
location from which the reads originated®®. Because of the enormous data volumes
involved, this alignment step has grown so time consuming that it has become a critical
bottleneck; for example, widely-used alignment programs such as TopHat2° and
GSNAP'™ can take several days to process a single RNA-seq experiment. It is now
common to analyze dozens of samples, and some projects are collecting much larger data
sets, with hundreds or even thousands of samples, which some currently available
programs require weeks or months to process. The recently introduced STAR program™
uses suffix arrays to provide significant faster processing than most other methods,
including TopHat2. However, the suffix array method has very large memory
requirements (28 GB for the human genome) and as we show later, yields substantially
lower alignment sensitivity than the best methods.

To create a much faster spliced aligner that uses a modest amount of RAM, we designed
anovel indexing strategy, which we call hierarchical indexing, and implemented itin a
new program, HISAT (Hierarchical Indexing for Spliced Alignment of Transcripts). The
new indexing scheme is based on the Burrows-Wheeler transform*? and the FM index3,
which together allow for extremely fast DNA sequence alignment with a low memory
footprint. HISAT uses the Bowtie2™* implementation to handle many of the low-level
operations required to construct and search an FM index. In contrast to most other
aligners, our algorithm employs two different types of indexes, asillustrated in Figure 1.
(1) aglobal FM index that represents the entire genome, and (2) numerous small FM
indexes for regions that collectively cover the genome, where each index represents
64,000 bp. For the human genome, we create ~48,000 local FM indexes, each
overlapping its neighbor by 1,024 bp, to cover the entire 3 billion bases. The overlapping
boundaries make it easier to align reads that would otherwise span the regions covered by
two indexes.

Although the program uses a very large number of local indexes, we store them in a small
set of files and implement other optimizations to minimize the memory requirements,
allowing usto index the human genome in approximately 4 GB of space. As we show
below, hierarchical indexing enables very fast and sensitive alignment of RNA-seq reads,
including multi-exon spanning reads, which other methods have difficulty aligning.

In contrast to alignment of DNA-seq reads, the alignment of RNA-seq reads comes with
two additional challenges. Oneisthat RNA-seq reads may span large gaps
corresponding to introns, which in mammalian genomes can be over a megabasein
length. Exons are relatively short, and thus when using 100-bp reads, a significant
proportion of reads (~34.4% in our Smulated data set; see Results) will span two exons.
For the purpose of alignment, we divide these exon-spanning reads into three categories
(Figure 2a): long-anchored reads, which have at least 15 bp in each of the two exons,
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intermediate-anchored reads, which have 8-15 bp in one exon; and short-anchored reads,
with just 1-7 bp aligned to one of the exons.

Figure 2b shows the proportion of reads expected to fall in each of these categories for
100-bp reads. Using simulated human RNA-seq data with realistic parameters, ~25% of
the reads span two exons with long anchors (> 15 bp) in both exons, denoted in the figure
by 2M gt 15. Thesereads are relatively easy to align because both anchors are long
enough to be mapped to a unique location on average in the human genome. 5.1% of the
reads span two exons with an intermediate-length anchor (8-15 bp) on one exon.
Because most alignment programs rely on a global index, they have great difficulty
mapping these reads because 8-15 bp segments will align to far too many locations (e.g.,
an 8-bp sequence is expected to occur ~48,000 times in the human genome). Thisis
where the use of alocal index provides a substantial advantage. In HISAT, each local
index covers 64,000 bp, which ensures that over 90% of the annotated intronsin the
human genome are completely contained in one local index. Thisin turn means that
HISAT can usually align small anchors using only a single local index, rather than
searching across the whole genome. On average, an 8-bp sequence will occur just once
in alocal index of thissize.

In our sample data, 4.2% of the reads span two exons with a very short anchor (1-7 bp) in
one exon. Because these anchors are so short, the best approach is, where possible, to
align these reads by making use of splice site information found by aligning other reads
in the same data, or by using known splice sites. Note that ~3.2% of reads span more
than two exons, denoted in Figure 2 by gt 2M (greater than two exons). In many
mapping algorithms, the alignment of short- and intermediate-anchored reads and reads
spanning more than two exons (12.5% of the total reads) takes up to 30-60% of the total
runtime, and many of those reads are ultimately aligned incorrectly or left unaligned.

