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Even in the best studied Mammalian genomes, less than 5% of the total genome length is annotated as exonic. 8 

However, deep sequencing analysis in humans has shown that around 40% of the genome may be covered by 9 

poly-adenylated non-coding transcripts occurring at low levels1. Their functional significance is unclear2,3, and 10 

there has been a dispute whether they should be considered as noise of the transcriptional machinery4,5. We 11 

propose that if such transcripts show some evolutionary stability they will serve as substrates for de novo gene 12 

evolution, i.e. gene emergence out of non-coding DNA6–8.  Here, we characterize the phylogenetic turnover of 13 

low-level poly-adenylated transcripts in a comprehensive sampling of populations, sub-species and species of 14 

the genus Mus, spanning a phylogenetic distance of about 10 Myr. We find evidence for more evolutionary 15 

stable gains of transcription than losses among closely related taxa, balanced by a loss of older transcripts across 16 

the whole phylogeny. We show that adding taxa increases the genomic transcript coverage and that no major 17 

transcript-free islands exist over time. This suggests that the entire genome can be transcribed into poly-18 

adenylated RNA when viewed at an evolutionary time scale.  Thus, any part of the "non-coding" genome can 19 

become subject to evolutionary functionalization via de novo gene evolution.  20 

Genes can emerge de novo from non-genic regions of the genome9–11. Newly arising transcripts are initially usually 21 

non-coding, can later acquire functional open reading frames12–14 and can quickly become essential15. A number of 22 

possibilities have been discussed by which new transcripts can arise, including single mutational events10, 23 

stabilization of bi-directional transcription16 and insertion of transposable elements with promotor activity17. These 24 

events were initially thought to be rare6, but an increasing number of studies show that de novo gene emergence 25 

is a rather active mechanism18–22. Surveys across phylogenetic times have shown that the highest gene emergence 26 

rates are found in youngest taxa7. This led to the prediction that high emergence rates must be balanced with high 27 

loss rates, because gene numbers do not grow much over time7. A comparison of open reading frame turnover 28 

rates of de novo evolved genes among Drosophila species has shown that this is indeed the case22. 29 

Here we assessed the numbers of new transcript gains in a comprehensive phylogenetic framework. Given that the 30 

emergence of a new stable transcript is a prerequisite for evolving a new functional gene, we expect that the 31 

transcript emergence rate is a key parameter in the process of de novo gene emergence. Stable transcripts can be 32 
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created out of combinations of cryptic functional sites, including a minimal promoter, splicing signals and poly-33 

adenylation sites. This applies to completely new transcripts and to modification of existing transcripts by adding 34 

new exons from non-coding DNA. Given the widespread presence of cryptic functional sites in genome sequences, 35 

a single mutational step can convert a non-transcribed or a spuriously transcribed genome region into a stable 36 

transcript, as has been shown for Pldi, the first documented de novo gene in the mouse10.  37 

Importantly, once a genomic region becomes transcribed, most subsequent mutations within the transcribed 38 

region will not lead to a loss of the transcript, since only a few sites are responsible for active and stable 39 

transcription. Hence, one can predict that the de novo transcript emergence dynamics would show a higher rate of 40 

gain than loss at short evolutionary time scales. Hence, transcriptional gain would constitute a powerful 41 

mechanism to continuously expose new genome regions to evolutionary testing, providing the fuel for de novo 42 

gene emergence. 43 

To test this prediction, we selected species, subspecies and populations related to the house mouse (Mus 44 

musculus - suppl. Table S1) as a phylogenetic framework for identifying the emergence and loss of new transcripts. 45 

The taxa chosen span approximately 10.5 Myr of evolutionary divergence and represent up to ~5.6% overall 46 

genomic divergence (Figure 1, suppl. Table S2). Using such closely related taxa ensures that most neutrally evolving 47 

sequences can be reliably mapped across all species23. We generated genome sequences for species without 48 

published genomes, and transcriptome sequences for brain, liver and testis for all taxa (suppl. Tables S3-S5). 49 

