














For 19 of the 49 drugs, the total aggregated FI scores of the ground truth features 

were not larger than 0.05, both for the logic models with as well as without the sample-

specific weights (Figure 3c). In these cases, the ground truth features did not explain the 

observed variation in drug response. For 26 of the remaining 30 drugs, the logic models with 

sample specific weights had larger FI scores for the ground truth features versus only 4 for 

the logic models without sample specific weights. Moreover, for 7 drugs, the use of the 

sample specific weights increased the importance of the ground truth features by at least 

0.1. These 7 drugs included the PI3K/mTOR inhibitor BEZ235, 2 BRAF inhibitors and 4 small 

molecule inhibitors that target PDGFRA and KIT mutants, two of which also target FLT3 

mutants, according to the ground truth mapping. Amongst the sensitive cell lines for these 

drugs, those with the smallest IC50s, i.e. the most sensitive ones, indeed harbored mutations 

in the ground truth features. This explains the increased accuracy of the logic models with 

sample-specific weights of retrieving the ground truth features.

The use of sample-specific weights is a prominent feature of LOBICO that sets it apart 

from traditional methods that use binarized data. The results presented in this section

demonstrate that the use of the continuous output leads to more robust and accurate logic 

models.

-

A binary classifier can make two kinds of mistakes: false positives (Type I errors) and 

false negatives (Type II errors). The trade-off between the false positive rate (FPR, 1-

specificity) and false negative rate (FNR, 1-sensitivity) defines the operating point of the 

classifier. The practical application of a binary classifier in any domain is determined by its 

operating point, the prevalence of positives in the population of interest and the costs, 

financial or otherwise, that are associated with false positives, false negatives and the test 

itself.

For example, many medical screening tests, which are relatively inexpensive and 

generally non-invasive, have high sensitivity and are useful for ‘ruling out’ patients that test 

negative. For example, a mammogram to screen for breast cancer has a sensitivity of 80% 

and a specificity of 90% [13]. (It should be noted that periodic screening amounts to a large 

total number of false positives as evidenced by the fact that half of the women screened in 

the US will receive a false positive mammogram in any 10-year period [14].)
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The implementation of LOBICO as an integer programming problem allows one to 

add constraints to ensure that solutions meet predefined statistical performance criteria, 

such as a minimum specificity. We have applied lower bounds on the sensitivity and 

specificity by adding additional constraints to the ILP (see Equations 10 and 11). If a solution 

is found, the corresponding logic model is guaranteed to meet these constraints. By setting 

various lower bounds on the sensitivity and specificity we can probe the receiver-operator-

characteristic (ROC) space. In that way we can uncover logic models possibly employing 

different features at different operating points. Note that this analysis is quite different from 

the classical ROC analysis, where the same model is evaluated with different thresholds on 

the output parameter.

For the 25 drugs with the lowest CV error in the original analysis, we ran LOBICO with 

an array of sensitivity and specificity constraints covering the complete ROC space in 

intervals of 0.05. The optimal solution for each combination of sensitivity and specificity was 

again determined by CV. Note that the inclusion of the constraints could lead to different 

model complexities having the smallest CV error. The Pareto front of solutions is formed by 

the logic models that perform best in terms of the tradeoff between sensitivity and

specificity. This front is equivalent to the ROC curve, although the model at each operating 

point is different. We observed a large variation in the logic models across this curve, both in 

terms of the genes that were present in the models as well as the model complexity 

(Supplementary Data 3). 