A second challengeis that processed pseudogenes, which are non-functional copies of
genes and lack introns, often misdirect the mapping of reads, asillustrated in Figure 2c.
Reads are often incorrectly mapped to pseudogenes instead of the genes from which they
originated. Thisisasgnificant problem for the human genome, both because it contains
over 14,000 pseudogenes and because genes that have pseudogene copies tend to be
abundantly expressed®.

HISAT solves these aforementioned problems using hierarchical indexing and several
alignment strategies specifically designed for handling different read types, as described
in the Results and the M ethods sections. HISAT is open-source software freely available
for downloading at http://www.ccb.jhu.edu/software/hisat.

While HISAT isthefirst system to employ a hierarchical indexing strategy for spliced
alignment, the strategy itself could be adopted by other methods, if their data structures
can be suitably re-designed. All the programs that were included in our study — GSNAP,
STAR, OLego™, and TopHat2 — could in principal use hierarchical indexing and thereby
improve their alignment speed and quality.
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Results and discussion

We compared the accuracy and speed of HISAT to several of the leading spliced
alignment programs, including STAR, GSNAP, OLego, and TopHat2, using both
simulated and real reads. Wetested three versions of HISAT (HISATx1, HISATx2, and
HISAT), which we ran with different parameters (see Supplemental material for details).
HISATx1 uses a one-pass approach that aligns each pair of reads independently of others.
The second version, HISATx2, is atwo-pass version of HISAT, to mimic the two-step
approach used in TopHat2. In thisversion, thefirst run reports alist of splice sites
supported by reads with long anchors. The second run makes use of that splice site
information to align reads with short anchors (see Methods). As expected, HISATx2
takes twice as long to run, but it discovers more alignments. The STAR program also has
atwo-pass mode, denoted here as STARX2, which we included in our evaluation. We
found that STARx2 was more than twice as low as STAR's default one-pass mode. This
is because, prior to its second pass, STAR must build a new index for the splice junctions
found in the first pass. Index building is relatively slow compared to alignment, and adds
significantly to the overall time.

Thethird variant of HISAT (simply called HISAT, because this is the default version of
the program) combines the first two ideas to gain sengtivity without the large
performance cost incurred by running the program twice. In thisalgorithm, we allow
HISAT to make use of splice sites found during the alignment of earlier reads when
aligning later reads in the samerun. As we show in our results below, thishybrid
approach finds almost all the alignments found by HISATx2, with runtime nearly as fast
asHISATx1. To the best of our knowledge, this hybrid approach is the first such single-
pass method that bypasses the time-consuming step of remapping reads but matches the
sensitivity of two-pass methods. HISAT also includes an option to use known splice sites
from gene annotations.

For our ssimulated data sets, we generated 20 million reads, each 100 bp long, from
17,582 randomly chosen transcripts from known protein-coding genes, based on the
GRCh37 assembly of the human genome. Each transcript was assigned expression
values according to amodel provided by the Flux Simulator'® (see Supplementary
material for more details). Because we know the true alignments for the simulated reads,
we can calculate alignment sensitivity as well as the sensitivity and precision of splice
site detection for each program. In the results here, we discuss the performance of
HISAT and other programs on error-free reads. We also ran all programs on a simulated
data set that included sequencing errors. These results, which are consistent with the
results on error-free data, are shown in Figure S3 and Table S3.

Figure 3 shows the alignment speed of the programs for all reads. Speed is shown as the
number of reads processed per second (rps). HISATx1 and HISAT were fastest, at
141,259 and 132,781 rps respectively, and STAR was third fastest at 103,470 rps. As
expected, HISATx2 (68,640 rps) and STARX2 (51,598 rps) took approximately twice as
long as HISATx1 and STAR, respectively. Note that the speed reported for STARx2 did
not include the index-building time, which took approximately one hour for this data set.
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GSNAP was substantially slower at 24,891 rps, and the slowest programs were TopHat2
(2,092 rps) and OLego (849 rps).

The current version of GSNAP uses a suffix array in addition to its use of a 15-mer hash
table, which makesiit several times faster than earlier versions that used only the hash
table. OLego aligns reads using a global index based on an FM index, similar to
HISAT sagorithm. However it runsvery slowly, presumably because of
implementation details. Overall for this simulated data set, HISATX1 is 37% faster than
STAR and six times faster than GSNAP, 68 times faster than TopHat2, and 166 times
faster than OLego. Aswe show below, HISAT is more accurate and is only 6% slower
than HISATX1.

