
















 
Group	   Population	   Location	   Sample	  size	   Majority	  size	   Diploid	  size	   Date	  (kybp)	   Reference	  (samples)	  

Western	  Hunter-‐gatherers	  	   	  	   3	   3.60	   4.85	   7.7-‐8.1	   	  	  
	  WHG	   Loschbour	   Luxembourg	   1	   1.98	   1.98	   8.1	   11	  
	  	   LaBrana1	   Spain	   1	   0.94	   1.60	   7.8	   12	  
	  	   HungaryGamba_HG	   Hungary	   1	   0.69	   0.88	   7.7	   7	  (K01)	  
Early	  Neolithic	  	   	  	   	  	   26	   15.27	   22.77	   6.9-‐7.2	   	  	  
	  EN	   Starcevo_EN	   Hungary	   1	   0.28	   0.32	   7.6	   9	  
	  	   Stuttgart	   Germany	   1	   1.97	   1.97	   7.2	   11	  
	  	   Spain_EN	   Spain	   4	   3.08	   5.21	   7.2	   9	  
	  	   LBK_EN	   Germany	   12	   6.56	   10.41	   7.1	   9	  
	  	   LBKT_EN	   Hungary	   1	   0.09	   0.09	   7.1	   9	  
	  	   HungaryGamba_EN	   Hungary	   7	   3.29	   4.77	   6.9	   7	  (K02,NE1-‐NE7)	  
Middle	  Neolithic	  	   	  	   	  	   9	   5.27	   9.62	   5.2-‐5.8	   	  	  
	  MN	   Spain_MN	   Spain	   4	   2.84	   4.99	   5.8	   9	  
	  	   Baalberge_MN	   Germany	   3	   0.64	   0.71	   5.4	   9	  
	  	   Iceman	   Italy	   1	   0.99	   1.93	   5.3	   10	  
	  	   Esperstedt_MN	   Germany	   1	   0.79	   1.99	   5.2	   9	  
Late	  Neolithic	  	   	  	   	  	   15	   8.90	   14.01	   4.2-‐4.8	   	  	  
	  LN	   HungaryGamba_CA	   Hungary	   1	   0.62	   0.77	   4.8	   7	  (C01)	  
	  	   Alberstedt_LN	   Germany	   1	   0.99	   1.93	   4.4	   9	  
	  	   Corded_Ware_LN	   Germany	   4	   2.56	   4.47	   4.4	   9	  
	  	   Bell_Beaker_LN	   Germany	   6	   3.19	   4.63	   4.3	   9	  
	  	   BenzigerodeHeimburg_LN	   Germany	   3	   1.55	   2.21	   4.2	   9	  
Bronze	  Age	  	   	  	   	  	   10	   6.66	   10.86	   3.6-‐4.8	   	  	  
	  BA	   Unetice_EBA	   Germany	   7	   4.20	   6.48	   4.0	   9	  
	  	   HungaryGamba_BA	   Hungary	   2	   1.51	   2.59	   3.6	   7	  (BR1,2)	  
	  	   Halberstadt_LBA	   Germany	   1	   0.95	   1.79	   2.1	   9	  
Scandinavian	  Hunter-‐gatherers	   	  	   11	   6.79	   10.88	   4.8-‐7.7	   	  	  
	  SHG	   SwedenSkoglund_MHG	   Sweden	   1	   0.09	   0.09	   7.4	   13	  (StoraForvar11)	  
	  	   Motala_HG	   Sweden	   7	   5.55	   9.14	   7.7	   9	  
	  	   SwedenSkoglund_NHG	   Sweden	   3	   1.14	   1.64	   4.8	   13	  (Ajvide52,58,70)	  
Yamnaya	   	  	   	  	   9	   5.11	   7.60	   5.0	   	  	  
	  	   Yamnaya	   Russia	   9	   5.11	   7.60	   5.0	   9	  
Modern	   	  	   	  	   503	   1006	   1006	   0.0	   	  	  
	  	   CEU	   NW	  Europe	   99	   198	   198	   0.0	   14	  
	  	   FIN	   Finland	   99	   198	   198	   0.0	   14	  
	  	   GBR	   Great	  Britain	   91	   182	   182	   0.0	   14	  
	  	   IBS	   Spain	   107	   214	   214	   0.0	   14	  
	  	   TSI	   Italy	   107	   214	   214	   0.0	   14	  

