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lipophilic character and a net positive charge(s). Perhaps the attachment(s) can be via an ester 

bond, hydrolysed by esterases in the matrix [152]. Their targeting to the mitochondrial matrix 

would make them harmless to normal cells, with no relevant vulnerability there, but deadly to 

cancer cells using an inverted ANT2. If ΨIM = ~-140 mV, the net positive complex will 

accumulate ~225 times more in the matrix than in the cytoplasm and if ΨIM = ~-220 mV, as 

in cancer cells, it will be ~5000 times more; ~25 million times more if the complex is net 

double positive (Nernst equation, T = 300 K).  

 

Alternatively these drugs, or others, could be delivered to the mitochondrial matrix by a 

tiered liposome delivery system. The larger, outer liposome confers passage into the cell of 

the secondary, smaller, constituent liposome(s) which themselves confer passage past the 

outer mitochondrial membrane (OMM) for the tertiary, smaller constituent liposome(s) which 

passage the drug past the inner mitochondrial membrane (IMM) and into the matrix. Only 

two liposome tiers, rather than three, will be needed if the secondary liposomes can passage 

the OMM through VDAC channels. The number of required tiers will be cut if the initial, 

primary liposome is internalized by endocytosis (and so acquires a further bilayer upon 

cellular entry). Positive molecules can be embedded into the membrane of liposomes to assist 

in targeting to the negative mitochondrial matrix or a transmembrane potential (negative 

inside) can be attributed to the liposomes. Targeting molecules can be embedded in 

liposomes to piggyback upon physiological trafficking processes. Some alternative, tested, 

and already successful, liposome delivery systems, to mitochondria, are described in [154]. 

Alternatively, or in addition, these drugs or others could be delivered by attachment to 

membrane permeant peptides e.g. penetratin or the herpes virus protein VP22 [154, 162]. 

 

Antibodies can be produced against elements on the “m-side” of the ANT and these may act 

as further ANT inhibitors. They likely won’t be lipid soluble and so won’t be able to access 

and inhibit ANT1 and ANT3, with their “m-side” in the mitochondrial matrix. However, 

assuming they can passage into the cell (e.g. via liposome entry), they may access the “m-

side” of ANT2, which faces the cytoplasm (prediction). So, they would be ANT2 specific 

inhibitors. They could be attached to a lipophilic anion, which would target them to the 

mitochondrial intermembrane space. Eosin maleimide (EMA) is membrane impermeable and 

can only bind the “m-side” of ANT [81]. It could be used in an experiment to test if ANT2 is 

inverted in mitochondria isolated from cancer cells.  

 

A drug that inhibits ATP hydrolysis, and not synthesis, by ATP synthase (e.g. BMS-

199264) in combination therapy with an uncoupling drug (e.g. DNP) 

An uncoupling drug applied with a drug that inhibits the “reverse” mode of ATPase but not 

its “forward” mode - e.g. BMS-199264 – could bring devastation to cancer cells and leave 
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normal cells unharmed. There would be significant synergy of action between these two 

drugs. In cancer cells, the uncoupler (e.g. DNP) would act to collapse ΨIM and BMS-199264 

would remove its means to counter this collapse. Crucially, it would lower the amount of 

uncoupling drug that needs to be given which would aid the safety profile, lowering the risks 

of the patient overheating. Inhibiting ANT2 would equivalently inhibit the “reverse” mode of 

ATPase because it would deny it ATP. So, such a drug would also lower the amount of 

uncoupling drug needed; as would promotors of ANT1 and ANT3 activity. 

 

An uncoupler in combination therapy with dichloroacetate (DCA) 

DCA inhibits pyruvate dehydrogenase kinase (PDK). This decreases PDK inhibition of 

pyruvate dehydrogenase (PDH) and permits pyruvate to enter the Krebs cycle and OXPHOS 

to proceed [19]. DCA selectively kills cancer cells in vitro and in vivo [19], and has caused 

much excitement [163], but its breakdown products can cause neuropathy [164-166]. DCA 

acts by constitutively switching on OXPHOS and the ROS produced kills cancer cells [19]. 