Figure 4 shows alignment sensitivity for all programs on the 20 million smulated reads.
Alignment sensitivity measures the percentage of reads that are aligned correctly, where
the beginning, end, and all GT/AG splice sites within the alignment must match precisely.
For non-GT/AG splice sites, an alignment was counted as correct if the intron boundaries
matched within a 5-bp window. (Note that non-consensus splice sites occur in just 0.6%
of all reads. Table S1 provides separate accuracies on this subset of splice siteswhen

they are required to match precisely.) Among the one-pass algorithms (HISATx1, STAR,
GSNAP, and OLego), HISATx1 and GSNAP provide the highest alignment sensitivity at
94.1%. OLego and STAR yielded lower sensitivity, at 92.2% and 91.5%, respectively.

Compared to the one-pass programs, two-pass approaches (HISATx2, STARX2,
TopHat2) and the hybrid approach of HISAT obtain higher overall accuracies. These
methods are much better at aligning reads with short and intermediate-length anchors.
These four methods obtained sensitivity from 99.0 to 99.6%, which was 5% better than
HISATx1 or GSNAP.

Figures 5 and S1, which show alignment sensitivity for reads with shorter anchors, reveal
much more dramatic differences among the aligners. The two-pass algorithms (HISATx2,
STARX2, TopHat2) and HISAT generate much better alignment sensitivity for short-
anchored reads (1-7 bp anchors) and for reads spanning more than two exons. For reads
with intermediate length anchors (Figure S1), HISATx2, STARx2, HISAT, and TopHat2
each correctly aligned >97.7% of the reads, while the one-pass methods ranged from
58.7% to 94.6%. For the reads with the shortest anchors, HISATx2, STARX2, HISAT,
and TopHat2 all provided sensitivity higher than 97.5%, while the other aligners correctly
aligned fewer than 10% of these reads.

This analysis reveals one of the key weaknesses of STAR: it aligned only 58.7% of the
intermediate anchored reads, and it aligned almost none (< 0.1%) of the short-anchored
reads (those with only 1-7 bp aligned to one of the exons). OLego had better sensitivity
(94.6%) for intermediate-anchored reads, but it failed to align any reads with 1-7 bp
anchors, and it is more than 1200 times slower than HISATX1 (see Figure S1). This
illustrates the great difficulty in aligning reads with small or very small anchors using
only a global index: these short anchors can be mapped to very large numbers of
locations in the human genome.
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We separately calculated accuracy at detecting splice sites, shown in Table 1. The
simulated reads contained atotal of 87,637 pairs of splice sites (acceptor sites and donor
sites). We asked how many of these sites were correctly detected by each program, and
gave aprogram credit if at least one alignment supported a given splice site. We defined
precision, or positive predictive value, as the percentage of predicted sites that matched a
true splice site. By these measures, HISAT obtained the highest sensitivity (97.6%) and
the second highest precision (96.6%) among all the aligners. OLego yielded dlightly
higher precision (97%), but at the expense of lower sensitivity (94.1%).

As atest on real data, we compared the aligners using 108,749,331 101-bp RNA-seq
reads collected from fetal lung fibroblasts (GEO accession GSM981249; see
Supplementary material for more details). Because we do not know the true alignments
for these reads, we cannot tell which programs placed them at the correct locations on the
genome. However, we can evaluate alignment quality in two other ways. We considered
the following two criteria: (1) the cumulative number of alignments detected, up to a
given edit distance, for edit distances from 0O to 3; and (2) the number of spliced
alignments found that correspond to known human splice sites, based on the Ensembl
GRCh37 gene annotation.

Figure 6 shows the cumulative number of alignments found by each program on this data
set, divided according to edit distances from 0 to 3. Edit distance is defined here simply
as the number of differences (“edits”) between the read and the reference sequence as
shown in the reported alignment. At all distances, HISATx2, STARx2, HISAT align the
greatest number of reads, followed by TopHat2.

Figure 7 shows the cumulative number of spliced alignments from this same data set that
correspond to annotated human splice sites. These are also separated according to edit
distance. At every distance and for the overall total, HISATXx2, STARx2, and HISAT
found the highest numbers of alignments, ranging from 34.6 to 35.1 million. STAR and
OLego found the lowest numbers of spliced alignments, at just 26.9 and 26.2 million
respectively.

Table 2 shows the run-times and memory usages for each program on the 109 reads from
the lung fibroblast data set. HISATx1 and HISAT took 23 and 27 minutes (resp.) to
process all reads, and only STAR ran in acomparable amount of time, at 24.5 minutes.