For comparative transcriptome analysis, we identified all mappable regions of the M. m. domesticus reference 50 

genome (C57Bl/6)24 using genomic reads from all studied species. We call this the “common genome", 51 

representing the total genome where transcript mapping across taxa is reliable. We used a mapping algorithm that 52 

was specifically designed to deal with the polymorphisms occurring under cross-species mapping conditions23.  53 

We first focused on genome-wide signals of transcriptional activity to identify the origin of new transcripts within 54 

the phylogeny (suppl. Table S8). For this purpose, we determined the base-wise transcriptome coverage from poly-55 

adenylated RNA for each species. This measure of coverage includes both annotated genes and previously un-56 

annotated transcripts, whereby the latter are the majority. We set single read coverage as the lower cutoff 57 

because we were specifically interested in detecting low-level transcription as an early sign of de novo gene 58 

emergence. However, we also report results using a stringent cutoff of five reads for comparison (the median 59 

coverage across all transcripts is 3.7). 60 

When comparing transcriptome coverage among taxa, we find that the overall proportion of shared transcripts is 61 

higher for closely related taxa than for distantly related pairs. Consequently, a phylogenetic tree reconstructed 62 

based on shared transcript coverage mirrors the species tree (Figure 1B, C). This detectable phylogenetic signal in 63 
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transcription coverage suggests that transcripts gained at a given point in evolutionary time are sufficiently stable 64 

to be retained in sister taxa, implying that they can become exposed to evolutionary testing.  65 

The total transcript coverage of the common genome across all species combined for all three tissues is 67% in our 66 

data set. Coverage was highest in testis (53.4%), intermediate in brain (41.5%) and lowest in liver (23.5%) (Figure 67 

2A). When comparing all transcriptional gains versus losses across the surveyed phylogeny, we observe that gains 68 

are indeed more frequent than losses (Figure 2B, C), thus confirming our initial hypothesis.  69 

Recording base-wise coverage without paying attention to gene models entails the risk that one is also measuring 70 

transcriptomic noise, i.e. spurious random transcriptional initiation in a subset of cells of the tissue under 71 

investigation. We have specifically explored the noise issue through deeper sequencing of the brain samples of all 72 

taxa. The brain is a complex tissue in which some transcripts are expected to occur only in a small subset of cells. 73 

These rare transcripts should become detectable by deep sequencing and thus transcript coverage should increase 74 

with more reads available. This is indeed the case; however rarefaction curves and their projections reach 75 

saturation for each of the taxa (suppl. Table S6 and Figure S1). This observation argues against a significant amount 76 

of transcriptional noise in our data, since noise should lead to a continuous increase of coverage with sequencing 77 

depth, at least if noise is randomly distributed across the genome and across the cells of the tissue. Further, it rules 78 

out a possible problem with DNA contamination, as this would also be expected to rise with increasing sequencing 79 

depth. 80 

We have further explored the rarefaction principle to assess whether adding more sequences or more taxa to the 81 

data set leads to higher transcriptomic coverage of the common genome. Taking all aggregated reads (including 82 

the additional deep sequencing data from brain) across all tissues for all taxa, saturation is reached at 78.5% 83 

coverage for sequencing depth (Figure 2D), but no saturation is reached with the number of taxa used here (Figure 84 

2E). Hence, adding more taxa within this phylogenetic framework, for example species and sub-species on the 85 

Apodemus branch, would predictably lead to increasingly higher transcriptomic coverage of the common genome, 86 

up to the entire genome when ~38 taxa were surveyed within the phylogeny (based on the intercept of the 87 

regression curve). 88 

This analysis suggests that there may be no regions that are not transcribed at some point in phylogenetic time. 89 

