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Figure 2: The principal mode of shape variation for brain structures with significantly

heritable shape. Each structure is represented with a sample-specific population average,

on which average shapes at the two extremes (±2 standard deviation or SD) along the first

principal component (PC) of the shape descriptor (−2 SD, blue; +2 SD, red) are depicted.

Anatomical orientation is indicated with embedded coordinate axes. I: Inferior, S: Superior,

A: Anterior, P: Posterior, L: Left, R: Right.
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Discussion

This work makes two significant contributions to neuroscience and genetic research. First,

we extended the concept of heritability to multidimensional traits and present an analytic

strategy that generalizes SNP heritability analysis. The heritability estimator we proposed

for multidimensional traits has reduced uncertainty in the point estimate relative to univari-

ate estimates and thus offers more statistical power. Our empirical analyses confirmed this

theoretical expectation. Moreover, we provided methods that can easily adjust for covari-

ates in multivariate models, and also both parametric and nonparametric inferential tools

that can measure the significance of a heritability estimate. Our approach opens the door to

the genetic characterization of shape measurements and other multidimensional traits.

Second, we used the proposed approach to quantify the SNP heritability of the shape

of an ensemble of brain structures. The shape of caudate, cerebellum, hippocampus, 3rd

ventricle and putamen exhibited moderate to high heritability (i.e., greater than 30%), af-

ter controlling for volume. All of these estimates achieved FDR-corrected significance at

q = 0.05. This is in contrast to the volume heritability estimates of the same set of brain

structures on the same sample, none of which achieved FDR-corrected significance, likely

due to sample size limitations. Our results represent the first comprehensive heritability

analysis of the shape of anatomical structures spanning the human brain in a group of

healthy subjects.

A handful of prior neuroimaging studies have explored the shape of certain brain struc-

tures as potential phenotypes in examining genetic associations. For example, Qiu et al.

[28] and Shi et al. [29] reported influences of the apolipoprotein E (APOE) ε4 allele on hip-

pocampal morphology in depressive and Alzheimer’s disease patients. Variants involved in

the regulation of the FKBP5 gene were recently associated with hippocampal shape [30].

A meta-study [32] identified a GWAS significant SNP that exerts its effect on the shape of

putamen bilaterally. Prior studies have also estimated heritability of shape based on familial

relatedness. In a recent study, the heritability of the shape of subcortical and limbic struc-

tures was estimated using data from multigenerational families with schizophrenia [31]. In

other related work, Mamah et al. [46] and Harms et al. [47] revealed shape abnormalities
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in basal ganglia structures (caudate, putamen and globus pallidus) and the thalamus in sib-

lings of schizophrenia patients. An application of the LBS-based shape descriptor to twin

data found increased shape similarity of brain structures in monozygotic twin pairs rela-

tive to dizygotic twins, indicating genetic influences on brain morphology [40], although

heritability was not estimated.

However, to date, outside of these notable exceptions, most structural imaging genetics

studies have utilized scalar measurements (e.g., volume, thickness, area) as phenotypes. In

the present study, we accounted for potential volume effects in our shape analyses by nor-

malizing the LBS-based shape descriptor for size and additionally including the volumetric

measurement of the corresponding structure as a covariate when estimating heritability.

Our results showed that shape measurements provide a rich and novel set of phenotypes

for exploring the genetic basis of brain structure, and may identify novel genetic influences

on the brain that are not detectable with conventional analyses based on the volume of

structures.

There are several biological mechanisms that might lead to shape differences with min-

imal effect on the overall size of the structure. These include localized volumetric effects

that are confined to subfields, sub-nuclei or other sub-regions that make up the structure.