In contrast, TopHat2 took 1,170 minutes, OLego 990 minutes, and GSNAP 292 minutes,
In terms of memory usage, the suffix-array methods STAR and GSNAP used 28 and 20.2
GB of RAM. The BWT-based programs (HISATx1, HISAT, HISATx2, OLego, and
TopHat2) required far less memory, ranging from 3.7 to 4.3 GB of RAM.

Overdl, in terms of both alignment quality and speed, HISAT demonstrated superior
performance compared to the other programs we tested. In the Supplementary material
(Figures S1-S6 and Tables S2-S5), we provide alignment results for additional sets of
simulated reads and for an additional real data set from Chen et al.™”, containing 217
million paired-end reads. In all cases, the relative performances of the alignment
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programs remained the same as described above. Table S6 also provides details of the
input parameters and version numbers for all programs used in these evaluations.

Conclusions

One of the main purposes of using RNA-seq data isto identify which genes and which
isoforms of those genes are expressed in a given sample. Most such analyses begin with
an alignment step that maps reads against areference genome. After mapping the reads,
one can group them into loci and then attempt to assemble the reads to reconstruct full-
length transcripts and quantify their expression levels. The mapping step isacrucia pre-
requisite for these analyses, and alignments that are missed cannot usually be recovered
at later steps. Because of the large size of RNA-seq data sets today, the alignment of
these reads is very time-consuming, taking days or even weeks of compute time.

Most spliced alignment programs use a single global index (e.g., aBowtie2 index of the
human genome) as the basis for alignment. Aswe have shown, the use of a global index
can be very time-consuming when mapping reads with short- and intermediate-length
anchors (< 15 bp) on one of the exons to which they align. For instance, GSNAP and
OLego devote a disproportionate amount of computational time to aligning such reads,
while STAR spends less time but finds alignments for only a fraction of them. Also
worth noting isthat STAR requires ~28 GB of memory, the most of any of the programs
tested, dueto its use of a suffix array index of the entire genome.

In order to create an aligner that is very fast, very sensitive, and that uses a modest
amount of memory, we have designed our new hierarchical indexing scheme and
implemented it in HISAT, which achieves these goals by making use of tens of thousands
of local indexes, and that gains additional sensitivity from alignment strategies
specifically designed to handle different types of reads. These additional indexes
combined with the global index enable dramatically faster alignment while matching or
exceeding the sengitivity achieved by the best previous spliced aligners. On our real data
sets, HISAT was approximately 50 times faster than TopHat2, 42 times faster than
OLego, and 12 times faster than GSNAP, with better alignment quality aswell. Our
experiments on smulated data demonstrate that HISAT has better alignment sensitivity
than TopHat2 or any other program. HISAT also has much lower memory requirements
(4.3 GB for the human genome) than STAR (28 GB) or GSNAP (18 GB), meaning that
HISAT can be run on conventional desktop computers.

In conclusion, HISAT provides better alignment accuracy than TopHat2 and GSNAP,
two of the most widely-used spliced alignment programs. It is many times faster than
most programs and is dlightly faster than STAR, which until now has been the fastest
program for thistask. While STARx2 and HISAT have similar accuracy, HISAT
achieves its performance much more quickly while using much less memory, through the
use of local indexes, which are inherently well-suited for aligning acrossintrons. With its
combination of high accuracy, speed, and low memory usage, HISAT can produce faster
and more accurate results on the very large-scal e data sets that are generated in current
RNA-seq experiments.
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Materials and methods

HISAT usesits hierarchical indexing algorithm along with several adaptive strategies,
based on the position of aread with respect to splice sites, which we describe below. To
begin processing each read, it first tries to find candidate locations across the target
genome from which the read may have originated. It identifies these locations by first
mapping part of each read using the global FM index, which in most cases identifies one
or asmall number of candidates (Figures 8 and S6). HISAT then selects one of the
~48,000 local indexes for each candidate and uses it to align the remainder of the read.
For reads sequenced in pairs, each mate is separately aligned and the alignments of both
mates are combined. If aread failsto align, then the alignments of its mate are used as
anchors to map the unaligned mate. The extension of each alignment uses an efficient
local-index based search as explained below.

