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Abstract Long distance migration is a widespread process
evolved independently in several animal groups in terrestrial2

and marine ecosystems. Many factors contribute to the mi-
gration process and of primary importance are intra-specific4

competition and seasonality in the resource distribution. Adap-
tive migration in direction of increasing fitness should leads6

to the ideal free distribution (IFD) which is the evolutionary
stable strategy of the habitat selection game. We introduce a8

migration game which focuses on migrating dynamics that
lead to the IFD for age-structured populations in time vary-10

ing environments where dispersal is costly. The model as-
sumes a network of habitats and predicts migration dynam-12

ics between these habitats and the corresponding population
distribution. When applied to Atlantic bluefin tunas it pre-14

dicts their migration routes and their seasonal distribution.
The largest biomass is located in the spawning areas which16

have also the largest diversity in the age-structure. Distant
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feeding areas are occupied on a seasonal base and often by18

larger individuals, in agreement with empirical observation.
Moreover we show that only a selected number of migratory20

routes emerge as those effectively used by tunas.

Keywords Structured population, ideal free distribution,22

game theory, habitat selection, bluefin tuna

1 Introduction24

Many populations of animals and plants exhibit characteris-
tic distributional patterns that are related to the ability of the26

organisms to move and explore their environment. Changes
in the environment can elicit individual reactions, hence caus-28

ing different spatial distributions of populations (Morris, 2011).
Competition is among the major driving forces shaping an-30

imal distributions. Dispersal from more populated to less
populated habitats reduces intra- and inter-specific competi-32

tion thus promoting species coexistence and diversity (MacArthur
and Levins, 1964; Rosenzweig, 1981). These dispersal dy-34

namics often involve active habitat selection, which is a widespread
phenomenon in nature and has been described in many ani-36

mal populations such as birds (Cody, 1985), terrestrial mam-
mals (Wecker, 1963) and fish (MacCall, 1990).38

Fitness based arguments are commonly used to describe
the process of habitat choice (MacArthur and Levins, 1964).40

When moving between different habitats, organisms should
prefer those sites that provide them with the highest payoff,42

i.e., where their fitness is maximised (Rosenzweig, 1981).
Nevertheless, both individual fitness and habitat selection44

typically depend on interactions between individuals, which
usually have the form of a density dependent relation link-46

ing habitat quality and species distribution (Rosenzweig and
Abramsky, 1985).48

Under negative density dependence (described by logis-
tic growth), if dispersal is cost free and individuals are om-50
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niscient and free to settle at any habitat, the evolutionar-
ily stable strategy corresponds to the ideal free distribution2

(IFD) (Fretwell and Lucas, 1969; Křivan et al, 2008; Morris,
2011). At the IFD, payoffs in all occupied habitats are the4

same and larger or equal than those in the unoccupied habi-
tats. Thus, no individual can improve its fitness by choosing6

a different habitat.
Although the IFD is a strong theoretical tool to anal-8

yse animals’ spatial distributions, over the past decades at-
tempts to validate it led to equivocal results (Matsumura10

et al, 2010). For example, several studies reported “under-
matching” when animals underuse better patches and overuse12

poorer patches (for a review see Kennedy and Gray, 1993).
These discrepancies between the IFD and observed distri-14

butions are attributed to, e.g., the cost of moving (Åström,
1994), imperfect information (Matsumura et al, 2010), or16

stochastic fluctuations in environmental conditions (Schreiber,
2012).18

An important aspect that is usually neglected in theo-
retical studies of habitat selection and migration (but see,20

e.g., Sutherland and Parker, 1985; Hugie and Grand, 1998;
Grand and Dill, 1999; Tregenza and Thompson, 1998) is22

the variability among individuals. In particular, factors re-
lated to age or energetic state can contribute to individuals’24

perception of the environment and affect the ability to mi-
grate between habitats. Moreover, the specific location in26

which each individual lives can also affect the habitat selec-
tion process. Indeed, while the IFD assumes freely moving28

individuals between habitats, habitat-connectivity can often
be constrained by specific geographical (e.g., topography)30

or temporal (e.g., seasonal) patterns, which can then limit
the ability to migrate towards better habitats. A network of32

habitats is often a more realistic and general description of
habitat connectivity for migratory species.34

For example, migratory species such as the Atlantic bluefin
tuna (BFT) have widely separated feeding and spawning36

areas that are distributed over a large latitudinal gradient.
Those habitats are typically exposed to changes in seasonal-38

ity and habitat productivity that can affect payoffs and dis-
persal dynamics of the habitat selection game. The species40

appears to have evolved a migration strategy that alternates
rapid movement between neighbouring regions, to periods42

of continuous feeding in those areas before a new migration
occurs (Block et al, 2005, 2001; Wilson et al, 2005). Thus,44

the dispersal dynamic between distant habitats appears as a
multiple step process by which tunas explore several habi-46

tats rather than a single direct movement towards higher
payoff areas.48

In this manuscript we present a game theoretical approach,
called the “migration game”, to model migration dynamics50

of an age-structured population on a network of intercon-
necting habitats that undergo seasonal variation. In addition,52

we assume a travel cost that is age specific. Then we apply

this concept to BFT to predict their seasonal distribution and54

their migration routes across the Atlantic.