Shape analysis may further provide significant information about neurodevelopmental ab-

normalities, such as those associated with neuronal migration, synaptogenesis, synaptic

pruning and myelination. Shape measurements might for example shed light on morpho-

genetic mechanisms that involve mechanical tensions along axons, dendrites and glial pro-

cesses [48]. Thus, shape measurements are particularly promising phenotypes for studying

neurodevelopmental disorders. Neurodegenerative processes and other pathologies, many

of which are known to be genetically influenced, can also impact neuroanatomical shape by

exerting focal and/or selective insults. For example, in Alzheimer’s disease, morphological

alterations in the hippocampus may only target certain subfields [49].

The shape analysis literature offers an expanding list of methods to quantify and char-

acterize shape [42]. A major advantage of the LBS-based shape descriptor [38] employed

in this study is that it is robust to intensity variation across scans and does not require the

nonlinear spatial registration of the object with a population template, which can be compu-
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tationally demanding and prone to error. In this paper, we also presented a novel strategy to

visualize the principal mode of shape variation across the population. For brain structures

with significantly heritable shapes, we demonstrated that the principal mode explains a

large portion of the overall shape variation and is often highly heritable. This approach can

thus shed light on the global genetic influences on brain structures, and is complementary

to studies that rely on nonlinear group-wise registration to characterize localized genetic

influences on shape variation.

The heritability analysis of multidimensional traits developed here can be applied to

phenotypes other than shape that are intrinsically multivariate. Another application might

involve heritability or genetic association analyses combining related traits to obtain more

stable effect estimates. For example, it can be used as an alternative to principal component

analysis (PCA) and factor analysis when investigating the genetic basis of various psycho-

metric or behavioral traits. Also, voxel- or vertex-level neuroimaging measurements are

often noisy, and analyzing these measurements in homogeneous brain regions in a multi-

variate fashion may increase the reliability and reproducibility of the results. Finally, the

genetic similarity matrix can be computed with other SNP grouping strategies (e.g., based

on genes, pathways, functional annotations and previous GWAS findings) to model the

genetic influences from a specific genomic region or partition the heritability of multidi-

mensional traits, as in Yang et al. [50].
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Online Methods

Heritability of multidimensional traits. We start with a brief review of genome-wide

complex trait analysis (GCTA) [33, 34], which makes it possible to estimate the heritability

of univariate traits due to common genetic variants using genome-wide SNP data from

unrelated individuals. Assuming, for the moment, no covariate needs to be adjusted, GCTA

follows a linear random effects model:

y = Wβ + ε, β ∼ N(0, ψ2
βIL×L), ε ∼ N(0, σ2

EIN×N), (1)

where y = [y1, · · · , yN ]> is an N ×1 vector comprising quantitative traits from N individ-

uals,W is theN×Lmean-centered and standardized genotype matrix, β = [β1, · · · , βL]>

is a vector of genetic effect sizes, which are independent across genetic loci and have the

same variance ψ2
β , ε = [ε1, · · · , εN ]> is an environmental factor independent across indi-

viduals with homogeneous variance σ2
E , I is an identity matrix. The covariance structure

of y can be computed as

cov[y] = ψ2
βWW> + σ2

EIN×N := σ2
GK + σ2

EIN×N , (2)

where σ2
G := Lψ2

β is the genetic variance captured by the L common SNPs spanning the

genome, and K := WW>/L is the empirical genetic similarity matrix for each pair of

individuals estimated from genome-wide SNP data W . The SNP heritability of a trait is

defined as h2g = σ2
G/σ

2
P = σ2

G/(σ
2
G + σ2

E), which can be estimated by maximizing the

likelihood of model (1). h2g measures the proportion of phenotypic variance σ2
P that can be

explained by aggregated additive effects of genetic variants in the genome. The subscript g

indicates that the SNP heritability only captures the genetic variation tagged by the common

variants in the data set, and is thus a lower bound for the classical narrow-sense heritability.