Although searching the global FM index is much faster in principal than k-mer based (or
hashing) search, in practice it tends to be slower due to properties of the low-level
memory management strategy in a modern computer. The core memory includes both
random access memory (RAM) and cache memory, with cache being much smaller but
also much faster. When retrieving ablock of data, the operating system searches cache
first, and only looksin RAM if the block is not found in cache.

Search through a global FM index of the human genome suffers from many cache
“misses’ because the alignment algorithm proceeds one base at a time through a read and
the corresponding locationsin avery large FM index (about 750 MB for the human
genome). Asamatch is extended base by base, the search jumpsto completely different
regions of theindex; i.e., the FM index is not organized according to the sequence of the
genomeitself. Each time the search jumps, the computer hasto search RAM and bring in
anew piece of the FM index, which israrely present in the cache already.

In contrast, the far smaller size of our local indexes, 42 KB, alows the entireindex to fit
in cache, which means that search through the local indexes generates considerably fewer
cache misses and therefore runs much faster.

In addition to itstwo basic operations (global and local searches), HISAT also uses an
even faster operation for alignment extension. This operation, which performs direct
comparisons of read sequences with genomic sequences, is used only when we know the
genomic location to which aread is being mapped. The extension operation requiresthe
entire genomic sequence to be loaded into memory for fast access; in the case of the
human genome this requires 682 MB. Strategically combining these three operations can
dramatically reduce the use of relatively slow operations such as global search and even
local search.

Here, we present three different alignment strategies based on three groupings of reads:
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1) readsthat map either within an exon (M), across 2 exons with at least 15 bpin
each exon (2M_gt_15), or across 2 exons with 8-15 bp mapping to one exon
(2M_8 15);
2) readsthat map to two exons with just 1-7 bp in one exon (2M_1 7) or that map
across more than 2 exons (gt_2M); and
3) readsthat arelikely to be incorrectly mapped to processed pseudogenes.
Weillustrate each alignment strategy using examples (error-free reads) that for the
purposes of illustration are relatively simple, but that still provide insight into how
hierarchical indexing enables fast and sensitive alignment. Although we use error-free
reads in these examples, HISAT easily handles reads with both mismatches and indels
(see the Supplementary Material and Figure S7 for details). Note that HISAT is
optimized for reads ranging from 75-150 bp, the most commonly used (and least
expensive) type, but it will also handle the 250-300 bp reads generated by MiSeq
instruments.

All the strategies that use local indexes initially just retrieve one index, based on the
location of the current match. Among the 246,208 introns from the annotated protein-
coding genes in the human genome, 222,503 (90.4%) are completely included in one
local HISAT index, each of which spans 64,000 bp. Onelocal index, therefore, is almost
always sufficient to align aread. When reads involve long introns, HISAT uses two or
more local indexes, up to a maximum intron length of 500,000 bp.

For the examples here, we search for matches in one direction, from right to left, in order
to minimize HISAT's memory footprint, currently 4.3 GB. (Bidirectional search using
our method would require 7.5 GB for the human genome.) Thisunidirectional search
does not affect alignment sensitivity, (though it might slightly reduce speed).

Case 1. Alignment of reads that map either within an exon (M), across 2 exons with at
least 15 bp in each exon (2M_gt_15), or across 2 exons with 8-15 bp mapping to one
exon (2M_8_15).

Figure 8 displays two exons from a gene on human chromosome 22, separated by a 3899-
bp intron. Suppose the genomic region is transcribed and spliced, and we have three
reads sequenced from the resulting transcript: (1) an exonic read, (2) aread spanning two
exons with an 8-bp anchor in one exon, and (3) aread spanning two exons with 50 bpin
each exon. All the reads are assumed to be error-free and 100-bp long. We can apply
hierarchical indexing to align each of these reads rapidly and correctly. We align the first
read using the global FM-index (Figure 8, example 1). Because global searchis
relatively time consuming, we change strategies when the partial alignment meets two
conditions: (1) it isat least 28 bp long and (2) it maps onto exactly one location. For the
read shown in the figure, the 28 bp sequence on its right end maps uniquely, allowing us
to stop the global search operation at that point. From there, we extend the partial
alignment by directly comparing the remaining sequence and the corresponding genomic
sequence, which we can extract directly from the genome using the mapped location as
an index. Because theread is error-free and contained within one exon, the extension
operation sweeps across the remaining 72 bp, completing the alignment for the read.
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Note that we could perform this alignment using the global FM-index, as TopHat2 does,
but the combination of global search and local extension isfaster.