An uncoupler will synergise DCA action by increasing the OXPHOS and ROS production 

rate. So, it will permit lower DCA concentrations to be used, which will diminish DCA side 

effects. DCA will reciprocally permit lower uncoupler concentrations to be used (e.g. DNP), 

which will diminish uncoupler side effects. In a prior paper I proposed exogenous NADH as 

an anti-cancer drug [34]. I suggest it kills cancer cells as DCA does, by constitutively 

switching on OXPHOS (by conveying it substrate) [34]. However, unlike DCA, there is 

likely to be few side-effects as it’s a natural metabolite. It could be used in combination with 

DCA and/or an uncoupler.        

 

Conclusion 

Cancer cells have a more hyperpolarised ΨIM than normal cells (~-220 mV compared to ~-

140 mV). This discrepancy suggests that different processes generate ΨIM in cancer cells, 

which may be compromised to selectively kill them. This paper identifies these processes and 

prospective anticancer drugs, which I hope will be entered into animal and clinical studies. 

For example, BMS-199264, which blocks the reverse, ATP hydrolysing, but not the forward, 

ATP synthesising, operation of ATP synthase. 
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FIGURES 

 

 

Figure 1 [4, 48, 50]; Computational estimations of Erev_ATPase and Erev_ANT (mV) at different 

mitochondrial matrix [ATP]in/[ADP]in ratios. Black line is Erev_ATPase, white line is Erev_ANT. 

Note that a decreased [ATP]in/[ADP]in ratio increases Erev_ATPase and decreases  Erev_ANT. A, B, 

C and D mark different operating states: (A) ATPase forward, ANT forward. (B) ATP 

reverse, ANT forward. (C) ATPase reverse, ANT reverse. (D) ATPase forward, ANT reverse.  
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Figure 2; Orientation of ANT1 [84] and the predicted, inverse orientation of ANT2. The 

mitochondrial intermembrane space (IMS) and matrix are labelled.  
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Figure 3; Computational estimations of Erev_ATPase (black line) and Erev_ANT (white line), 

which show their dependence on certain key parameters. (A) Same plots, using the same 

parameters, as Figure 1 (but shown with a different x-axis range). (B) Cytoplasmic 

[ATP/ADP] ratio changed from 120 to 4.8. (C) ATPase coupling ratio, n, changed from 3.7 to 

2.7. (D) ATPase affinity for ADP and ATP modified: Kw changed from 10
-3.198

 to 10
-1.599

, Kq 

from 10
-4.06

 to 10
-6.09

. (E) Matrix Pi level reduced from 10 to 0.01 mM. (F) Matrix pH 

decreased from 7.38 to 6.38, intermembrane space pH increased from 7.25 to 8.25. This 

represents the action of the nigericin ionophore.  
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Figure 4; Computational estimations of Erev_ATPase (black line) and Erev_ANT (white line) for a 

normal cell (A) and a cancer cell (B). (A) Normal cell. Same plots, using the same 

parameters, as Figure 1 (but shown with a different x-axis range). (B) Cancer cell. 

Cytoplasmic [ATP/ADP] ratio decreased from 120 to 24, H
+
/ATP coupling ratio: n = 2.7 

instead of 3.7, matrix Pi reduced from 10 to 0.5 mM and the matrix ATP/ADP ratio is 

doubled (if one reads the value on the x-axis, to get the Erev value, at y-axis values: y = 3 for 

cancer panel and y =1.5 for normal panel). Erev_ANT = -115 mV, Erev_ATP = -124 mV for 

normal cell (A); Erev_ANT = -55 mV, Erev_ATP = -211 mV for cancer cell (B).  

 

 

 

Figure 5; The base structure of drugs that inhibit the reverse, ATP hydrolysing, but not the 

forward, ATP synthesising, operation of ATP synthase [144]. The R group is variable and 

some R groups are detailed in Table 1. 
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Table 1; A list of drugs that inhibit ATP hydrolysis, and not synthesis, by ATP synthase 

[144].  
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