
Fig. 1: Schematic illustrating the rtfbsdb workflow.  Motifs are 
loaded into a CisBP.db object in R using an automated web scraper 
that imports data directly from the Cis-BP database (green).  The 
set of motifs is reduced to those most applicable for analysis (yel-
low, right side) by removing TFs that are not expressed in the cell 
system of interest, and subsequently grouping motifs recognizing 
similar DNA sequences by clustering.  The final set of motifs can be 
used to complete several common tasks in genomics (blue, bottom 
row), including testing a set of DNA sequences for enriched motifs, 
scanning a target genome, or visualizing motifs as sequence logos. 
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Abstract:  Transcription factors (TFs) regulate complex programs of gene transcription by binding to short DNA 
sequence motifs. Here we introduce rtfbsdb, a unified framework that integrates a database of more than 65,000 TF 
binding motifs with tools to easily and efficiently scan target genome sequences. Rtfbsdb clusters motifs with simi-
lar DNA sequence specificities and optionally integrates RNA-seq or PRO-seq data to restrict analyses to motifs 
recognized by TFs expressed in the cell type of interest.  Our package allows common analyses to be performed 
rapidly in an integrated environment.   

Availability: rtfbsdb is available via github (https://github.com/Danko-Lab/rtfbs_db). 

Keywords:  Bioinformatics, Transcription Factor, TFBS identification, Transcriptional Regulation. 

1. Introduction 

Transcription factors (TFs) regulate complex programs 
of gene expression by modulating the rates of several 
steps early in transcription.  TFs bind degenerate DNA 
sequence motifs, typically 3-20 bp, located in regulatory 
regions known as promoters, enhancers, and insula-
tors.  Identifying the coordinates of TF binding motifs 
within the genome is a crucial step in many genomic 
analyses.  However, motif discovery is a challenging 
computational problem owing to the short lengths and 
high degeneracy of TF binding motifs.   

Using experimentally derived sources of TF binding 
is one strategy to improve accuracy by constraining the 
motif discovery problem to known binding sequenc-
es.  This strategy requires extensive knowledge about 
the DNA sequence specificities of TFs, which have his-
torically been time-consuming to measure experimen-
tally.  Recently, high throughput experimental ap-
proaches have allowed the systematic discovery of mo-
tifs for thousands of TFs [1–3].  Moreover, strategies to 
impute binding motifs using TF amino-acid sequences 
extend these resources to most species with a se-
quenced genome [1].  These developments make the 
use of known TF binding motifs a powerful strategy in 
many common applications.  

Here we introduce rtfbsdb, an open-source pipeline 
for transcription factor binding site (TFBS) identifica-
tion and analysis, which integrates experimentally de-
rived TF binding data for thousands of TFs.  Unlike oth-
er TFBS identification tools, rtfbsdb integrates high-
throughput measurements of gene expression for TFs 
associated with each motif.  For downstream TFBS 
scanning and identification, rtfbsdb uses the rtfbs pack-
age [4], a highly flexible and efficient implementation of 
many TFBS scanning tasks.  Many common and com-
plex analyses can be solved by rtfbsdb in as little as a 
single line of R.  We demonstrate rtfbsdb using genomic 
data from the ENCODE project.   

2. Package Description  

Description of the rtfbsdb package 

The rtfbsdb package is an open-source package for R 
which automates many common tasks in TFBS discov-
ery and analysis.  The flowchart for a typical analysis 
using rtfbsdb is presented in Fig. 1.  To begin an analy-
sis, users import a large database of experimentally de-
fined TF binding motifs.  We used the Catalog of In-
ferred Sequence Binding Preferences (Cis-BP) database, 
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Fig. 2: Correlation between motifs with similar DNA binding 
specificities.  A correlation matrix grouping 1,964 motifs recognized 
by human TFs into 625 clusters using an affinity propagation cluster-
ing algorithm.  The color scale represents Perason’s correlation be-
tween the DNA sequence specificity represented by each motif. 

which integrates more than 65,000 motifs from >25 
distinct experimental sources [1].  Cis-BP also includes 
imputed motifs for non-model organisms and for pa-
ralogs of well-characterized TFs.  In addition to Cis-BP, 
rtfbsdb supports motifs from a variety of different 
sources and integrates data seamlessly in R. 

DNA binding specificities are often highly similar 
between different TFs.  Duplicate motifs reduce the in-
terpretability of downstream analyses and can inap-
propriately decrease statistical power when using more 
stringent corrections for multiple hypothesis test-
ing.  We provide tools to focus analyses on motifs that 
are directly suitable for the user’s application.  Many 
analyses benefit from focusing on the subset of motifs 
for which the cognate TF is expressed in the cell type of 
interest.  For this task, rtfbsdb integrates gene expres-
sion data collected using high-throughput sequencing 
approaches, including RNA-seq, PRO-seq, or related as-
says.  Rtfbsdb estimates transcriptional activities of the 
TF associated with each motif in Cis-BP, which contains 
ENSEMBL IDs for each motif, and implements a statisti-
cal test [5] to identify those TFs which are expressed in 
the cell type or tissue of interest.  To remove remaining 
redundant entries from rtfbsdb we cluster motifs based 
on their DNA sequence specificities using an affinity 
propagation clustering algorithm provided in the 
APCluster package [6].  After clustering, the similarities 
between each pair of motifs can be visualized as a 
heatmap (Fig. 2) and images of the motif logos within 
each cluster can be visualized in R or written to disk as 
a PDF file.  The result of these pruning and clustering 
steps is to tailor the repertoire of motifs analyzed for 
the user’s application. 