Figure 4a depicts the logic models in the ROC space for a single drug: MEK inhibitor 

AZD6244 (brand name Selumetinib), which is currently in clinical trials. Mutations in the 

gene BRAF clearly play an important role in explaining the drug response in the cell line 

panel, since BRAF is found in almost all solutions in the ROC space. The most specific solution

near the bottom-left of the curve (FPR<5%) states that BRAF mutants that neither have a 

CDKN2A nor a TP53 mutation are sensitive to this drug. This high specificity solution can be 

termed a ‘rule in’ solution, because due to the low FPR, cell lines (or, potentially in the 

future, patients) that carry a BRAF mutation but are CDKN2A and TP53 wild-type are very 

likely to respond to this drug. However, this solution explains only slightly more than 20% of 

the sensitive cell lines (true positive rate (TPR)

we observed a 3-input OR solution consisting of BRAF, KRAS and NRAS, the latter two being 

part of the RAS protein family, which is directly upstream of BRAF, MEK and ERK in the MAPK 
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pathway. This solution has a TPR slightly below 60% and a FPR<30%. At the top-right of the 

ROC curve, LOBICO provided a high sensitivity solution (TPR>95%) that did not contain BRAF. 

This 4-input AND model predicts that cell lines that are wild-type (WT) for PIK3CA, RB1, 

STK11 mutations and that do not contain the EWS-FLI1 gene fusion, will respond to the drug. 

Another way to interpret this solution is that cell lines that have a mutation in either PIK3CA, 

RB1, STK11 or that contain the EWS-FLI1 gene fusion are resistant to the drug with a very 

high degree of certainty (FPR<5% for identifying resistant cell lines). This high sensitivity 

solution can be termed a ‘rule out’ solution, as cell lines (or potentially patients) that satisfy 

this rule will most likely not respond to this drug.

Across the 25 drugs, there were 6 inhibitors of MEK or RAF, 2 inhibitors of 

Phosphoinositide 3-kinase (PI3K) and 2 inhibitors of Aurora kinase (AURK). The logic models 

across the ROC space displayed high similarity within these three groups (Supplementary 

Figure 3). Figure 4b, c and d show the average FI scores of the high-specificity (‘rule in’) 

solutions and the high-sensitivity (‘rule out’) solutions. As already observed with the MEK-

inhibitor AZD6244, mutations in BRAF and NRAS are indicative of drug response with high 

specificity for the MEK/RAF inhibitors. Conversely, the high importance scores for wild-type 

RB1 and PIK3CA in the high sensitivity solutions indicate that RB1 and PIK3CA mutants are 

resistant to these inhibitors. These observations fit within the current ideas on oncogenic 

signaling, as mutations in the tumor suppressor RB1 and oncogene PIK3CA can lead to 

uncontrolled cell growth by activating pathways other than the MAPK pathway that these 

inhibitors are targeting [15, 16]. For the PI3K and AURK inhibitors we observed that cell lines 

with a mutation in the transmembrane receptor NOTCH1 are responsive with high 

specificity. KRAS and, noteworthy, PIK3CA mutants remain resistant to these drugs. 

The ability to uncover logic models around predefined operating points is an 

important requirement for practical application of such models. The implementation of 

additional constraints in the ILP formulation of LOBICO enabled us to systematically probe 

the ROC space and uncover logic models for different operating points of interest. To the 

best of our knowledge, LOBICO is the first method to provide this important capability.

Discussion

Generally speaking, classification and regression approaches are primarily focused on 

prediction performance. Today’s state-of-the-art methods use complicated computational 
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frameworks and data transformations to optimize how well the model fits the data. These 

models have little bearing on the mental model of the person using the approach. The 

interpretation of the model, if possible at all, is typically limited to a ranked list of important 

features.

Here, we have presented LOBICO, which, although also optimizing data fit, was

developed specifically to produce models that are intuitively understandable. LOBICO 

generates small and robust logic models of binary input features that explain a continuous

output. These models, which fit with standard formal reasoning, allow a researcher to easily 

assimilate the model with his or her domain. We maintain that the use of interpretable 

models is crucial in any scientific discipline, where researchers, not machines, generate 

hypotheses, gain novel insights and decide on further experimentation.

We have demonstrated LOBICO on a large cancer cell line panel by linking logic 

combinations of gene mutations to drug response. These logic models are easily integrated 

into current thinking based around stratifying patient populations using individual and 

combinations of gene mutations. LOBICO is, however, a general framework that can be 

applied to all research questions that can be described as a mapping from binary input 

features to a continuous output variable. For example, we successfully applied LOBICO to a 

cross of two natural yeast strains, the offspring of which were phenotyped for sporulation 

efficiency (Supplementary Note 2 and Supplementary Figure 4).  Importantly, although 

most (biological) measurements are not binary, they are often amenable to binarization or, 

at least, a binary interpretation. The use of binary variables allows for standard formal 

reasoning. That is, if the relation between variables is described using logic, it can be easily 

understood and reasoned with. We envision that LOBICO has many applications, both

within biology as well as in other domains.