For the second read, which has avery short 8-bp anchor on the left side, we first try to
map the read using global search, moving right to left as follows (see Figure 8, example
2). Thefirst 28 bp on the right end of the read maps uniquely, allowing us to anchor the
alignment and halt the global search. We then extend the alignment until we encounter a
mismatch at the 93" base. This mismatch occurs when the alignment extension reaches
theintron. At this point we pause the search, retrieve the local FM-index that contains
this location, and align the remaining 8 bp using thisindex. Because theindex covers
only asmall region, in this case we find just one match for the 8-bp segment. Finally, we
check whether the two partial alignments (8 bp and 92 bp) are compatible with each other
(e.g., inthe correct orientation), and then combine them to produce a spliced alignment of
the original read.

Note that if we searched for an 8-bp sequence in the global index, we would expect to
find an average of ~48,000 matching locations in the human genome (and sometimes
many more). Instead of examining 48,000 possible locations, we use one of the local FM
indexes, which is expected to contain just one copy of a given 8-bp sequence, on average.
This two-stage hierarchical indexing alows us to avoid examining tens of thousands of
candidate locations for short anchors, which in turn dramatically speeds up the overall
alignment algorithm.

The third read has long anchors (50 bp each) in each exon. Wefirst align the read
beginning on the right, using global search as we did before. After thefirst 28 bpis
uniquely mapped, we switch to the extension operation, which further aligns 22 bp and
stops after amismatch at the 51% base. We then choose alocal FM-index and perform a
local search using the first 8 bp of the remaining part of the read. Once this8 bp isfound
(Figure 8, bottom), HISAT again uses the extension operation to align the rest of the read.
Note that depending on how many locations to which the 8-bp is mapped, HISAT uses
more base pairs to reduce the number of potential locations within 5.

As we can see from these examples, we can combine global search, local search, and
directed read extension to achieve rapid yet sensitive alignment. Note that when a read
has multiple spliced alignments, HISAT prefersto report alignments that use the
canonical GT and AG dinucleotides on the ends of the intron. From any remaining
alignments after thisfilter, it reports the one with the shortest intron length. HISAT
provides several parameters with which users can customize its alignment strategy,
including adjustable penalties for mismatches, indels, and non-canonical splice sites.

Case 2. Reads that map to two exonswith just 1-7 bp in one exon (2M_1 7) or that map
across more than 2 exons (gt_2M)

Exon-spanning reads sometimes have very small anchors (defined here as 1-7 bp) in one
of the exons. Correctly aligning these readsis extremely difficult because a 1-7 bp
anchor will align to numerous locations, even in alocal FM index. Arguably the most
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effective approach to align such short-anchored reads is to use splice site information to
remove the introns computationally prior to alignment. We can identify and collect
splice site locations when aligning reads with long anchors, and then re-run HISAT for
the short-anchored reads, asillustrated in Figure 9. Thistwo-step approach is very
similar to the two-step algorithm in TopHat2®.

More specifically, in the two-step HISATx2 method, we use the first run of HISAT
(HISATX1) to generate alist of splice sites supported by reads with long anchors. In the
second run we then use the splice sites to align reads with small anchors. For example,
consider the unmapped read spanning exons €2 and e3 in the upper portion of Figure 9.
Theright part of the read will be mapped to exon e3 using the global search and
extension operations, leaving a short, 3-bp segment unmapped. We then check the splice
sitesfound in the first run of HISAT to find any splice sites near this partial alignment.
In this example, we find a splice site supported by aread spanning exons €2 and €3 with
long anchorsin each exon. Based on thisinformation, we directly compare the 3-bp of
the read and the corresponding genomic sequencein exon €2. If it matches, we combine
the 3-bp alignment with the alignment of the rest of the read. This*junction extension”
procedure that makes use of previously identified splice sitesis represented by brown
arrows in Figure 9.

As we show in our experiments on simulated reads (see Results), this two-step strategy
produces accurate alignment of reads with very small anchors, as small as 1 bp.
Although HISATX2 has considerably better sensitivity, it takes twice aslong to run as
HISATx1. Asan alternative, we developed a hybrid method, HISAT, which has
sensitivity aimost equal to HISATx2 but with the speed of HISATx1. HISAT collects
splice sites as it processes the reads, similarly to the first run of HISATx2. However, asit
isprocessing, it uses the splice sites collected thus far to align short-anchored reads. In
the vast mgjority of cases, it can align even the shortest anchors because it has seen the
associated splice sites earlier. Thisresult follows from the observation that most splice
sites can be discovered within the first few million reads, and most RNA-seq data sets
contain tens of millions of reads. As our results show, HISAT provides alignment
sengitivity that very nearly matches the two-step HISATx2 algorithm, with a run-time
nearly as fast asthe one-step HISAT method.