2 Theoretical framework56

2.1 The migration game

We consider an unstructured migratory species in an hetero-58

geneous environment consisting of a network with n habi-
tats. Population and distributional processes are assumed to60

be discrete in time, and the time step is scaled so that it
equals 1. In each habitat, i, and at each time step the popula-62

tion abundance, pi, changes due to migration and population
dynamics:64

pi(t +1) = pi(t)+ fi

(
n

∑
j=1

p j(t)x ji(t)−
n

∑
j=1

pi(t)xi j(t)

)
(1)

where fi is the demographic change of the population
pi (birth and death processes), and xi j(t) is the per capita66

migration rate from patch i to patch j within the unit time
interval. The model (Eq. 1) assumes that in each time inter-68

val dispersal occurs before demographic changes. The total
population abundance at time t is P(t) = ∑

n
i pi(t). Dispersal70

rates, xi j(t), are non-negative and satisfy ∑
n
j=1 xi j(t) = 1 for

every i = 1, . . . ,n. We note that xii(t) is the probability of72

staying in the patch i.
To describe migration rates we assume that each habitat74

is characterised by a negative density dependent payoff, ui.
If there is a direct link between habitats i and j in the net-76

work, then for individuals migrating from i to j we define a
reward function:78

Φi j(pi, p j) = u j(p j)− ci j−ui(pi) (2)

where ci j ≥ 0 is a cost term for the migration game. This
cost includes the energy needed to migrate between habitats80

i and j as well as the energy required for habitat selection
and decision making processes (Bonte et al, 2012).82

We consider directed (non-random) movements on the
network and we assume that along the migration routes the
reward must be non-negative. In other words, an individ-
ual currently in patch i will move to patch j only when the
reward of doing so is positive. Hence at each time step, t,
dispersal rates xi j must results in a population distribution
satisfying:

Φi j(pi, p j)≥ 0. (3)

In the model motility is restricted by the topology of the
network and individuals can only migrate between neigh-84

bouring habitats (i.e., habitats directly connected by a link).
Moreover, the choice of an individual affects migration rates,86
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xi j, and also population distribution (pi , Eq. 1). Hence, the
rewards (Φi j, Eq. 2) are regulated by the reciprocal strate-2

gies of competing individuals.
This defines a non cooperative migration game, in which4

(1) players are the set of individuals characterised by their
current habitat i, (2) the strategy of the players currently6

in habitat i is the probability xi j with which the individuals
move to one of the neighbouring habitats, and (3) the reward8

of the set of players living in i is defined as the average re-
ward ∑ j xi jΦi j where the sum is only over all neighbouring10

habitats j (i.e., habitats directly connected to habitat i).
The equilibrium solutions are migration rates x∗i j that are12

the Nash equilibria (NE) of the migration game. The equilib-
rium strategy is such that any unilateral change in the strat-14

egy of any individual would results in a lower reward for the
player who changes its strategy. This implies that for any16

two habitats j and j′ such that x∗i j > 0 and x∗i j′ > 0, the re-
wards must be the same and maximal (i.e., Φ∗i j = Φ∗i j′ ≥Φ∗ik18

for any connected habitat k such that xik = 0). The migra-
tion game is a potential game that guarantees the existence20

and uniqueness of a NE (Sandholm, 2010). This equilibrium
can be calculated as the solution of a variational inequal-22

ity (Nagurney, 1993; Mullon and Nagurney, 2012; Nagur-
ney et al, 1992) or a linear complementary problem (LCP)24

(Mullon, 2013; Facchinei and Pang, 2003).
Migration rates x∗i j are then used in the model (Eq. 1) to26

define population dynamics on the network.

2.2 Distributional equilibrium in a cost-free migration28

game

We assume that migration is cost free, i.e., ci j = 0 in Eq. (2),30

hence the reward function is similar to those used in habitat
selection games (Hugie and Dill, 1994; Křivan et al, 2008)32

and the solution of the migration game converges in several
time steps to the IFD (Pan and Nagurney, 1994; Cressman34

and Křivan, 2006). However, because dispersing animals are
constrained in their movement by links in the habitat net-36

work, depending on the topology of the network it can take
several steps to reach the global IFD. Indeed at each time38

step individuals can move only to habitats that are directly
connected to their current habitat. Thus, at each time step in-40

dividuals reach a local IFD in the sense that directly linked
patches have the same payoffs as we do not consider the42

cost of dispersal. As time increases, the IFD becomes more
global, that is, payoffs in additional patches get equalised.44

To illustrate the relation between migration equilibrium
and distributional equilibrium we consider a simple case of46

three habitats denoted as A, B, C, and two different network
topologies: (a) a fully connected network (Figure 1a); (b) a48

network where B is disconnected from C (Figure 1b). Each

habitat is characterised by its payoff:50

ui = 1− pi

Ki
(4)

where Ki is the habitat environmental carrying capacity, pi
is the number of individuals in patch i with i∈ {A,B,C}. We52

assume no migration costs (ci j = 0) and all individuals, P,
initially occupying habitat C only, i.e., pC = P, pA = pB = 0.54