However, genome annotations in a given species usually show an uneven distribution of transcripts; some regions 90 

harbor many clustered transcripts and other regions are nearly devoid of transcripts ("gene deserts"). We 91 

compared regions devoid of any transcriptomic coverage in our taxonomic sample to regions that show 92 

transcription in at least one sample. We find that transcribed regions are more abundant and larger on average 93 

than non-transcribed regions (Figure 2E).  The maximum length of non-transcribed regions is ~ 20kb (at ≥1 reads) 94 

or ~50kb (at ≥5 reads), suggesting that large gene-free "deserts" are in principle accessible to transcription and 95 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2015. ; https://doi.org/10.1101/017152doi: bioRxiv preprint 

https://doi.org/10.1101/017152
http://creativecommons.org/licenses/by/4.0/


 4

possible regulatory constraints25 do not fully prevent their transcription. In fact, the mouse de novo gene Pldi has 96 

arisen within a gene desert10.  97 

Most de novo transcripts are expected to be neutral, but some may turn into more stable proto-genes6,19 that can 98 

eventually become functional, either as regulatory RNA, or by acquiring a functional reading frame. To identify 99 

candidate proto-genes we used algorithms that are able to reconstruct transcriptional islands and splice junctions 100 

(STAR26/cufflinks27) and join them into predicted gene models (suppl. Table S9). We did this for each taxon 101 

separately and assessed the gain and loss patterns of these transcripts in a phylogenetic context. Excluding all 102 

previously annotated transcripts, we find a total of 17,746 new candidate proto-genes, distributed across all taxa 103 

(suppl. Figure S2). When looking only at gains of proto-gene transcripts in the terminal branches, we find that 104 

about 1,300 new proto-genes are gained per million years (Figure 3A). Interestingly, at least 3,000 proto-genes are 105 

already present at the youngest divergence level, implying within-species polymorphism that was also described 106 

for Drosophila21.  107 

When counting gains versus losses of proto-genes, we find again higher numbers gained than lost over short 108 

phylogenetic times. However, gains and losses balance out over longer evolutionary times when including the 109 

whole phylogeny and all annotated genes (Figure 3B). This pattern confirms the two essential predictions we made 110 

about de novo gene emergence: (1) newly acquired transcripts are not easily lost and thus have a life-time 111 

sufficient for evolutionary testing and (2) genes do not accumulate over time because gain and loss rates are 112 

balanced across longer time spans. Hence, when a given taxonomic lineage gains many de novo genes, it will lose 113 

some of its older genes. 114 

Our analysis is conservative in several respects. First, we focused on poly-adenylated transcripts, thereby avoiding 115 

inclusion of RNA fragments that have been processed (i.e. excised introns) and randomly transcribed fragments. 116 

However, this means we also exclude RNAs which are not transcribed by RNA polymerase II, such as tRNAs, 117 

snRNAs and ribosomal RNAs. The human ENCODE data suggest that such non-poly-adenylated RNAs are abundant1 118 

and it is likely that proto-genes can arise from those transcripts as well, i.e. we are likely underestimating the 119 

proto-gene emergence rate. Second, we focused on three tissues and one developmental stage only. Although we 120 

included testis and brain, which are known to have the highest diversity of transcripts28 we can also expect that 121 

including more tissues and developmental stages would further increase the transcriptomic coverage. Taking these 122 

factors into account, as well as the fact that increased taxonomic representation shows no signs of saturation with 123 

respect to transcriptomic coverage (Figure 2E), it seems reasonable to conclude that when measured at a 124 

phylogenetic time scale, the entire  genome can become subject to transcription. 125 

Pervasive transcription of the genome was noted soon after deep sequencing approaches became possible and 126 

this pattern was systematically explored in the ENCODE projects1,29. While the functional significance of pervasive 127 

transcription is a matter of continuous dispute4,5,30, our results provide an evolutionary dynamics perspective on 128 
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this question where emergence, functionalization and decay of gene functions should be seen as an evolutionary 129 

life cycle of genes8. De novo gene birth should no longer be considered as the result of unlikely circumstances, but 130 

rather a mechanism of testing genome regions for their adaptive potential. Within this evolutionary perspective, 131 

any part of the genome – “junk” DNA included – has the possibility to become useful.  132 

 133 

 134 
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Methods online 207 

Origin of the sampled taxa 208 
We selected ten taxa, ranging from population level through sister genera (Figure 1 A).  209 