There are certain considerations about the applicability of LOBICO. First, LOBICO 

solves an NP-hard problem (Supplementary Note 3). We observed that the ILP solver can 

quickly traverse the search space of logic combinations when searching for small logic 

models. When looking for large models, on the other hand, the search space quickly 

explodes and it becomes prohibitive to find an optimal solution. However, we generally 

restrict LOBICO from inferring large models as they tend to overfit and are less interpretable.

We note that logic regression (LR) implements another search strategy based on 

simulated annealing, which also achieved a good performance on our dataset 
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(Supplementary Note 4). In comparison, LR cannot guarantee that the obtained solution is 

optimal nor can it incorporate statistical performance constraints, which is the most relevant 

scenario for practical applications.

Second, the number of features and correlation structure within the feature space

have a large impact on the feasibility of finding an optimal solution within a reasonable time. 

Large numbers of features drastically increase the search space. Hence, feature selection 

may be a prudent preprocessing step. When preselecting features, it would no longer be 

guaranteed that the optimal logic model is found. However, experiments on the cancer cell 

line panel show that features employed by the optimal logic model have high importance 

scores both in linear and non-linear regression models (Supplementary Note 5 and

Supplementary Figure 5). Thus, these methods might be useful for feature selection when 

LOBICO is to be applied to datasets with a prohibitively large number of features.

Alternatively, expert knowledge can be used to preselect a smaller set of features. An 

advantage of the latter approach is that these features make sense to the domain experts 

and will lead to more easily interpretable models.

Correlated features are problematic, not only for LOBICO, but for most (sparse) linear 

or non-linear classification and regression models. Highly correlated features are effectively 

interchangeable. In practice, this means that only one feature is selected or that the 

importance in the model is spread across these features. An additional disadvantage for

LOBICO is that the ILP solver will spend a long time deciding which of the correlated features 

should be part of the optimal solution. Also, from the perspective of interpretation,

correlated features can lead to ambiguity and should preferably be dealt with prior to 

performing a LOBICO analysis.

The implementation of LOBICO as an ILP framework offers substantial advantages 

and possibilities.  Using sophisticated ILP solvers, LOBICO traverses the huge search space of 

logic combinations fast enough for application to large datasets involving multiple model 

complexities and cross-validation. An argument against logical analysis is the loss of 

information when binarizing continuous data. The ILP formulation allows LOBICO to retain 

the continuous information in the form of sample-specific weights, which, as an added 

benefit, leads to robust models. Further, constraints guaranteeing predefined statistical 

performance criteria can be easily incorporated into the ILP framework, giving the logic 

models direct practical applicability.
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A straightforward extension includes adjusting the ILP formulation to prioritize or 

even require certain features to be part of the inferred logic model. Also, certain 

combinations of features can be allowed or disallowed in the model. In this way, biological 

networks can be captured by ILP constraints, possibly reducing the search space and leading 

to logic models that reflect network biology. These ideas will be explored in future research.

Methods

We used a slightly expanded version of a previously published cancer cell line dataset 

[10]. Specifically, our dataset contained 714 cell lines and 142 drugs instead of 639 and 130, 

respectively, in the original publication. Although capillary sequencing was performed for 64

genes, our dataset only included the 54 genes for which at least one mutation or copy 

number aberration was found. Additionally, we included 6 known oncogenic gene fusions, 

resulting in 60 mutation features. The drug screening dataset is incomplete, i.e. not all 142 

drugs have been screened across all 714 cell lines. In total 81,700 IC50s were measured and 

19,688 (19%) were missing values. For the large majority of drugs, IC50s were obtained for 

between 600 to 700 cell lines. Since we applied LOBICO to each drug separately, cell lines 

that lack an IC50 were not used. We did not impute missing IC50s. In this work, IC50s were 

recorded as the natural logarithm of the half-maximal inhibitory concentration. 