We now consider an M -dimensional trait Y = [y1, · · · ,yM ] = [yij]N×M . We model

Y by a multivariate linear random effects model:

Y = WB +E, (3)

where W , as above, is the N × L mean-centered and standardized genotype matrix, B =

[b1, · · · , bM ] is an L×M matrix containing the effect size of each SNP for each trait, and
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E = [e1, · · · , eM ] is an N ×M matrix of environmental factors. We have the following

distributional assumptions:

vec(B) ∼ N(0,ΨB ⊗ IL×L), vec(E) ∼ N(0,ΣE ⊗ IN×N), (4)

where vec(·) is the matrix vectorization operator which converts a matrix into a vector by

stacking its columns, ⊗ is the Kronecker product of matrices, ΨB is the M ×M covari-

ance matrix of the columns of B, and ΣE = [σEij
]M×M is the residual covariance matrix.

The two assumptions indicate that the genetic effect sizes are independent across loci and

the environmental factors are independent across individuals, but both of them can be cor-

related across trait dimensions. When the trait is a scalar, model (3) degenerates to the

classical GCTA model (1).

Using the properties of vectorization and the Kronecker product, the covariance struc-

ture of Y can be computed as follows:

cov[vec(Y )] = cov[vec(WB)] + cov[vec(E)]

= cov[(IM×M ⊗W )vec(B)] + cov[vec(E)]

= (IM×M ⊗W )cov[vec(B)](IM×M ⊗W>) + cov[vec(E)]

= (IM×M ⊗W )(ΨB ⊗ IL×L)(IM×M ⊗W>) + ΣE ⊗ IN×N
= ΨB ⊗ (WW>) + ΣE ⊗ IN×N
:= ΣG ⊗K + ΣE ⊗ IN×N ,

(5)

where in the last equality we have defined the genetic covariance matrix ΣG = [σGij
]M×M :=

LΨB and the empirical genetic similarity matrix K = WW>/L. We note that equation

(5) decomposes the covariance structure of Y into the part that can be explained by genet-

ics, ΣG ⊗K, and the residuals ΣE ⊗ IN×N . We therefore define the SNP heritability of a

multidimensional trait as

h2g :=
tr[ΣG ⊗K]

tr[ΣG ⊗K + ΣE ⊗ IN×N ]
=

tr[ΣG]tr[K]

tr[ΣG]tr[K] + tr[ΣE]tr[IN×N ]

=
tr[ΣG]

tr[ΣG] + tr[ΣE]
=

tr[ΣG]

tr[ΣP ]
,

(6)

where ΣP is theM×M covariance matrix of the columns ofY , tr[·] is the trace operator of

a matrix. The derivation in equation (6) is based on the fact that, for standardized genotype,
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we have tr[K] = tr[IN×N ] = N . This definition computes the proportion of the total

phenotypic variance tr[ΣP ] that can be explained by the total genetic variance tr[ΣG], and

yields a heritability measure that is bounded between 0 and 1. When the trait is univariate,

both ΣG and ΣE become scalars, and equation (6) reduces to the classical definition of

SNP heritability.

Our definition of heritability is invariant to rotations of the data. For a linear transfor-

mation T applied to model (3), i.e.,

Y T = WBT +ET , (7)

the transformed heritability is

h2T =
tr[T>ΣGT ]

tr[T>ΣGT ] + tr[T>ΣET ]
=

tr[ΣG(TT>)]

tr[ΣP (TT>)]
. (8)

When T is an orthogonal matrix satisfying TT> = T>T = IM×M , we have h2T = h2g.

An empirical estimator. Model (3) can in principle be fitted using likelihood-based meth-

ods to obtain estimates of the genetic and residual covariance matrices ΣG and ΣE . How-

ever, this can be computationally expensive and numerically unstable when the dimension

of the trait is moderate and sample size is limited. Here we derive an alternative moment-

matching estimator of ΣG. Specifically, the covariance structure in equation (5) gives the

following relationship:

cov[yr,ys] = σGrsK + σErsIN×N , 1 6 r, s 6M. (9)

