
Phase transitions in tumor growth: II prostate cancer cell lines 

 

Authors: J.A. Llanos-Pérez
1
, A. Betancourt-Mar

1
, M. P. De Miguel

2
, E. Izquierdo-

Kulich
3
, M. Royuela-García

4
, E. Tejera

5 
& J.M. Nieto-Villar

3,1 

 

1
Mexican Institute of Complex Systems. Tamaulipas, México. 

2
Laboratorio de Ingeniería Celular, IdiPAZ, Hospital Universitario La Paz, Madrid, 

España 
3
Department of Chemical-Physics, M.V. Lomonosov Chemistry Division, Faculty of 

Chemistry, & H. Poincaré Group of Complex Systems, Physics Faculty, University of 

Havana, Havana 10400 Cuba. 
4
Dep. Biomedicine and Biotechnology, University of Alcalá, 28871 Alcalá de Henares, 

Madrid, España. 
5
Instituto de Investigaciones Biomédicas, Universidad de las Américas. Quito, Ecuador. 

jallanosp@yahoo.com.mx, mariapdemiguel@gmail.com, nieto@fq.uh.cu 

 

Highlights 

 Cancer is an open, complex, dynamic and self-organizing system. 

 Prostate cancer cell lines growth follows a Gompertz dynamics 

 Prostate cancer cell lines exhibit a multifractal behavior 

 The entropy production rate may be considered as metastatic potential marker 

 

 

Abstract 

 

We propose a mechanism for prostate cancer cell lines growth, e.g., LNCaP and PC3 

based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a 

“second order” phase transition. Finally, it was found that the cellular line PC3 exhibits 

a higher value the entropy production rate compared to LNCaP, which is indicative of 

the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic 

potential tumors. 
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1. Introduction 

 

Cancer is a generic name given to a group of malignant cells which have lost their 

specialization and control over normal growth. This group of malignant cells could be 

considered as a nonlinear dynamical system, self-organized in time and space, far from 

thermodynamic equilibrium, exhibiting high complexity [1], robustness [2] and 

adaptability [3]. 

 

Transitions phenomena far from thermodynamic equilibrium are a consequence of 

bifurcations and correlations which may have relevance it’s the macroscopic behavior 

of the tumor. On the other hand, bifurcations in dynamical systems have an analogous 

function to phase transitions in the vicinity of equilibrium. These result from on 

holder for this preprint is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright; http://dx.doi.org/10.1101/011189doi: bioRxiv preprint first posted online November 6, 2014; 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 7, 2015. ; https://doi.org/10.1101/011189doi: bioRxiv preprint 

mailto:jallanosp@yahoo.com.mx
mailto:mariapdemiguel@gmail.com
mailto:nieto@fq.uh.cu
http://dx.doi.org/10.1101/011189
https://doi.org/10.1101/011189


increment and amplification at the macroscopic levels of microscopic fluctuations. It is 

the main mechanism of self-organization, and, consequently, of complexity at the 

macroscopic level [4]. 

 

Recently, we had shown [5] that the transition from healthy cells to malignant cells 

during to avascular growth can be described by a second-order phase transition through 

either logistic or Gompertz dynamic equations equivalently. 

 

The goal of this work is to extend the thermodynamics formalism previously 

developed [5] to the dynamical behavior of the prostate tumor cell lines, such as, a 

example LNCaP and PC3. 

 

The manuscript is organized as follow: Section 2 describes the experimental part: 

the growth dynamics of prostate tumor cell lines LNCaP and PC3 and the dynamical 

behavior of the fractal dimension of the cell lines patterns. In section 3 we develop a 

thermodynamic framework, based on the entropy production rate. Finally, some 

concluding remarks are presented. 

 

2. Experimental Part: A dynamic behavior and the fractal dimension of the 

prostate tumor cell lines, LNCaP and PC3 

 

The prostate tumor cell lines, serve as models of tumor growth [6] as well as for the 

development of various therapies [7]. Human prostatic cancer cells LNCaP (CRL-1740) 

and PC3 (CRL-1435), supplied by American Type Culture Collection (ATCC, 

Rockville, MD), were routinely cultured [8]. Images were taken over an 8 day period; 

all images have a magnification of 40X. 

 

The system in question is a 2D region with characteristic length L  in which initially 

there are very few tumor cells. The cell density increases with time due to the 

proliferation of these (Figure 1). 

 

 

 
Fig. 1 in vitro growth of prostate tumor cell lines. T is time in days. 

 

 

holder for this preprint is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright; http://dx.doi.org/10.1101/011189doi: bioRxiv preprint first posted online November 6, 2014; 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 7, 2015. ; https://doi.org/10.1101/011189doi: bioRxiv preprint 

http://dx.doi.org/10.1101/011189
https://doi.org/10.1101/011189


The morphology observed in this region has fractal nature as a result of the stochastic 

nature of the mitosis and apoptosis processes that occur at the level of single cells [9]. 