The youngest divergence point sampled, at about 3,000 years, corresponds to the split between two European 210 
populations of Mus musculus domesticus 1 one from France (Massif Central = MC) and one from Germany 211 
(Cologne-Bonn area = CB) 2. These European populations in turn have diverged from an ancestral M. m. domesticus 212 
population in Iran (Ahvaz = AH) about 12,000 years ago 1. The European M. m. domesticus are also the closest 213 
relatives of the reference genome, the C57BL/6J strain 3.  214 

We included two populations of Mus musculus musculus; one from Austria (Vienna = WI) and one from Kazakhstan 215 
(Almaty = KH). These two populations are supposed to have a longer divergence between then the European M. m. 216 
domesticus populations, but a more accurate estimate is currently not available. We set the divergence for 217 
analyses at around 10,000 years as an approximate estimate.  218 

M. m. domesticus has diverged from M. m. musculus and Mus musculus castaneus about 0.4 to 0.5 million years 219 
ago, with a subsequent divergence, not long after, between M. m. musculus and M. m. castaneus 4. We included 220 
M. m. castaneus from Taiwan as a representative of the subspecies.  221 

To account for longer divergence times, we included Mus spicilegus (estimated divergence of 1.2 million years); 222 
Mus spretus (estimated divergence of 1.7 million years) 4; Mus matteyii (subgenus Nannomys), the North African 223 
miniature mouse (estimated divergence of 6.6 million years) 5,6, and Apodemus uralensis, the ural field mouse 224 
(estimated divergence of 10.6 million years) 6.  225 

The population-level samples (M. m. domesticus and M. m. musculus) included are maintained under outbreeding 226 
schemes, which allows for natural polymorphisms to be present in the samples. All other non-population samples 227 
are kept as more or less inbred stock, and therefore fewer polymorphisms are expected. All mice were obtained 228 
from the mouse collection at the Max Planck Institute for Evolutionary Biology, following standard rearing 229 
techniques which ensure a homogeneous environment for all animals. Mice were maintained and handled in 230 
accordance to FELASA guidelines and German animal welfare law (Tierschutzgesetz § 11, permit from Veterinäramt 231 
Kreis Plön: 1401-144/PLÖ-004697). 232 

A total of 60 mice were sampled, as follows: Eight male individuals from each population-level sample (outbreds), 233 
Iran (AH), France (MC), and Germany (CB) of Mus musculus domesticus, and Austria (WI) and Kazakhstan (KH) of 234 
Mus musculus musculus. Four male individuals from the remaining taxa (partially inbred): Mus musculus castaneus 235 
(TA), Mus spretus (SP), Mus spicilegus (SC), Mus mattheyi (MA) and Apodemus uralensis (AP). Mice were sacrificed 236 
by CO2 asphyxiation followed immediately by cervical dislocation. Mice were dissected and tissues were snap-237 
frozen within 5 minutes post-mortem. The tissues collected were liver (ventral view: front right lobe), both testis 238 
and whole brain including brain stem.  239 

Genome sequencing 240 
One individual from each of M. spicilegus, M. mattheyi, and Apodemus uralensis were selected for genome 241 
sequencing. DNA was extracted from liver samples. DNA extraction was performed using a standard salt extraction 242 
protocol. Tagged libraries were prepared using the Genomic DNA Sample preparation kit from Illumina, following 243 
the manufacturers’ instructions: After library preparation, the three genome samples were pooled together and 244 
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run in a whole IlluminaHiSeq 2000 flow cell (8 lanes, approximately 2.6 lanes per sample). Library preparation and 245 
sequencing was performed at the Cologne Center for Genomics. 246 

The genome from the strain SPRET/EiJ derived from Mus spretus was taken from 7,8, and was downloaded from the 247 
European Nucleotide Archive (ENA) - accessions ERS076388 and ERS138732.  248 

Transcriptome sequencing 249 
The sampled tissues of each taxon were used for RNA extraction with the RNAeasy Mini Kit (QUIAGEN) and pooled 250 
at equimolar concentrations. RNA quality was measured with the Agilent RNA Nano Kit, for the individual samples 251 
and pools. Samples with RIN values above 7.5 were used for sequencing. Library preparation was done using the 252 
Illumina TruSeq library preparation, with mRNA purification (PolyA selection), following manufacturers’ 253 
instructions. Sequencing was done in Illumina HiSeq 2000 sequencer. Libraries for each group were tagged, pooled 254 
and sequenced in a single lane, corresponding to approximately one third of a HiSeq2000 lane. Additional 255 
sequencing of the brain samples was performed to identify potential limitations in depth of sequencing. For this, 256 
each brain library was sequenced on a full lane of a HiSeq2000.  All library preparation and sequencing was done at 257 
the Cologne Center for Genomics (CCG). 258 