When the network is fully connected our model con-
verges to the IFD in a single time step (Figure 1a). Since56

individuals are free to move in all the habitats in the net-
work, the strategies resulting from the migration game are58

those needed to balance the reward function in Eq. (2) for
all the three habitats. This condition is also the condition for60

the IFD.
When the network is not fully connected, several steps62

are needed to reach the IFD (Figure 1b). The equilibrium
value can be efficiently calculated using variational inequal-64

ity (Mullon, 2013). In the first step, only movements be-
tween C and A are possible on the network and the values66

of xi j are those balancing the rewards (ΦCA = ΦAC), i.e., a
local IFD conditions is reached between the two habitats.68

In the next step, individuals that are now in habitat A have
the possibility to migrate into B since ΦAB > 0. But, not70

all the dispersal rates are possible to reach the equilibrium,
since for any given habitat the number of migrants cannot be72

larger than the number of inhabitants. Indeed, the migration
equilibrium xAB, xCA must satisfy constraints 0 ≤ xAB ≤ pA74

and 0 ≤ xCA ≤ pC. The new distribution is again calculated
equalising the reward functions in the three habitats and con-76

sidering that after the migration the payoff in habitat A can
be written as78

uA = 1− (pA + xCA− xAB)/KA (5)

with similar expressions for the payoff in habitat B and C.
Equilibrium values for xCA and xAB are calculated by equal-80

ising the patch payoffs. In particular, at this step all the in-
dividuals living in A move into B and a new distribution is82

reached between A and C. At step number three, the equilib-
rium values for dispersal rates are those satisfying the IFD84

on the network (Figure 1b).

2.3 The effects of costs and multiple equilibria86

When travel costs are zero and patch payoffs are negative
density dependent there is a single IFD (Křivan et al, 2008).88

However, if migration costs are positive there may be in-
finitely many possible IFDs. Indeed, let us consider an en-90

vironment consisting of two habitats (i = 1,2), and let the
habitat payoffs be described by the Eq. (4).92

The reward of an individual currently in patch 1 to mi-
grate to patch 2 is

Φ12(p1, p2) = u2(p2)−u1(p1)− c12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2015. ; https://doi.org/10.1101/020743doi: bioRxiv preprint 

https://doi.org/10.1101/020743
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Patrizio Mariani et al.

0 1 2 3 4 5
0

100

200

300

400

0 1 2 3 4 5
0

100

200

300

400

C

A

B

C

A

B

time     (a) time     (b)

B
io

m
as

s

Fig. 1 Cumulative distribution of the migratory population in the three
habitats A, B, C in the case (a) all the habitats are connected (b) con-
nections between A = B and A = C. Also shown (dashed lines) the
reference cumulative distribution at the IFD. Parameters: KA = 100,
KB = 200, KC = 300 and total population P = 400.

and, similarly, the reward of an individual currently in patch
2 to migrate to patch 1 is

Φ21(p1, p2) = u1(p1)−u2(p2)− c21,

Under the IFD none of these two rewards can be positive.
In particular, when travel costs are neglected a single IFD2

exists at which Φ12(p1, p2) = Φ21(p1, p2) = 0 (Figure 2A).
When travel costs are positive (Figure 2B) there is a region4

of possible distributions under which individuals in neither
patch have a positive reward to move. Thus, all these distri-6

butions correspond to IFDs.
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Fig. 2 Reward functions (Φi j) with and without migration costs. The
plots show rewards of migration for individuals in patch 1 (red) and in
patch 2 (blue) as the proportion p of individuals in patch 1. For val-
ues of p such that the red (blue) line is above the x-axis, individuals of
population 1 (2) have advantage to migrate. In (a) migration costs are
zero and a single equilibrium is present at p = 0.74. While in (b) mi-
gration costs are positive and there is a set of equilibrium distributions
(p ∈ [0.58,0.84]).

The LCP method that we use to calculate numerically8

the NE of the migration game selects a single IFD from the
set of possible IFDs, The selected point is on the boundary10

of the set of all IFDs, i.e., in the above example it is one of
the two boundary points.12

2.4 Coupling migration and demographic processes

We extend the model (Eq. 1, 2) by considering a structured14

population with several (S) age classes a. It can be repre-
sented as Pi(t) → P

′
i (t) → Pi(t + 1), where Pi(t) = {pi,a}16

is the population distribution, once individuals have redis-
tributed themselves according to the migration equilibrium,18

and Pi(t + 1) is the population distribution after the demo-
graphic processes (birth, death and growth). To represent20

these processes, in each habitat, we use a Leslie matrix, i.e.,
we have Pi(t +1) = Li(t)×P′i (t) where:22

Li(t) =



qi,1 ri,2 ri,3 ... ri,S−2 ri,S−1 ri,S
gi,1 qi,2 0 ... 0 0 0
0 gi,2 qi,3 ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... gi,S−2 qi,S−1 0
0 0 0 ... 0 gi,S−1 qi,S

 (6)

The probability that a fish in class a−1 at time t will grow
into class a at time t+1 is ga. Similarly, qa is the probability24

that a fish will continue to stay in the same class, while ra
is the average number of newborns (belonging to the class26

a = 1) produced by individuals at ages a > 1.