Thus we have 

 

,fd
N L  (Eq. 2.1) 

 

where N  is the number of total cells in the region of characteristic size L and 
fd  is the 

fractal dimension of the contour. The Euleriana of (Eq. 2.1) is given by 

 
ln lnln ,fdd N L

fdt t t
L d

 
 

   (Eq. 2.2) 

 

In previous work [5] we show that the temporal variation of the total number of cells N  

can be described equivalently through a logistic or Gompertz dynamical equation. If the 

dynamical system exhibits temporal multifractality the first term on the right of equality 

(2.2) is different from zero. In this way we have ln fdd N
dt t




, whereby the fractal 

dimension variation in time can be described, in principle, by expression equivalent to 

the Gompertz equation, such that 

 
ln

ln ln ,fd d

fdt
d K     (Eq.2.3)  

 

where,  
ˆ

0
A

fK d e is the carrying capacity and Â  and   are empirical constants in 

the Gompertz equation [10]. Equation (2.3) has the analytical solution 

 

    ˆ
exp .

te
A

fd t K






   (Eq.2.4) 

 

Equation (2.4), for a dynamical system that exhibits temporal multifractal behavior, 

provides the functional dependence of 
fd  with the time. In Fig. 2, the time dependence 

of the fractal dimension is shown fd  for the dynamical behavior of the prostate tumor 

cell lines, LNCaP and PC3 respectively. The morphological characterization of each 

image was obtained by the software ImageJ 1.43 [11]. 
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Fig.2 Dependence of fractal dimension 

fd  with the growth time of the prostate tumor 

cell lines: LNCaP ( ˆ 0.2524A , 0.1466  , 1.8384K  ) and PC3 ( ˆ 0.3335A , 

0.1944  , 1.4924K  ). 

 

These graphs exhibit a multifractal behavior, in distinction to other cell lines showing 

fractal behavior [12]. A satisfactory dynamic fit is achieved through the formula (1.4). 

 

As shown in a previous work [9], the fractal dimension 
fd  can be given as a function of 

the quotient between mitosis  mV  and apoptosis  aV  rates [13], which quantify the 

tumor capacity to invade and infiltrate healthy tissue: 

 

5
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V
a
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m

V
a
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



               (Eq.2.5) 

Substituting the temporal dependence of fd  for each of the cells (equation 2.4), in the 

formula (2.5) we obtain the time dependence of the 
V

m

V
a

 ratio as illustrated in Figure 3: 
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Fig. 3 time dependence of the quotient between mitosis  mV  and apoptosis  aV  rates: 

PC3 (blue), LnCap (red). 

 

As shown in fig.3, the cell line PC3, which is known to have an increased invasive 

ability and is more aggressive as compared to the LnCap [14,15], shows a higher value 

quotient between mitosis  mV  and apoptosis  aV  rates. 

 

3. Thermodynamics approach 

 

In recent years various authors [16, 17] have argued that through a thermodynamic 

approach to cancer as nonlinear dynamical system that self-organizes out of equilibrium 

we can not only understand its dynamics and complexity but also its robustness. 

 

We have recently demonstrated that the entropy production rate iS  for avascular tumor 

growth is related with the cancer robustness [5,18] and can be expressed as a function of 

fractal dimension fd  as: 
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where R  is the gas constant. In formula (3.1), two properties related to on tumor 

growth are included: the first is their growth rate, which is associated with their 

invasiveness; the second is its complexity, a morphology characteristic as the fractal 

dimension of the tumor interface, which quantifies the tumor capacity to invade and 

infiltrate healthy tissue. 

 

Considering Eq. (2.4) and Eq. (2.5), and the temporal dependence of the fractal 

dimension fd  of the dynamical behavior of the prostate tumor cell lines, LNCaP and 

PC3 (Fig. 2), and substituting in Eq. (3.1) the functional dependence the entropy 

production rate iS  is obtained in the time, as shown in Fig. 4: 
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Fig. 4 The entropy production rate iS  for the different the prostate tumor cell lines: PC3 

(blue), LnCap (red). 

 

 

As shown in Fig.4, cell line PC3 shows a greater value far the entropy production rate 

compared to a LnCap. These results corroborate, from the new point of 

thermodynamics, what others studies have shown far the cell line PC3, that they are 

more malignant, aggressive, have a higher metastatic potential and are more resistant to 

treatment compared to LNCap [19]. 

 

Conclusion 

 

In summary, in this paper we found: 

 

1. We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3, 

based on a Gompertz dynamics. 

2. The growth of the cell lines, LNCaP and PC3, exhibit a multifractal behavior and the 

“second order” phase transition. 

3. It was found that the cellular line PC3 exhibits a greater value of the entropy 

production rate compared to LNCaP, which is indicative of the robustness of PC3 in 

comparison to LNCaP and this may be used a quantitative index of the metastatic 

potential of tumors. 

 

The current theoretical framework for prostate cancer cell lines growth, LNCaP and 

PC3, will hopefully provide a better understanding of cancer and contribute to 

improvements in cancer treatment. 
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