After reading and filtering motifs, an rtfbsdb object 
can then be used to solve two classes of problem that 
are common in genomics.  First, a common analysis is to 
identify the location of motif matches with a known 
DNA binding specificity across a target genome.  Alt-
hough this challenge is addressed by FIMO [7] and oth-
er applications, a notable advantage of rtfbsdb is that a 
database of experimentally derived motifs is integrated 
directly within the package.  Moreover, our pipeline 
provides users with the option to write the coordinates 
of each motif directly to disk in a highly efficient com-
pressed file format using bedops [8], enabling thou-
sands of motifs to be scanned efficiently across large 
genomes.   

Second, another common analysis task is to identify 
candidate TFs that putatively cause changes in gene 
expression.  We provide tools to rapidly identify motifs 
enriched in test sequences compared to background.  A 
systematic difference in dinucleotide composition be-
tween test and background sequences is the most 

common challenge with such an analysis.  By default, 
rtfbsdb uses a resampling approach to identify back-
ground sequences with a similar distribution of GC con-
tent as test sequences.  Additionally, rtfbsdb identifies 
motifs that are robustly enriched at several motif match 
score cutoff thresholds.  Together, these innovations 
result in more reliable discriminative TFBS identifica-
tion.  To our knowledge, HOMER is the only other pack-
age that allows discriminative TFBS identification using 
experimentally derived TF binding motifs [9].  Com-
pared to HOMER, rtfbsdb provides a larger repertoire of 
motifs, rigorously integrates TF expression levels using 
genomic data, and supports clustering motifs with simi-
lar DNA sequence specificities.  Together, these ad-
vantages are likely to make rtfbsdb a more powerful 
and reliable tool for discriminative TFBS identification 
in many applications. 

Using multiple GC content groups decreases accuracy  

A common step in TFBS identification is to divide loci 
into separate groups based on GC content and use a 
separate background model for each group.  This strat-
egy is assumed to accommodate systematic differences 
in GC content across the genome, and thus improve the 
specificity of motif matches.  However, whether this 
practice results in superior TF binding site predictions 
has not been tested directly.  We created an empirical 
test using publicly available data from the ENCODE pro-
ject to determine whether dividing sequences into mul-
tiple GC content groups improves the accuracy of TFBS 
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Fig. 4: Enrichment of motifs in REST ChIP-seq peaks.  The -log-
10 p-value (Y-axis) as a function of the p-value rank order (X-axis) 
illustrates motifs enriched in ChIP-seq peaks binding the transcrip-
tional repressor REST.  The magnitude of enrichment is shown by 
the color scale and by the size of each point. 
 

0 10 20 30 40 50
Rank Order





Enrichment Ratio

1 50

REST

GATA1

predictions.  We used motif match scores to classify 
high-confidence DNase-I hypersensitives sites (DHS), 
defined as the intersection of DHS discovered using 
Duke and UW assays [10], as bound or unbound to its 
cognate TF.  Chromatin immunopercipitation and se-
quencing (ChIP-seq) peaks from 21 TFs were used as a 
gold-standard set.  Surprisingly, a background model 
constructed using all available sequences performs 
more accurately than dividing sequences into four sep-
arate groups by GC content in almost 90% of cases (Fig. 
3).  For example, identification of GATA2 and CTCF 
binding sites are 8.2% and 8.6% more accurate with 
only one GC content group.  Thus, we conclude that us-
ing a single GC content group results in superior per-
formance for the majority of TFs, and is the global de-
fault in rtfbsdb. 

3. Example 

To demonstrate the utility of rtfbsdb we used motifs in 
Cis-BP to search ChIP-seq peaks discovered by ENCODE 
[11] for TFBS.   We focused on ChIP-seq data profiling 
97 TFs and co-factors in K562 cells.  Forty-one of these 
are not represented by a motif in available databases, 
and these are largely comprised of either transcription-
al co-repressors (e.g., HDAC1, EZH2, and KAP1) or gen-
eral transcription factors (e.g., GTF3C2 and TAF1) 
without intrinsic sequence-specific DNA binding. Of the 
remaining 56 TFs the expected motif was recovered in 
51 cases (91%), and was the most strikingly enriched 
motif in 42 (75%).  For example, the motif correspond-
ing to the transcriptional repressor REST was more 
than 50-fold enriched in ENCODE REST ChIP-seq peaks 
(Fig. 4).  In the 25% of cases where the expected motif 
was not the most enriched, rtfbsdb typically recovered a 
motif corresponding to a known cofactor which likely 
recruits the expected TF to ChIP-seq peaks by protein-
protein interactions, in a process known as tether-
ing.  For example, peaks binding SP1 and SP2 were pri-
marily enriched for NFYA and NFYB binding motifs, 

which represent a known TF tethering interaction 
[12].  Similarly, although EP300 contains a motif in 
CisBP, it is a transcriptional co-activator which is re-
cruited to DNA by other TFs.  We thus conclude that 
rtfbsdb returns the expected motif in real world test 
cases. 
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