3 Case Study28

3.1 The ecology of Atlantic bluefin tuna

The Atlantic bluefin tuna (Thunnus thynnus) has evolved a30

migratory behaviour in which spawning and feeding sites
are separated by large distances, typically spanning 100s-32

1000s of kilometres and several degrees of latitude (Mather
et al, 1995; Cury et al, 1998). Spawning sites are located34

in temperate-tropical waters (i.e., Mediterranean Sea, Gulf
of Mexico), but feeding sites used by the largest and old-36

est individuals are located in northern temperate-boreal wa-
ters (Mather et al, 1995). During the narrow reproductive pe-38

riod individuals often display fast trans-Atlantic migrations
to reach the Mediterranean spawning ground (Block et al,40

2005; Fromentin, 2009). The seasonal south-north migra-
tory behaviour exhibited by bluefin tuna has likely evolved42

to allow the species to benefit from large biomasses of prey
species in these regions (Cury et al, 1998).44

3.2 Model implementation

We implement the theoretical framework described above,46

to illustrate the spatial dynamics of the Atlantic Bluefin tuna.
The time step for the dynamic system is set equal to one48

month, and the simulations are extended up to 20 years. We
chose a network of n = 8 habitats (Figure 3): Gulf of Mex-50

ico (A), Brazil (B), Maine (C), North Atlantic (D), Norway
(E), Bay of Biscay (F), eastern Atlantic (G) and Mediter-52

ranean (H). The links between habitats are selected based
on historical migration routes of bluefin tuna and defined to54

represent feasible distances that individuals can cover in one
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Table 1 Biological characteristics of age classes

Age class Weight Fertility Growth Survival
a w (Kg) ra (month−1) g (month−1) q (month−1)
Young 1 0 0.02 0.9
Juvenile 30 0.125s 0.02 0.9
Adult 100 0.25s 0.02 0.9
Mature 200 0.5s 0.02 0.9
Old 500 s 0.02 0.9

month. Moreover, the migratory population is structured in
five classes (age, a): young of the year, juvenile, adult, ma-2

ture and old. We denote by wa the mean weight of tuna at
age class a (Table 1).4

Fig. 3 Network for the bluefin tuna migration game. We consider 8
habitats: A: Gulf of Mexico, B: Brazil, C: Maine, D: North Atlantic,
E: Norway, F: Bay of Biscay, G: Eastern Atlantic, H: Mediterranean.
Habitats are defined within a certain spatial range (grey areas) for
which we calculate the average biological productivity which is as-
sumed proportional to the habitat’s carrying capacity. Links between
habitats indicates the potential migration routes assumed in the present
study.

Patch payoffs for an individual of class a in habitat i ∈
{A, ...,H} at month t are density dependent:6

ui = 1− ∑a wa pi,a

Ki
(7)

where pi,a is the population of age a living in habitat i; Ki
is the time varying carrying capacity of habitat i described8

as Ki(t) = Ki(1−θi cos(tπ/2)), with θi ≤ 1, being a season-
ality parameter specific for each habitat (Table 2). The sea-10

sonality parameter is calibrated using averaged data (2003
- 2011) of seasonal variability of the biological productiv-12

ity (Westberry et al, 2008) averaged over the area covered
by the habitat (Figure 3). Larger coefficients reflect larger14

seasonal fluctuations typically at higher latitudes.

The costs for exploring adjacent habitats, ci j in Eq. 2,16

are difficult to set. This is because the term includes several
processes such as traveling between habitats, comparison of18

habitat qualities and decision making process to select one
specific habitat (Bonte et al, 2012). Tuna are efficient swim-20

mers (Dewar and Graham, 1994) and can travel thousand of
kilometres within few days (Block et al, 2001). Hence, the22

cost of traveling and exploring different habitats is not neg-
ligible but probably low and most likely dependent on the24

distance between habitats. Indeed we assume here that the
cost for habitat identification and selection is a function of26

the distance between habitats and approximate it as:

ci j,a(t) = µ
di j

w0.06
a

(8)

where di j is the distance in kilometres between habitat i and28

j, while wa is the age specific average weight, which we
assume is proportional to the individual swimming speed.30

We consider migrations performed at an optimal velocity
and it can be shown (Appendix A) that for tunas the swim-32

ming speed scales as w0.06
a (Ware, 1978). We set the range of

µ = 5−150 to analyse migration game under different habi-34

tat selection costs, and we test the sensitivity of our results
to this parameter.36

The demographic rates in the Leslie matrix (survival qa,
fertility ra, growth ga; Eq. 6) are given in Table 1. Fertil-38

ity coefficients, ra, are non zero only in the spawning areas:
Gulf of Mexico (A) and Mediterranean (H). In our definition40

of the Leslie matrix (Eq. 6) we assume that older individuals
have higher fertility proportional to some spawning intensity42

s. In the model we test how the results are affected by dif-
ferent values of s (Appendix A).44

Table 2 Characteristics of habitats

Habitat i Mean carrying Seasonal effect θi
capacity Ki

Gulf of Mexico (A) 130.000 0.2
Brasil (B) 20.000 0.1
Maine (C) 60.000 0.5

North Atlantic (D) 60.000 0.9
Norway (E) 40.000 0.8

Bay of Biscay (F) 100.000 0.6
Eastern Atlantic (G) 50.000 0.3

Mediterranean sea (H) 200.000 0.2

4 Results

4.1 Tuna migrations in a stable environment46

We first run the model using only the demographic pro-
cesses, without migration or environmental variability, and48
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Fig. 4 Total biomass (lines) and population structure (bars) in the
bluefin tuna habitats as resulting from the equilibrium of the migra-
tion game when no demography or seasonal changes are considered in
the model. The total biomass of the population is 330 kton while habi-
tat selection costs are (a) very low µ = 20, (b) low µ = 50, (c) medium
µ = 100 and (d) high µ = 150. Different colours (yellow to dark green)
for the 5 different age classes (Young to Old).