Therefore, an unbiased estimate of σGrs can be obtained by regressing the off-diagonal

terms of the cross-product of the mean-centered traits (yr − ȳr)(ys − ȳs)
>, which is an

empirical estimate of the phenotypic covariance matrix of yr and ys, onto the off-diagonal

terms of the genetic similarity matrix K. This estimator is known as Haseman-Elston

regression for the classical heritability analysis [51, 52], and has been extended recently to

handle various study designs including case-control studies, and more generally termed as

phenotype correlation-genetic correlation (PCGC) regression [35]. We explicitly write the
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estimator of σGrs as follows:

σ̂Grs =
1∑
i6=j k

2
ij

∑
i6=j

kij(yir − ȳr)(yjs − ȳs) =
1

s2K

∑
i6=j

[
(Hyry

>
s H) ◦K

]
ij

=
1

s2K

∑
i,j

[
(Hyry

>
s H) ◦Kd

]
ij

=
1

s2K
tr
{
Hyry

>
s HKd

}
=

1

s2K
y>r HKdHys,

(10)

where Kd is the genetic similarity matrix K with all diagonal elements set to zero, H is

a centering matrix with the ij-th entry Hij = δij − 1/N , δij is the Kronecker delta, ◦ is

the Hadamard (element-wise) product of matrices, and we have defined s2K :=
∑

i6=j k
2
ij .

Therefore, it can be seen that an estimator of the genetic covariance matrix ΣG is

Σ̂G =
1

s2K
Y >HKdHY . (11)

We empirically estimate the phenotypic covariance matrix as

Σ̂P =
1

N − 1
Y >HY , (12)

and thus from equation (6) we have

ĥ2g =
tr[Σ̂G]

tr[Σ̂P ]
=
N − 1

s2K

tr[Y >HKdHY ]

tr[Y >HY ]
. (13)

For scalar traits, equation (13) degenerates to the classical Haseman-Elston regression es-

timator.

Interpretation of multidimensional heritability. The estimator of the total phenotypic

variance can be more explicitly expressed as

tr[Σ̂P ] =
1

N − 1
tr[Y >HY ] =

1

N − 1

∑
m

y>mHym =
∑
m

σ̂2
Pm
, (14)

where σ̂2
Pm

is the estimated variance of the m-th component of the multidimensional trait.

Moreover, we have

ĥ2g =
N − 1

s2K

tr[Y >HKdHY ]

tr[Y >HY ]
=

1

s2K

∑
m

y>mHKdHym
/∑

m

σ̂2
Pm

=
∑
m

ωmĥ
2
m, (15)
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where ωm = σ̂2
Pm
/
∑

m σ̂
2
Pm

with
∑

m ωm = 1, and ĥ2m is the Haseman-Elston heritabil-

ity estimate for the m-th component. Therefore, our definition of the SNP heritability of

multidimensional traits is essentially a weighted average of the heritability of individual

components.

The estimator (13) can also be rewritten as

ĥ2g =
N − 1

s2K

tr[Y >HKdHY ]

tr[Y >HY ]
=
N − 1

s2K

tr[HY Y >HKd]

tr[HY Y >H ]

=
N − 1

s2K

tr[HLHKd]

tr[HLH ]
=
N − 1

s2K

∑
i6=j[(HLH) ◦K]ij

tr[HLH ]
,

(16)

where L := Y Y > is a linear kernel matrix that quantifies the phenotypic similarity be-

tween pairs of individuals. The last equality of equation (16) indicates that the estimator

(13) can also be viewed as regressing the off-diagonal terms of the centered phenotypic

similarity matrix HLH onto the corresponding off-diagonal terms of the genetic simi-

larity matrix K, normalized by the total phenotypic variance computed under the specific

similarity metric. This opens the possibility of generalizing the definition of heritability to

generic metric spaces using kernel tricks.