Raw data processing 259 
All raw data files were trimmed for adaptors and quality using Trimmomatic 9. The quality trimming was performed 260 
basewise, removing bases below quality score of 20 (Q20), and keeping reads whose average quality was of at 261 
least Q30. Reads whose trimmed length was shorter than 60 bases were excluded from further analyses, and pairs 262 
missing one member because of poor quality were also removed from any further analyses.  263 

Mapping 264 
The reconstruction of transcriptomes using high-throughput sequencing data is not trivial when comparing 265 
information across different species to a single reference genome. This is due to the fact that most of the tools 266 
designed for such tasks do not work in a phylogenetically aware context. For this reason, any approximation which 267 
deals with fractional data (i.e. any high-throughput sequencing setup available to this date) is limited by the 268 
detection abilities of the software of choice and by the quality of the reference (transcriptome and genome).  269 

Given the high quality state of the mouse genome repositories, we decided to take a reference-based approach, in 270 
which all analyses are centered in the reference genome of the C57BL/6 laboratory strain of Mus musculus 271 
domesticus. This enables direct comparisons across all species, with an obvious cost introduced by the mapping of 272 
distantly related genomes.  273 

For general comparisons, transcriptome and genome sequencing reads were aligned against the mm10 version of 274 
the mouse reference genome from UCSC 10 using NextGenMap which performs extremely well with divergences of 275 
over 10% compared to other standard mapping software 11. The program was run under default settings, except 276 
for --strata 1 and --silent-clip. The first option enforces uniquely mapping reads and the second drops the 277 
unmapped portion of the reads, to avoid inflating coverage statistics. This is particularly relevant around exon-278 
intron boundaries, where exonic reads are forced into intronic regions unless this option is set.   279 

Genomic reads were used to as empiric mapability, i.e. to identify which regions can be reliably detected. We 280 
limited our analyses to regions in the reference genome which could be mapped at least 5 times from genomic 281 
reads from all other species (5x coverage). This is the portion we call the ‘common genome’ in downstream 282 
analyses. It is important to highlight that this is not the same as synteny, since we did not perform any co-linearity 283 
analyses between fragments, but rather represents the mere presence in the species, in any possible order. 284 
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Furthermore having genomic reads enables the detection of true absences in transcriptional activity from absences 285 
of genome regions, which would show similar patterns in transcriptome-only analyses.  286 

Reconstruction of gene models 287 
Due to the fact that NextGenMap is unable to perform split read analyses we opted for more standard tools to 288 
reconstruct gene models from the data. For this we used STAR 12 to map reads to the reference, followed by 289 
cufflinks 13 to obtain automated gene and transcript annotations for each species. The annotation file contains 290 
models for expressed transcripts with splicing information (exon annotation) when available. All annotations were 291 
merged using cuffmerge to generate a final annotation that includes gene models present at least once in the total 292 
sample. Mono-exonic models shorter than 500 bases or contained within introns of multi-exonic transcripts were 293 
excluded from analyses.  294 

 Parsimony gain and loss mapping 295 
We estimated gain and loss events given the phylogenetic distribution of presence and absence of transcription at 296 
a given position or for a given gene model using maximum parsimony (based on GLOOME, 14, the assumption that 297 
gains and losses are equally likely, and a fixed tree describing the relationships between taxa.  298 

Genome-wide estimation of transcriptional gains and losses 299 
Genome-wide estimates of gain and loss of transcription were done at the nucleotide level, considering only 300 
regions within the common genome.  301 