.

set the total bluefin tuna biomass (M = 330 kton). The
simulation converges towards a stable age-structure distri-2

bution in the spawning areas (Gulf of Mexico and Mediter-
ranean) and zero biomass otherwise. This is the initial con-4

dition used in all the subsequent simulations.

From this initial distribution, we simulate the migration6

game in the case of a stable environment with no seasonality
(Ki constant, Table 2). We assume no demographic changes8

in the tuna population structure (i.e., the Leslie matrix is
the identity matrix) but consider different costs in the habi-10

tat selection process. Under such assumptions the migration
game on the network converges towards a stable distribu-12

tional equilibrium (Figure 4).

At very low costs (µ = 20) most of the biomass is ag-14

gregated in the spawning areas (MA = 61 kton and MH =
89 kton) and in the Bay of Biscay (MF = 47 kton) while16

the sum of all the other habitats accounts for ≈ 35% of the
total biomass (Figure 4a). In this case largest tuna are on18

both sides of the Atlantic and mainly in habitats C and F
with Mediterranean and Gulf of Mexico showing the most20

structured population distribution. The youngest class (yel-

low color) is present only in the spawning areas and do not22

migrate in other habitats.
Increasing the habitat selection costs (µ = 50, Figure 4b)24

has no major effects on the biomass distribution. The distri-
butions of age classes are also similar to the previous case26

with relative changes only in habitats G and C. With a fur-
ther increase of the cost (µ = 100, Figure 4c) the population28

tends to accumulate in the spawning areas while the most
distant habitats tend to become unoccupied. At very high30

cost (µ = 150, Figure 4c) only few habitats are populated
and the majority of tuna biomass is in the spawning area32

(MA = 102 kton, MH = 172 kton).

4.2 Migration game in a seasonal environment34

We simulate the habitat selection process under changing
carrying capacity (Ki) and accounting for tuna population36

demography (L(t), Eq. 6).
Seasonal fluctuations in the tuna biomass are evident in38

all patches with the weakest seasonality in the spawning
habitats (Figure 5). The habitat in Norway (Figure 5E) and40
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30). Different colours (yellow to dark green) for the 5 different age
classes (Young to Old).
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Migration game in a habitat network 7

Brazil (Figure 5B) are occupied by the larger/older classes,
but have the lowest of the biomasses. The age-structure in2

each habitat changes less than the variability in total biomass,
but throughout the season significant changes in the age-4

structure can occur in the eastern Atlantic and Maine (Figure
5C,G). Interestingly the peaks in biomass in the spawning6

areas are in April - May while in the feeding areas are in
July - August and late October in Brazil (Figure 5) as it is8

commonly reported (Table 4.2).
The intensity of migration on the habitat network de-10

pends on the cost of the habitat selection process and the
spawning intensity of the species (Figure 6). When costs are12

low and spawning intensity high (Figure 6a) the population
distributes in all available habitats and all migratory routes14

are used with the exception of the transatlantic route C -
G. The age-structure is different in each area and highly di-16

versified in the spawning area and in the central Atlantic.
When the spawning intensity is reduced (Figure 6b) the to-18

tal global biomass also decreases and some of the routes are
used less frequently. In particular the connections between20

Brazil and the western Atlantic are much weaker but the
transatlantic connections (A - G and C - G) have higher mi-22

gration flows.This is mainly driven by the very low biomass
living in the habitat in Brazil (Figure 6b) . At higher habitat24

selection costs (Figure 6c,d) the direct transatlantic routes
connecting habitats A and C to G break down and generally26

there are low migration rates between habitats. Moreover,
only larger individuals appear to exploit the farthest habi-28

tats B and E. Further increases of the costs, results in the
majority of the population staying in the spawning habitats.30

In these configurations habitats such as Brazil and Norway
have a very low biomass or are completely unoccupied. In32

the case of high cost and low spawning intensity the mi-
gration strategy is only selected by larger individuals while34

the majority of the population will not distribute outside
the spawning grounds. Most of these patterns are confirmed36

also when a more extensive sensitivity analyses is performed
(Appendix A.3).38

5 Discussions

5.1 Migration modelling40

We introduce a model based on game theory to simulate
habitat selection processes in migratory populations. The42

model is developed to describe migration dynamics in age-
structured fish populations and it is applied to study the sea-44

sonal migration of the Atlantic bluefin tuna. The model ex-
plicitly represents habitat connectivity as a network with46

several patches connected by links.
The results show how changes in the resource level, pop-48

ulation demography and cost of migrations can alter the mi-
gration equilibrium of the game and then results in different50
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Fig. 6 Map of the network structure at different spawning intensity (s)
and habitat selection cost µ . Simulations are run for 10 years under
seasonal effects and the distribution in December is shown. Habitats
are showed with circle proportional to the total tuna biomass and colour
for different age (between yellow and dark green from Young to Old
age, respectively). Lines connecting the habitats show integral biomass
flux during the entire simulation and are thicker for larger fluxes, while
dashed lines are used when no flow is simulated along the path. (a) µ =
50 and s= 30 and a total global biomass M = 496 kton, (b) µ = 50 and
s = 5 and M = 128 kton, (c) µ = 100 and s = 30 and M = 424 kton,
(d) µ = 100 and s = 5 and M = 166 kton, (e) µ = 150 and s = 30 and
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population distributions in the habitats. We further show that
only some subset of the available links on the network are52

effectively selected as migratory pathways while many other
routes are not utilised. This allows us to identify emerging54

migration routes in fish populations and to compare the pre-
dictions with observed migration behaviour.56