Statistical inference. We now derive the sampling variance of ĥ2g. As pointed out above,

the estimator (13) can be formulated under a regression framework. We follow the ideas of

Visscher et al. [45] and make two assumptions about this regression: (1) The variance of

kij is small and explains little phenotypic variation such that the variance of the residuals is

approximately equal to the variance of the off-diagonal terms of HLH; and (2) the total

phenotypic variance can be estimated with very high precision. Under these assumptions,

we have
var[ĥ2g] ≈

1∑
i>j k

2
ij

var [(HLH)ij]
/
tr2[Σ̂P ]

≈ 2

s2K

1

N2

∑
i6=j

[(HLH) ◦ (HLH)]ij
/
tr2[Σ̂P ]

≈ 2

s2K

1

N2
tr[HLH ]2

/
tr2[Σ̂P ]

≈ 2

s2K

tr[Σ̂2
P ]

tr2[Σ̂P ]
,

(17)
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where in the last but one approximation tr[(HLH)◦(HLH)] is a low order term relative

to tr[HLH ]2 and was dropped. We note that s2K ≈ N2var[kij] and thus the estimator (17)

only depends on the sample size and the phenotypic covariance.

For scalar traits, tr[Σ̂2
P ] = tr2[Σ̂P ], and the estimator (17) degenerates to var[ĥ2g] ≈

2/s2K , which coincides with existing results in the literature [45]. In general, the sampling

covariance matrix Σ̂P is non-negative definite, where µ1 > µ2 > · · · > µM > 0 denote its

eigenvalues. Thus we have

tr[Σ̂2
P ]

tr2[Σ̂P ]
=

∑M
i=1 µ

2
i(∑M

i=1 µi

)2 6 1. (18)

This inequality becomes an equality if and only if rank[Σ̂P ] = 1, i.e., the M traits are

all perfectly correlated. Therefore, combining multiple traits reduces the variability of

heritability estimates relative to analyzing each trait individually.

To measure the significance of a heritability estimate, a p-value can be computed by

conducting a Wald test. Since the null hypothesis,H0 : h2g = 0, lies on the boundary of the

parameter space, the Wald test statistic is distributed as

ĥ4g

var[ĥ2g]
∼ 1

2
χ2
0 +

1

2
χ2
1, (19)

a half-half mixture of χ2
0, a chi-squared distribution with all probability mass at zero, and

χ2
1, a chi-squared distribution with 1 degrees of freedom [53].

Alternatively, permutation inference can be used by shuffling the rows and columns

of the genetic similarity matrix K. For each permutation r = 1, · · · , Nperm, we record

the heritability estimate ĥ2g(r) computed from the permuted data. Then for an observed

heritability estimate ĥ2g, the permutation p-value can be computed as

pperm =
#{ĥ2g(r) > ĥ2g}

Nperm

. (20)

Modeling covariates. When covariates or nuisance variables need to be adjusted, equation

(3) becomes a multivariate linear mixed effects model:

Y = Xα+WB +E,

vec(B) ∼ N(0,ΨB ⊗ IL×L), vec(E) ∼ N(0,ΣE ⊗ IN×N),
(21)
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where X is an N × q matrix of covariates, and α is a q × M matrix of fixed effects.

We employ a strategy described in Ge et al. [54] to remove the effects of covariates and

make the permutation procedure remain accurate. Specifically, the method computes an

N × (N − q) matrix U , satisfying U>U = I(N−q)×(N−q), UU> = P0, and U>X =

0, where P0 = IN×N − X(X>X)−1X>. The matrix U> projects the data from N

dimensional space onto an N − q dimensional subspace:

Ỹ := U>Y = U>WB +U>E := W̃B + Ẽ, (22)

where cov[vec(Ỹ )] = ΣG ⊗ (U>KU) + ΣE ⊗ IN×N . We note that tr[U>KU ] =

tr[KP0] ≈ N − q for unrelated individuals with small genetic similarity. The transformed

model is the same as model (3) and thus all estimation and inferential methods developed

above can be applied.