Complete data and information on cell lines, the binary mutation matrix, drugs and IC50s are 

found in Supplementary Data 2 and 4. Additional information on these data is found in [10, 

17] and on the Genomics of Drugs Sensitivity in Cancer webpages 

(http://www.cancerrxgene.org/).

Binarization thresholds C50s

The binarization threshold for each of the drugs was automatically determined using 

a heuristic outlier procedure, which consists of four steps:

1) Upsampling. For a drug, we gathered the IC50s and their confidence intervals of 

all ( n ) cell lines that were screened for that drug. Then, for each cell line, we took 

the IC50 and the confidence interval and used this to define a normal distribution. 

Specifically, the mean of this normal distribution was the IC50 and the standard 
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deviation was the average difference between the IC50 and the lower and upper 

bound of the confidence interval. We sampled 1,000 data points from this normal 

distribution and repeated that for all cell lines, leading to n000,1 data points in 

total.

2) Density estimation. We performed kernel density estimation on the n000,1 data 

points using as kernel a normal distribution with bandwidth (standard deviation)

0.5. This kernel density estimate, f , is defined on the interval from the minimum 

value of the n000,1 data points, minf , to the maximum value, maxf , and was 

normalized such that   
max

min

1
f

f

dxxf .

3) Modeling the population of resistant cell lines. The population of resistant cell 

lines was modeled as a normal distribution. We used the mode (highest point) in 

f as the mean,  , of this distribution. This choice was based on the expectation 

and previous observation that the large majority of cell lines is resistant to a drug 

[10]. To compute the standard deviation of this distribution,  , we first 

computed the parameter  , which marks the divide between sensitive and 

resistant cell lines.  was computed using the following rules.

i.  is the maximum value, where the derivative f  is zero, i.e.   0 f ,

under the constraints that   ,     ff  8.0 and   


min

05.0
f

dxxf .

ii. If no such value exists,  is the maximum value, where the second

derivative f  is zero, i.e.   0 f , as well as   0 f , again under 

the constraints that   ,     ff  8.0 and   


min

05.0
f

dxxf .

iii. If no such value exists,  was set to minf .

If  is found under rule i., this indicates bimodality in f , i.e. there is another 

peak in the distribution to the left of  , which represents the distribution of 

sensitive cell lines. Similarly, if  is found under rule ii., there is a marked change 

in the slope of f , which points to the distribution of sensitive cell lines. The 

standard deviation,  , is computed as the median distance of all data points 
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within the interval   from  . Finally, the population of resistant cell lines is 

represented by the Normal distribution  2,N , which we denote by g .

4) Evaluating the cumulative Normal distribution to find the binarization threshold.

The binarization threshold, b , is controlled by parameter t . Specifically, b is 

chosen such that the cumulative Normal distribution function at b equals t , i.e. 

 



b

tdxxg . The default setting for t is 0.05. Cell lines with IC50s smaller than b

are called sensitive, whereas cell lines with IC50s larger than or equal to b are 

called resistant.

Supplementary Figures 6, 7 and 8 provide a visual description of the four-step-

procedure to binarize IC50s for three different drugs, where rule i., ii., and iii. were used to 

find  , respectively. Binarization thresholds (for 05.0t ) are found in Supplementary Data 

2.

LOBICO

The goal of LOBICO (Logic Optimization for Binary Input to Continuous Output) is to 

construct a Boolean logic function that optimally maps the binary variables of an input 

dataset to a continuous output variable. LOBICO is an extension to the work of Kamath et 

al.[18], which describes a way to solve the Boolean Function Synthesis Problem (BFSP) using 

integer linear programming (ILP). See Supplementary Note 3 for a description of the BFSP. 

Similarly to the BFSP, LOBICO is an NP-hard problem (also in Supplementary Note 3).