Normalized versions of each set of aligned reads were generated by subsampling (samtools view –s x 15; where x is 302 
the proportion of each individual sample that matches the least abundant sample). Normalization was done only 303 
across tissues and not between them. Normalized samples were merged at the species level to obtain a species-304 
wide transcription sample. Aligned reads in BAM format were converted to BedGraph format for phylogenetic 305 
comparisons of format using bedtools 16. Two parallel sets of comparisons were made: i) using all coverage 306 
information from uniquely mapping reads, thus representing ‘absolute’ (minus normalization) coverage, and ii) 307 
using a threshold of at least 5 uniquely mapped reads, thus representing ‘stringent’ coverage. Coverage files were 308 
compared between groups using multiIntersectBed 16, to obtain the portions shared between all possible 309 
combinations.  310 

Each possible combination can be also interpreted as a binary presence/absence pattern. We summarized the total 311 
amount of nucleotides in each specific pattern. Each pattern received a fixed amount of gains and losses, 312 
consistent with the parsimony assumptions using GLOOME 14 in maximum parsimony mode. For example, the 313 
pattern that indicates presence in German M. m. domesticus (CB), but absence in all other groups, corresponds to 314 
one very recent gain and zero losses. The pattern that indicates presence in German and Iranian M. m. domesticus 315 
(CB and AH), but absence in all other groups, corresponds to one gain (ancestor of M. m. domesticus) and one loss 316 
(after divergence of French M. m. domesticus). In this context, we identify monophyletic gains as stable, i.e. 317 
transcription is present in all derived groups after estimated gain, and unstable, i.e. transcription lost in at least 318 
one derived group after gain.  319 

Gene gain and loss rates from gene models 320 
Gene models derived from STAR alignments and cufflinks reconstructions were used to calculate the rate at which 321 
gene-like entities are gained or lost along the phylogeny. A single unified annotation for all species was generated 322 
with cuffmerge (see “Gene model reconstruction” above) and FPKM values were obtained from mapped reads for 323 
each tissue and species. FPKM of 0.1 was set as a threshold to define the presence or absence of a gene model in a 324 
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given sample. Similar to the reconstruction of genome-wide patterns, a maximum parsimony framework was 325 
employed, assuming that gains and losses have equal probabilities of occurrence.  326 

Rates of gain and loss of gene models were estimated from linear regressions between time and gain or loss using 327 
R, with the lm() function from the stats package 17. Rates were calculated for each tissue and each possible 328 
combination of tissues (a gene can be differentially present or absent in a species), to obtain tissue-specific gains 329 
and losses of models.  330 

Reconstruction of phylogenetic relationships  331 

Using a manhattan distance matrix from the summarized transcriptional coverage (suppl. Table S8), we 332 
constructed a neighbor-joining (NJ) tree that describes the proximity between any two taxa based on the shared 333 
transcriptomic coverage between them. In this representation, closely related organisms have more shared 334 
transcriptomic coverage than distantly related organisms. Analyses were performed in R, using the function dist() 335 
from the stats package and nj() from the ape package 18.  336 

Additionally, whole mitochondrial genomes were obtained for each taxon as consensus sequences from mapped 337 
reads using samtools mpileup 15. The sequences were aligned with MUSCLE 19, and a NJ tree was constructed with 338 
the dist.dna() and nj() functions from the ape package 18. All NJ trees were tested with 1000 bootstraps with the 339 
boot.phylo() function from the ape package 18. Reported trees have a support of 60% or greater. 340 

Rarefaction and subsampling 341 
Transcriptome experiments tend to be limited by the depth of sequencing, with highly expressed genes being 342 
relatively easy to sample, and rare transcripts becoming increasingly difficult to find. Given the large amount of 343 
data generated, we investigated if our data shows signals of coverage saturation from subsets of the data of 344 
different sizes. The total experiment, comprising ten taxa, corresponds to 6.4 x 109 reads (or 6.4 billion reads). We 345 
subsampled (samtools view -s ) portions of mapped reads for each taxon, ranging between 10% to 90%, at 10% 346 
intervals. The observation of coverage saturation in this case would indicate that our sequencing efforts likely 347 
cover most of the transcribed regions of the common genome.  348 