The Brain Genomics Superstruct Project (GSP). The Harvard/Massachusetts General

Hospital (MGH) Brain Genomics Superstruct Project (GSP) is a neuroimaging and genet-

ics study of brain and behavioral phenotypes. More than 3,500 native English-speaking

adults with normal or corrected-to-normal vision were recruited from Harvard University,

MGH, and the surrounding Boston communities. To avoid spurious effects resulting from

population stratification, we restricted our analyses to 1,317 young adults (18-35 years old)

of non-Hispanic European ancestry with no history of psychiatric illnesses or major health

problems (age, 21.54±3.19 years old; female, 53.15%; right-handedness, 91.72%). All

participants provided written informed consent in accordance with guidelines set by the

Partners Health Care Institutional Review Board or the Harvard University Committee on

the Use of Human Subjects in Research. For further details about the recruitment process

and participants, and imaging data acquisition, we refer the reader to Holmes et al. [36, 37].

Genetic analysis. We used PLINK 1.90 (https://www.cog-genomics.org/plink2)

[55], to preprocess the GSP genome-wide SNP data. Major procedures included sex dis-

crepancy check, removing population outliers, spuriously related subjects and subjects with

low genotype call rate (< 97%). Individual markers that contained an ambiguous strand as-

signment and that did not satisfy the following quality control criteria were excluded from
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the analyses: genotype call rate > 97%, minor allele frequency (MAF) > 1%, and Hardy-

Weinberg equilibrium p > 1 × 10−6. 574,620 SNPs remained for analysis after quality

control. We performed a multidimensional scaling (MDS) analysis to ensure that no clear

population stratification and outliers exist in the sample (Supplementary Figure S3). The

genetic similarity matrix was estimated from all genotyped autosomal SNPs.

Laplace-Beltrami Spectrum based shape descriptor. The intrinsic geometry of any 2D

or 3D manifold can be characterized by its Laplace-Beltrami Spectrum (LBS) [38, 39],

which is obtained by solving the following Laplacian eigenvalue problem (or Helmoltz

equation):

∆f = −λf, (23)

where ∆ is the Laplace-Beltrami operator, a generalization of the Laplacian in the Eu-

clidean space to manifolds, f is a real-valued eigenfunction defined on a Riemannian man-

ifold, and λ is the corresponding eigenvalue. Equation (23) can be solved by the finite

element method, yielding a diverging sequence of eigenvalues 0 6 λ1 6 λ2 6 · · · ↑ +∞.

An implementation of the algorithm is freely available (http://reuter.mit.edu/

software/shapedna). The first M eigenvalues of the LBS can be used to define a

description of the object, which provides a numerical fingerprint or signature of the shape,

and is thus known as (length-M ) “Shape-DNA”.

Shape analysis pipeline. We used FreeSurfer (http://freesurfer.net) [56], ver-

sion 4.5.0, a freely available, widely used, and extensively validated brain MRI analysis

software package, to process the structural brain MRI scans and label subcortical brain

structures. Surface meshes of brain structures were obtained via marching cubes from

FreeSurfer’s subcortical segmentations. We created triangular meshes on the boundary

surfaces for 20 structures. We then geometrically smoothed these meshes and solved the

eigenvalue problems of the 2D Laplace-Beltrami operator on each of these representa-

tions, yielding the LBS-based shape descriptor for these structures [40]. A python imple-

mentation of this pipeline is freely available (http://reuter.mit.edu/software/

brainprint).
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Heritability analyses of neuroanatomical shape. We treated the length-M LBS-based

shape descriptor of each structure as a multidimensional trait and quantified its heritability.