 
Table 1: Samples analyzed in this study. Population: samples grouped by a combination of date, archaeology and 
genetics. Population: Labels used in Ref. 9. Location: Present-day country where samples originated. In the main text, 
we refer to samples from present-day Spain, Germany, Hungary and Sweden as Iberian, Central European, Eastern 
European and Scandinavian, respectively. Sample size: Number of individuals sampled. Majority size: Average over 
sites of the number of chromosomes observed at each SNP targeted, if we make a single majority call at each site for 
each individual. Equivalently, the average number of samples hit at least once. Diploid size: Average over sites of the 
effective number of chromosomes when we use genotype likelihoods. Computed as 2 per sample for samples with 
genotype calls, or ! ! !.5(!!!! for samples with read depth c.  Date: Mean of the best date available for the samples in 
each population, thousands of years before present. Reference: Original reference for each sample (and specific sample 
names, where appropriate).  
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Figure 1: Genome-wide scan for selection. A: Quantile-quantile (QQ) plot of -log10 p-value for potentially 
functional SNPs (red) and probably neutral SNPs (blue), after genomic control (GC) correction. B: QQ plots 
for different categories of potentially functional SNPs (Methods). All curves are significantly different from 
neutral expectation. C: Plot showing the GC-corrected –log10 p-value for each marker. The red dashed line 
represents a genome-wide significance level of 10-6.79. Insets show chromosomes 11 and 15 on a larger scale.  
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Figure 2: Time series of derived allele frequencies for alleles with genome-wide significant signals of 
selection, or otherwise mentioned in the text. A: Estimated mainland European frequencies. Boxes show the 
estimated frequency and approximate time range of the observations. Small numbers give the effective 
sample size as described in Table 1. B: Frequencies in other ancient populations. C: Frequencies in modern 
European populations from the 1000 Genomes Project.  
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Figure 3: Evidence for polygenic selection in Europe. A-C: Each row represents a different trait (Height, 
body mass index, waist-hip ratio, type 2 diabetes, irritable bowel disease, and lipid levels), and each point 
represents a test statistic. Red, labeled points have bootstrap p-values < 0.01. A: Z scores for each population 
tested against CEU B: Z scores for the difference between populations existing at approximately the same 
time. Populations ordered so the difference is positive. C:  Z scores for the difference between populations 
existing at the same location. Populations ordered so the difference is positive. D: A hypothesis, based on 
these results, for when selection on height may have occurred (see Table 1 for abbreviations). 
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Extended	  data	  
 
 

 
	  
Generated	  using	  locuszoom50	  (http://csg.sph.umich.edu/locuszoom/).	  
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Extended'data'Figure'1:"Fine"scale"maps"of"
genome0wide"significant"signals"of"selec5on."In"
each"case,"the"most"significant"SNP"is"labeled,"
and"other"SNPs"are"colored"according"to"their"LD"
with"the"most"significant"SNP."The"blue"line"
shows"the"recombina5on"rate"and"the"lower"
panel"in"each"plot"shows"gene"loca5ons.""
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Extended	  data	  Figure	  3:	  Estimated	  frequencies	  of	  the	  derived	  allele	  of	  rs12913832	  in	  HERC2.	  We	  divided	  
our	  samples	  by	  date	  and	  location.	  Boxes	  show	  the	  maximum	  likelihood	  estimate	  of	  the	  frequency	  as	  in	  
main	  text	  Figure	  2	  and	  vertical	  lines	  show	  approximate	  95%	  confidence	  intervals.	  	  
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Extended'data'Figure'4:&Motala&haplotypes&carrying&the&derived,&selected&EDAR&allele.&This&figure&
compares&the&genotypes&at&all&sites&within&100kb&of&rs3827760&(in&blue)&for&the&7&Motala&samples&
and&20&randomly&chosen&CHB&(Chinese&from&Beijing)&and&CEU&(Central&European)&samples.&Each&
row&is&a&sample,&and&each&column&is&a&SNP.&Grey&means&homozygous&for&the&minor&(in&CEU)&allele.&
Pink&denotes&heterozygotes&and&red&homozygotes&for&the&other&allele.&For&the&Motala&samples,&an&
open&circle&means&that&there&is&only&a&single&read,&otherwise&the&circle&is&colored&according&to&the&
number&of&reads&observed.&Note&that&the&original&haplotype&on&which&rs3827760&arose&appears&to&
be&common&in&CEU&(marked&with&arrows&on&the&right).&Four&of&the&Motala&samples&appear&to&be&
heterozygous&for&the&rs3827760&&haplotype,&and&one&of&the&samples&carries&the&original&haplotype&
without&the&derived&rs3827760&&allele.&&

rs3827760&&
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Extended data Figure 5: Test for polygenic selec!on 
using frequencies es!mated from majority-called alleles 
rather than genotype likelihoods. As panels A-C in main 
text Figure 3. Comparisons with bootstrap p<0.01 are in 
red and labeled. A: Z scores for tests rela!ve to CEU. B: Z 
scores for tests between popula!ons that exist at the 
same !mes. C: Z scores for tests between popula!ons 
that exist in the same place.  
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Extended	  data	  Figure	  6:	  Predicted	  genetic	  heights	  for	  populations	  split	  up	  by	  region	  and	  date.	  We	  
computed	  the	  maximum	  likelihood	  allele	  frequencies	  for	  each	  SNP	  that	  was	  significant	  in	  the	  analysis	  in	  
Ref.	  44	  and	  multiplied	  by	  the	  effect	  size	  from	  that	  study.	  The	  genetic	  height	  here	  is	  expressed	  in	  terms	  of	  
regression	  effect	  sizes	  (roughly,	  number	  of	  standard	  deviations	  after	  correction	  for	  age	  and	  sex),	  translated	  
so	  that	  the	  mean	  across	  populations	  is	  zero.	  	  
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