A fundamental assumption in the model is that migra-
tion is described as a multiple equilibrium process between58

different habitats. In the migration game, each individual in
a given habitat can - in a single time step - move only to60

the neighbour habitats, i.e., those that are locally connected
to the one where the individual is living. The migration oc-62

curs when there is an advantage to move, which in the model
is described as a positive reward function. Since this func-64

tion is negatively density dependent, its value is affected by
the strategies of other individuals in the populations and it66
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Table 3 Seasonal migration phenology of bluefin tuna in the north Atlantic Ocean

Years Region
Timing of presence
in northern feeding

areas
References Notes

1999-2004

West Atlantic
(GOM-

Newfoundland);
Bay of Biscay

July-September (Block et al, 2005) Data Storage Tags
(DSTs)

1981-2005 Bay of Biscay Day 180-230
(approx.) (Dufour et al, 2010) Timing of immigra-

tion to region based
on commercial
CPUE data

2005-2009
NWAtlantic

(Maryland to Cape
Cod)

summer months (Galuardi and
Lutcavage, 2012) DSTs applied to ju-

veniles

1950s-1970s Norwegian Sea July-September (Aloncle et al, 1972;
Mather et al, 1995) Based on commer-

cial catch data.

2012 East Greenland
(Denmark Strait) August-September (MacKenzie et al,

2014) Based on bycatch
in commercial
mackerel fisheries

1996-2003 Contl. shelfbreak
south of Iceland

August-October
(few in November)

(Olafsdottir and
Ingimundardottir,

2003)
Based on commer-
cial CPUE data

1923-1931 Dogger Bank, North
Sea

Day 190-290
(approx.)

(Murray, 1932;
MacKenzie and
Myers, 2007)

Based on at sea
observations of
schools; similar
patterns seen from
1912-1922.

1950s-1970s North Sea July-September (Tiews, 1978) Based on commer-
cial fisheries

Southern Gulf of St.
Lawrence, Canada August-October (Vanderlaan et al,

2014) Based on commer-
cial CPUE data

1996-2006
Whole west Atlantic

from G. Mexico-
Newfoundland,

Seasonal during year (Walli et al, 2009) DSTs

is also affected by the cost of assessing and commuting be-
tween different habitats. At each time step the population2

tends to reach a local equilibrium by trying to equalise the
local reward functions. In some cases this equilibrium can-4

not be reached because there are not enough individuals liv-
ing in a given habitat that can migrate towards connected6

habitats with a higher payoffs.

The assumption of describing habitat connectivity by dis-8

crete network structure is a generalisation of migration mod-
els assuming movements between all pairs of habitats (a10

fully connected graph). The network approach easily cap-
tures the existence of geographical, bioenergetic or life his-12

tory constrains, which often break potential migration routes
(Henningsson and Alerstam, 2005; Alerstam et al, 2003;14

Alerstam, 2001). The model is also flexible enough to al-
low the effects of ocean currents, temperature variability, or16

other environmental changes to be represented using differ-
ent costs on each link. Indeed, the cost of migration between18

two habitats can affect the reward function and then can
modify the migration equilibrium on the network; a mecha-20

nism which is in agreement with the hypotheses that changes
in migration routes can be driven by climate change (Walther22

et al, 2002; Rijnsdorp et al, 2009; Doney et al, 2012).

The ability to equalise the local reward functions and24

reach an equilibrium is consistent with the ideal free dis-
tribution theory (Fretwell and Lucas, 1969). We show that26

at each time step individuals in the population distribute ac-
cording to a local IFD among connected habitats and, in case28

of stable environment with no demographic effects, the lo-
cal equilibrium converges, in several steps, towards a global30

IFD on the network (Pan and Nagurney, 1994; Cressman and
Křivan, 2006). The behaviour dynamic we use in the model32

describes when and how individuals update their strategies
over time. This is known as revision protocol in game the-34

ory (Sandholm, 2010) and is based on two assumptions: my-
opia and inertia. A myopic behaviour means that individu-36

als assess their strategy based on local information on costs
and payoff opportunities, without incorporating knowledge38

on future expectations and behaviours. Inertia in behaviour
considers that individuals do not update their strategy con-40
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tinuously but instead re-evaluate their decision sporadically,
mainly because very often the environment in which they2

live provides a multiplicity of concerns to be solved rather
than a single-minded focus on one strategy (Sandholm, 2010).4

We think that the discrete form of time and space in our
model describes naturally myopic and inertial processes which6

are likely to occur in fish populations. Moreover, compared
to a continuous model, the discrete representation of the8

space with the network of habitats appears to be more con-
sistent with the idea of migration corridors, habitat hot spots10

and migration stopovers which are typically found in many
species (Rose, 1993; Hunter et al, 2003).12