In the case of a closed manifold without a boundary, the first eigenvalue is always zero and

was thus removed from analysis. Theoretical and empirical evidence have confirmed that

the eigenvalues grow linearly and their variance grows quadratically [38, 40]. To avoid that

higher eigenvalues dominate the phenotypic similarity measure, we re-weighted the m-th

eigenvalue for the i-th subject as [38]:

λ̃i,m = λi,m/m, i = 1, 2, · · · , N, m = 1, 2, · · · ,M. (24)

This ensures a balanced contribution of lower and higher eigenvalues on the similarity mea-

sure. The LBS also depends on the overall size of the structure. To measure the genetic

influences on the shape that are complementary to volume, we further scaled the eigenval-

ues as: ˜̃
λi,m = λ̃i,m · V 2/3

i , i = 1, 2, · · · , N, m = 1, 2, · · · ,M, (25)

where Vi is the volume of the structure for the i-th subject. Since scaling the eigenvalues

by a factor η results in scaling the underlying manifold by a factor η−1/2 [38], the normal-

ization (25) ensures that the volumes of the structure are identical across individuals.

We combined the same structure for the left and right hemisphere, and computed the

phenotypic similarity matrix using the re-weighted and scaled eigenvalues in the multivari-

ate heritability analyses. We included age, gender, handedness, scanner group, console

group, and the top five principal components of the genetic similarity matrix as covariates.

To remove potential size effect, we also explicitly including the volume of the correspond-

ing structure as a covariate in the analysis.

The number of eigenvalues incorporated in the LBS-based shape descriptor and the

amount of smoothing applied to the surface mesh are crucial study designs, which might

have an impact on heritability estimates. In particular, incorporating a very small number

of eigenvalues may be insufficient to characterize the shape of a structure, while very large

eigenvalues typically capture fine-scale details, which can be noise and thus might reduce

sensitivity. In this study, we reported results obtained by incorporating 50 eigenvalues in

the shape descriptor and applying 3 iterations of geometric smoothing to the surface mesh.
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We conducted sensitivity analyses and confirmed that in the present shape analysis the

results were largely robust to different parameter settings (Supplementary Figure S1).

Visualizing the principal mode of shape variation. We note that, as shown above, our

definition of the heritability of multidimensional traits is a variance-weighted average of

individual components, and is invariant to the rotation of the trait vector. Therefore, an

equivalent definition of the heritability of a length-M LBS-based shape descriptor is the

variance-weighted average of the heritability of the first M principal components (PCs) of

the descriptor, because principal component analysis (PCA) is essentially a rotation of the

data. The first PC thus explains the greatest shape variation and has the largest impact on

the overall heritability estimate of the shape.

To visualize shape variation along the first PC of the shape descriptor for a given struc-

ture, we first aligned the structures from all subjects to a template, fsaverage, which is a

population average distributed with FreeSurfer [56], using a 7-parameter (global scaling

plus 6-parameter rigid body transformation) registration with linear interpolation. Both in-

dividual structures and the template were represented with binary label maps, where voxels

within the corresponding segmentation label had one and the remainder of the volume had

zero values. The registration algorithm maximized the overlap, measured with the Dice

score [57], between the corresponding label maps (the fixed template and moving subject

which was interpolated and thresholded at 0.5). Note that LBS is invariant to the spatial po-

sition and orientation of an object, and we had normalized the shape descriptor for volume

in all the analyses. Thus this registration has no impact on the results of our heritability

analyses. We then created a sample-specific population average of the structure by com-

puting a weighted average of the interpolated subject images. In particular, each subject

was associated with a weight equal to a Gaussian kernel centered around the mean of the

first PC and evaluated at the subject’s first PC of the shape descriptor. The width of the

kernel was selected such that 500 shapes received non-zero weights. The isosurface of the

resulting probability map at 0.5 was used to represent the average shape of the structure,

and all visualizations were presented on this surface.

The same Gaussian kernel was used to generate average probability images for shapes
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centered at the two extremes (±2 standard deviation or SD) of the principal axis. These

average probability images were offset to achieve identical volumes when thresholded at

0.5. The difference of the two extreme shapes were depicted on the sample-specific popu-

lation average, by visualizing the difference in the probability values. Blue indicated that

the average shape at−2 SD achieved a higher probability value and thus was larger in those

regions than the average shape at the +2 SD. For red regions, the opposite was true.
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