In parallel, we estimated the individual and combined contribution of each taxon to the transcriptomic coverage of 349 
the common genome. Not all samples have the same phylogenetic distance to each other (some species have 350 
more representatives than others). To account for this we generated one hundred arrays of the ten taxa with 351 
random order, and recorded the coverage after the addition of each taxon in each array.  The observation of 352 
coverage saturation in this setup would indicate that taxonomic sampling is sufficient to cover most of the 353 
potentially transcribed regions of the common genome. In order to estimate whether our data continued to 354 
increase or approached saturation, we tested two alternative models: a generalized linear model with logarithmic 355 
behavior (ever increasing) or a self-starting nonlinear regression model (saturating). Best fit was decided based on 356 
the lowest AIC and BIC values. Analyses were performed in R, using the functions glm(), nls(), SSasymp(), BIC() and 357 
AIC() from the stats package 17. 358 

 Analysis of transcribed and non-transcribed regions across the genome 359 

Transcribed and non-transcribed regions larger than 100 nucleotides were defined by the continuous presence or 360 
absence of transcriptomic coverage from mapping information of each taxon and tissue. Combined transcribed 361 
regions across species were obtained as mentioned before, and combined non-transcribed regions across species 362 
were generated by subtracting transcribed regions from the common genome. 363 
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Figure 1. (A) Schematic relationships and approximate divergence times (see Methods) of the taxa under study. 409 
Tree branches are not shown to scale. (B) Molecular phylogeny based on whole mitochondrial genome sequences 410 
as a measure of molecular divergence (black lines represent the branch lengths, dashed lines serve to highlight 411 
short branches). (C) Tree based on shared transcriptome coverage of the genome. The percentage of shared 412 
transcripts mirrors the phylogenetic relationships between the studied taxa. MC: M. m. domesticus from France. 413 
CB: M. m. domesticus from Germany. AH: M. m. domesticus from Iran. KH: M. m. musculus from Kazakhstan. WI: 414 
M. m. musculus from Austria. TA: M. m. castaneus from Taiwan.  415 
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Figure 2. Coverage and phylogenetic turnover of base-wise transcription of the common genome. (A) Coverage 420 
across all taxa based on similar sequencing depth for each tissue (suppl. Table xx). (B, C) All gains (B) and all losses 421 
(C) along the phylogeny, assuming maximum parsimony (equal gain and loss probability). Light blue represents 422 
regions with base-wise coverage of least one uniquely mapping read, dark blue represents regions of base-wise 423 
coverage of at least five uniquely mapping reads. (D, E) Rarefaction, subsampling and saturation patterns using all 424 
available samples, including deeper sequencing of the brain samples. (D) sequencing depth saturation as estimated 425 
from a non-linear regression with asymptotic behavior, (E) sequencing depth saturation as estimated from an 426 
increase in the number of taxa. Black dots indicate increases per sub-sampled sequence fraction or taxon added 427 
from our dataset. Gray line indicates the predicted behavior from the indicated regression, and gray area shows 428 
the prediction after doubling the current sampling either in sequencing effort (D) or additional taxa (E). Each 429 
analysis was tested for logarithmic and asymptotic models and best fit was selected by AIC and BIC (see Methods). 430 
Standard deviations are too small to become visible in the plots. (F) Comparative analysis of lengths of regions 431 
transcribed or not transcribed across all data (including deeper brain sequencing) in all samples. Size distribution of 432 
regions not covered in any transcript (yellow) or with less of five transcripts (orange) compared to size distribution 433 
of regions with at least one transcript (light blue) or at least five transcripts (dark blue).  434 
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Figure 3: Turnover of proto-gene candidates. (A) Linear regression of observed gains across the phylogeny, using 439 
Apodemus as outgroup, and counting only gains in terminal branches. Regression coefficient is significant at p < 440 
0.01. The grey area shows the 95% confidence interval of the regression. (B) Single gains versus single losses of a 441 
proto-gene candidate, for ‘new’ gene models, i.e. absent in Apodemus, and versus all detected models, i.e. 442 
including the whole gene set. The ratio of gain to loss of new models is significantly different from the observed for 443 
all models (Fisher’s exact test, p < 0.01).  444 
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