The hybrid approach is also effective in aligning reads spanning more than two exons,
which are more likely to have small anchors. Figure S1 shows that the alignment
sensitivity for such reads (gt_2M) increases from 53% using HISATx1 to 95% using
HISAT.

Case 3. Readsthat are likely to be incorrectly mapped to processed pseudogenes

Mis-alignments caused by pseudogenes present additional problems for spliced alignment.
Processed pseudogenes are non-functional copies of genes that result when the original
gene was transcribed, spliced to remove introns, and re-inserted at a different location in
the genome. The most recently created pseudogenes are almost identical to the original
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genes, meaning that reads from these genes can map equally well to either version of the
gene. Intron-spanning reads are a particular problem, because they map end-to-end to the
pseudogene, but require a split (spliced) alignment to match the original, active gene. As
we showed previously®, 2.7% of annotated human genes have pseudogene copies, and the
corresponding genes can account for as much as 22.5% of an RNA-seq data set.
Therefore pseudogenes can introduce a significant mapping bias unless they are properly
handled. Figure 10 illustrates a gene and its corresponding processed pseudogene, where
the two exons shown on chromosome 1 have their nearly identical copies on chromosome
17 with only a single base difference. Unlike the two exons on chromosome 1 that are
separated by an intron, the two exons on chromosome 17 are adjacent. Asaresult
junction reads originally spanning the two exons on chromosome 1 are likely to be mis-
mapped to chromosome 17, particularly if the alignment program prefers contiguous
alignments.

Asillustrated in Figure 10, HISAT correctly maps reads to their origin by considering
several genomic locations. In this example, the rightmost portion of the read (48 bp)
maps to chromosomes 1 and 17. The match continues on chromosome 17 (the
pseudogene) but isinterrupted on chromosome 1 at the 3' end of theintron. Despite the
mismatch, HISAT attempts to extend both partial alignments because both are
sufficiently long (at least 22 bp with multiple mappings by default). For the partial
alignment on chromosome 1, we resume the search using alocal FM index, which yields
a spliced alignment with no mismatches. On chromosome 17, the extension of the
alignment yields a non-gapped alignment with one mismatch. Given the two candidate
alignments, HISAT reports the spliced alignment, because it has no mismatches while the
non-spliced alignment has one mismatch. If the two alignments were both equally good,
then HISAT would report both alignments. As shown in our results, this alignment
strategy allows HISAT to detect more spliced alignments than any of the leading aligners.
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Figure 1. Hierarchical I ndexing.

Hierarchical indexing consists of two types of indexes: (1) one global index that
represents the entire human genome and (2) ~48,000 local indexes that collectively cover
the genome. Both types of indexes are FM-indexes, which enable extremely fast
searches with alow memory footprint.

Figure 2. RNA-seq read typesand their relative proportionsfrom 20 million
simulated reads of 100-bp long.

In (a) of thisfigure five types of RNA-seq reads are shown: (1) M (exonic read): reads
from only one exon, that is, they do not span two or more exons. M stands for exon. (2)
2M_gt 15 (junction reads with long anchors): reads spanning two exons with anchors
greater than 15 bp on both exons. 2M stands for spanning two exons. (3) 2M_8 15
(junction reads with intermediate anchors): reads spanning two exons with the smaller
anchor between 8 and 15 bp long. (4) 2M_1 7 (junction reads with short anchors): reads
spanning two exons with the smaller anchor between 1 and 7 bp long. (5) gt 2M
(junction reads spanning greater than two exons). In (b), the pie chart shows the relative
proportions of different types of reads from 20 million simulated reads (100-bp long). In
(c), afunctional gene is depicted with its non-functional copy (processed pseudogene).
Note that the pseudogene is ailmost identical to its parent gene, with the intron absent and
one base difference in this specific example.

Figure 3. Alignment speed of spliced alignment software for 20 million smulated
100-bp reads.

This figure shows the alignment speed for al thereads (M, 2M_gt 15, 2M_8 15,
2M_1 7,and gt_2M) in terms of the number of reads processed per second. Please see
Figure S1 for the alignment speed for each type of read separately.