5.2 Environmental and demographic effects

Seasonality in the resource distribution and competition for14

resources are both important mechanisms for the selection
of migration as a behavioural trait. Indeed, in weak seasonal16

environments and under low competition conditions, resi-
dency is the behavioural strategy that is selected (Shaw and18

Couzin, 2013). Our results support those findings and show
that in case of a stable environment the distribution of the20

populations between heterogeneous habitat converges to the
IFD. At the IFD there is no net dispersal between habitats22

unless demographic effects are present. Indeed changes in
population structure can elicit changes in the reward func-24

tions then allowing migrations to emerge. The coupling be-
tween demographic and environmental effects are critical26

for the results. Generally, if dispersal dynamics are much
faster than the changes in the habitats payoff, the IFD can28

still be reached by migratory species. But if migrations and
environmental variability have similar time scales, additional30

assumptions need to be made on dispersal (Mobæk et al,
2009; McLoughlin et al, 2010). In our model we assume that32

the population can reach a local IFD condition, which trans-
lates into assuming a fast behavioural response to explore34

neighbour habitats. The time step used to integrate the dis-
crete model sets the time scales for behavioural response and36

environmental variability. An alternative approach would de-
scribe demographic and environmental dynamics as contin-38

uous processes both affecting the migratory behaviour with
feedback on the population dynamics. In such cases how-40

ever we would have a revision protocol lacking the inertia
of the decision process which we think is common in most42

natural populations.
The presented model does not explicitly account for the44

feedbacks between migration dynamics and demographic
processes. Indeed, in habitats with higher payoff one could46

expect individuals to grow faster than those in lower payoff
habitat. To capture the impacts of a large payoff on individ-48

ual growth, one would likely require an individual-based-
approach to store information about memory and history of50

the single individuals.

5.3 Relevance to the ecology of the Atlantic bluefin tuna52

As we have seen before, Atlantic bluefin tunas have a wide
distribution in the Atlantic Ocean from tropical to sub-polar54

areas. Migration has likely evolved to allow migrants to ben-
efit from the highly productive environment at higher lat-56

itude while reducing competition by moving towards less
productive environments. Being excellent swimmers bluefin58

tuna can potentially be present in all parts of the Atlantic.
Nonetheless, several evidences suggest that the species dis-60

tributes within several hotspots areas, where tunas are present
all year round, while their abundance outside those areas62

are minimal. Moreover, the same individual can visit these
hotspots several times during the feeding period before go-64

ing back to spawning areas for reproduction. Those patterns
in distribution and migration behaviour are in part captured66

by the habitat network approach used in our model, with a
series of hotspot areas connected by a range of migratory68

pathways. Moreover, the model appears to describe reason-
ably well the peaks in distribution in the different areas. For70

example in the spawning areas the maximum abundance is
mainly at the beginning of summer and precedes the peaks72

in abundances in the feeding areas. Habitats such as Norway
or Brazil are visited only by the larger individuals (200−50074

Kg) and are very sensible to changes in fishing pressure or
cost of migrations (Fromentin, 2009; Safina and Klinger,76

2008).
Thus our modelling approach allows representing in a78

quite realistic way the spatial population dynamics of the At-
lantic bluefin tuna including simulating the disappearance of80

previous feeding habitats and changes in migration routes.
The modelled estimate of the timing of appearance at82

summer feeding areas is similar to the migration phenology
to many of these areas observed in nature (Table 4.2). In84

addition, the size composition of the modelled populations
arriving in several of these areas compares favourably with86

the size composition of bluefin tuna observed and / or caught
in such regions.88

For example, modelled size distributions for Brazil and
Norway are centred at large (≈ 200 cm) sizes; catch data90

from these areas (Mather et al, 1995) shows that most bluefin
captured in fisheries in these areas were generally > 150−92

200 cm, thus similar to modelled estimates.
Our modelling approach is potentially a useful frame-94

work for investigating how exploitation and environmental
variability including climate change could affect the large-96

scale migratory behaviour and spatial distribution of bluefin
tuna and its phenology. For example, environmentally driven98

changes in regional productivity and carrying capacity would
affect habitat suitability, migration costs (e.g., due to tem-100

perature changes) and migratory rewards after arriving at
destinations. These changes could lead to reductions of util-102

isation of some habitats and stronger preferences for habi-

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2015. ; https://doi.org/10.1101/020743doi: bioRxiv preprint 

https://doi.org/10.1101/020743
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 Patrizio Mariani et al.

tats in other regions, thereby potentially influencing fishery
opportunities and costs for different nations. Such changes2

may already be underway because migration phenology for
the Bay of Biscay is linked to large-scale climate condi-4

tions (e.g., the North Atlantic Oscillation, NAO) that af-
fect sea temperatures (Dufour et al, 2010) and bluefin tuna6

have recently been observed in east Greenland where they
have not previously been observed (MacKenzie et al, 2014).8

Moreover our modelling framework, if coupled to integrated
oceanographic biogeochemical models (Dragon et al, 2015),10

could also potentially be used to derive new insights on the
relative roles of oceanographic variability and exploitation12

leading to past major changes in bluefin tuna distributions
and fisheries such as those off Brazil, Norwegian-North Sea14

and south of Iceland. Recent advances in group behaviour
and information sharing/transfer between individuals within16

groups also show how habitat choice can be influenced by
the knowledge content or migratory experience of individu-18

als within groups, and how group behaviour (e.g., migration
to particular habitats) can be driven by a subset of informed20

individuals (De Luca et al, 2014).