Figure 4. Alignment results of spliced alignment softwar e for 20 million simulated
100-bp reads.

This figure shows the alignment results for all thereads (all, M, 2M_gt_15, 2M_8 15,
2M 1 7,9t 2M). Reads are categorized as one of (1) correctly and uniquely mapped,
(2) correctly mapped (multi-mapped), (3) incorrectly mapped, and (4) unmapped.

Case (2) covers instances where an aligner mapped a read to multiple locations and one
of the locations was correct. These four categories encompass all of thereads. The
numbers in the figure represent the percentages of case (1). The numbersinside the
parentheses represent the percentages of cases (1) and (2) combined.

Figure 5. Alignment results of spliced alignment softwar e for readswith small
anchors(2M_8 15and 2M_1 7) from 20 million simulated reads.

This figure shows the alignment sensitivity for reads with small anchors (2M_8 15 and
2M 1 7). Readsare categorized as one of (1) correctly and uniquely mapped, (2)
correctly mapped (multi-mapped), (3) incorrectly mapped, and (4) unmapped. Case (2)
covers instances where an aligner mapped a read to multiple locations and one of the
locations was correct. These four categories encompass all of the reads. The numbersin
the figure represent the percentages of case (1). The numbers inside the parentheses
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represent the percentages of cases (1) and (2) combined. There are 1,021,935 and
843,959 readsin2M_8 15ad 2M 1 7, respectively.

Figure 6. Alignment resultsfor 109 million reads, each 101-bp long, from a human
sample.

Shown are the cumulative numbers of alignments up to a given edit distance. The
leftmost panel shows reads that matched exactly (with an edit distance of 0). The next
panel (labelled “1”) shows the number of reads that aligned with either O or 1
mismatches; similarly for the panels labelled 2 and 3. Note that GSNAP and STAR
report soft-clipped alignments where bases on the ends of reads are left unaligned. To
compute edit distances for these alignments, we re-aligned the soft-clipped bases to their
corresponding locations in the reference genome and cal culated the number of
mismatches.

Figure 7. Alignment results of spliced alignment softwar e for 109 million real reads
(101-bp long).

This figure shows the cumulative number of spliced alignments up to a given edit
distance (0, 1, 2, and 3) whose splice sites are known in gene annotations.

Figure 8. Threeworking examples demonstrating how HISAT appliesits
hierarchical indexing for fast and sensitive alignment.

The examples include alignment of one exonic read and two junction reads (one an
intermediate-anchored read and the other along-anchored read). Reads are error-free and
100-bp long. See main text for details.

Figure 9. Two-step approach version of HISAT to allow alignment of junction
readswith small anchors.

This figure shows how to align reads with short anchors (1-7 bp) by making use of splice
sites found by reads with long anchors.

Figure 10. Alignment of junction readsin the presence of processed pseudogenes.
This figure shows how to correctly align reads that would otherwise be mapped
incorrectly to processed pseudogenes.

Tables

Table 1. Sensitivity and precision of leading spliced aligners for 87,637 true splice sites
contained in 20 million ssimulated reads from the human genome. Sensitivity isthe
percentage true splice sites found out of the total that were present. Precision (or positive
predictive value) is the percentage of reported splice sites that are correct.

No. of splice sites No. of true
Program HO1Sp splice sites Sensitivity (%) Precision (%)
reported
reported
HISATx1 89,793 85,466 97.52 95.18

HISATx2 88,512 85,527 97.59 96.63
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HISAT 88,488 85,503 97.56 96.63
STAR 89,717 84,722 96.67 94.43
STARxZ 89,116 84,769 96.73 95.12
GSNAP 89,486 85,239 97.26 95.25
OLego 84,969 82,428 94.06 97.01
TopHat2 93,752 79,516 90.73 84.82

Table 2. Run times and memory usage for HISAT and other spliced alignersto align
109 million 101-bp RNA-seq reads from a lung fibroblast data set (see main text). We
used three CPU cores to run the programs on a Mac Pro with a 3.7 GHz Quad-Core Intel
Xeon E5 processor and 64 GB RAM.

Program Run time (minutes) Memory Usage (GB)

HISATx1 22.7

HISATX2 47.7 4.3

HISAT 26.7

STAR 24.5 28

STARx2 52.6

GSNAP 291.9 20.2
OLego 989.5 3.7
TopHat2 1170.0 43

Additional files

Additional File 1: Supplementary material.
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