A future challenge for migratory behaviour modelling is22

therefore to develop ways to integrate individual-level and
group dynamics in migration game modelling frameworks24

such as that developed here. Given that bluefin tuna is such
a highly migratory species, and migrates across ocean zon-26

ing boundaries of several jurisdictions, and also across stock
management boundaries, migration models that quantify rates28

and timing of exchanges among areas could potentially have
practical application in fishery management and conserva-30

tion. The migratory behaviour of this species is complex.
Our modelling approach, although moderately complex, is32

based on some simplified considerations of population dy-
namics, regionally-dependent ecosystem carrying capacities34

and bioenergetics of energy intake and utilisation, and is
a step towards process-oriented migration and distribution36

models. Further advances in process knowledge and imple-
mentation are needed, and if implemented, could support38

management and conservation decision-making for this species.
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A Model calibration for Atlantic bluefin tuna

A.1 Migration costs2

The time needed to migrate between two habitats regulates the cost of
migration in fish population since the energy consumed will be higher4

the longer is the migration time. The power rate consumed while swim-
ming at an optimal speed (P) is:6

P = α0wηUβ (9)

where w is the weight of the fish, while the allometric constants α0 and
η have been estimated for fish swimming at high Reynolds number8

(Ware, 1978, Table 4).
We can fairly assume that migrations is performed at an optimal10

swimming speed (U∗) at which the total energy expenditure per unit
distance is minimised. Using an allometric function for the metabolic12

costs M = α1wγ , a general form of U∗ can be derived by an optimisa-
tion procedure relating the swimming cost to the total cost of moving14

(metabolic cost plus power output):

U∗ =
[
−α1wγ

α0wη (1−β )

] 1
β

(10)

where α1 and γ are allometric constants for fish metabolism (Ta-16

ble 4). This results in an allometric scaling for the optimal swimming
speed as:18

U∗ ≈ w
γ−η

β (11)

In tuna the exponent β has been found to range between 1.4 < β < 2.8
(Dewar and Graham, 1994) and we assume β = 2.1, which provides20

swimming speeds in the range reported for several tuna species (1.2−
2.4BLs−1) (Block and Stevens, 2001).22

Thus we obtain a scaling U∗ ≈ w0.06.

A.2 Demography24

Large uncertainties exist on the definition of demographic parameters
for the bluefin tuna population (Simon et al, 2012). In our model, the26

young-of-the-year stage ( 0 - 1 years) is excluding egg phases and does
not have reproductive potential while at juvenile stage (1 - 5 years) a28

small fraction is mature for reproduction. The reproductive maturity
increases up to 50% at the adult stage (5 - 10 years) while mature (1030

- 20) and old (20 - 35) stages are fully reproductive but the latter has
a lower survival rate. Those rates are consistent with observed matu-32

rity at age data for western and eastern atlantic bluefin tuna (SCRS,
2012) and are used to define the values of rk. Moreover, the value sur-34

vival (q) and growth (g) values used in the Leslie matrix are consistent
with reported values for the yearly mortality rates (SCRS, 2012) and36

provide a realistic bluefin tuna age-structure (Fig. 7) with a maximum
population growth rate (0.15) that is in the range of previous estimates38

(Simon et al, 2012). Finally, we constrain the global bluefin tuna pop-
ulation using a given total carrying capacity Kt and assume a density40

dependent function on the spawning factor s.

A.3 Extended Sensitivity analyses42

At low spawning intensity and high migration costs (Figure 8g) only
the spawning areas are occupied. Decreasing habitat selection costs44

allows tuna to migrate in adjacent feeding areas (G and C) but reduce
the total biomass and increase fluctuations in the migration behaviour46

(Figure 8a,d) . On the other hand, at high spawning and low migration
costs (Figure 8a,b) the biomass reaches the total carrying capacity over48

few months, and all habitats are occupied although at different levels
of biomass.50
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Fig. 7 Age structure data from the ICCAT assessment group (black)
on bluefin tuna and from the model using the Leslie matrix estimates
(red).

Parameter Symbol Value Ref.
Max. Energy intake I(w) cwφ –
Standard metabolic rate M(w) α1wγ –
Swimming power P(w) α0wηUβ –
Constant for energy intake c 1 ·10−2 [1]
Exponent for energy intake φ 0.8 [1]
Constant for power cost α0 1.8 ·10−8 [2]
Exponent for power cost η 0.47 [2]
Exponent for power cost β 1.4 < β < 2.8 [3]

(β = 2)
Constant for metabolic cost α1 3.76 ·10−4 [4]
Exponent for metabolic cost γ 0.6 [4]

Table 4 Scaling of physiological rates with size and parameter values
for tuna from: [1] Overholtz (2006) [2] Ware (1978) [3] Dewar and
Graham (1994) [4] Block and Stevens (2001)
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Fig. 8 Sensitivity of the population structure and total biomass in dif-
ferent habitats in case of no seasonality and zero fishing under different
spawning intensity s and habitat selection cost µ .
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