LOBICO has three main inputs:

1. X , a PN  binary matrix with N samples characterized by P binary features

Pxxx ,...,, 21 . The P columns of X are denoted as Pxxx ,...,, 21 .

2. y , a 1N binary vector, which is the binarized version of the continuous output 

variable.

3. w , a 1N continuous vector with weights for each of the N samples.  

LOBICO finds an optimal logic function ̂ that minimizes the weighted sum of 

incorrectly inferred samples: 
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 yyw 


Tminargˆ (1)

where,  )(Xy  is a binary vector with the inferred binary labels. The logic functions 

inferred by LOBICO are in disjunctive normal form (DNF), a generalized logic notation also 

known as the sum-of-products expression. The complexity of a DNF is determined by two 

parameters: K , the number of disjunctive terms and M , the maximum number of selected

features per disjunctive term.

The ILP formulation to find an optimal ̂ given X ,  y , w , K and M employs three

variables: First, selection variables are introduced to determine which variable is part of a 

disjunctive term.






 termedisjunctivth in thenot isif0

 termedisjunctivth in theisif1
kx

kx
s

p

p
pk (2)






 termedisjunctivth in thenot isif0

 termedisjunctivth in theisif1
kx

kx
s

p

p
pk (3)

Second, auxiliary variables Ktt ,...,1 , which are vectors of length N , are used to 

represent the disjunctive terms. Third, the disjunctive terms are combined in the final 

disjunction resulting in the inferred binary output variable y . Figure 5 presents a graphical 

overview of the variables used in the ILP formulation.

The complete ILP formulation is given below. 

   



1:0:

minimize
nn yn

nn
yn

nn ywyw (4)

subject to

1 pkpk ss ,...,KkPp 1,...,1  (5)

  Mss
P

p
pkpk 

1
,...,Kk 1 (6)

    111
0:1:

 


PtsstP nk
xp

pk
xp

pknk
npnp

,...,KkNn 1,...,1  (7)

n

K

k
nkn yKty  

1
,...,Nn 1 (8)
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Following is a brief interpretation of the equations. The objective function in 

Equation 4 is the ILP formulation of Equation 1 and thus represents the weighted sum of 

incorrectly inferred samples, which should be minimized. The constraints in Equation 5

ensure that px and its negation px are not simultaneously part of the same disjunctive term.

The constraints in Equation 6 ensure that the total number of selected features in a 

disjunctive term does not exceed M . Equation 7 encodes the AND-gates that define the K

disjunctive terms. The output of the AND-gate nkt is only 1 for those samples, where the 

binary data in X agrees with all selected features, i.e. 

1:0,1:1  pknppknp spxspx . In that case, the two summations in the middle part

of the equation add up to P , thereby constraining nkt to 1.  Equation 8 encodes the OR-

gate, which combines the K disjunctive terms in the inferred binary output variable y .

Feature

Feature importance (FI) scores are based on the activity measure of variables in 

Boolean networks [19, 20]. The importance score of feature a is defined as:

   yywyyw  TT
aaI (9)

It represents the increase in the weighted sum of incorrectly inferred samples 

(Equation 1), henceforth called error, when comparing the optimal solution )(ˆ Xy  , 

resulting in the error  yyw T , with a̂ , the optimal solution where feature a is left out 

of the model, resulting in the error  yyw a
T .

In practice, leaving feature a out of the DNF is achieved by either setting all values of

a to 1 in the case that feature a is part of a disjunctive term with at least one other feature, 

or setting all values of a to 0 in the case that feature a is the only feature in the disjunctive 

term. Features that are not part of the model (DNF) receive an importance score of 0.

See “Application to the cancer cell line panel” below, where we explain how we 

aggregated feature importance scores across suboptimal solutions, model complexities and 

CV folds to quantify the importance of gene mutations in explaining drug sensitivity. 
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The ILP formulation, which includes both the actual output ( y ) and inferred output (

y ), enables the straightforward implementation of constraints, which guarantee that the ILP

solution meets certain performance statistics (provided that a solution actually exists).

Specifically, we implemented constraints on minimum sensitivity (also called true positive 

rate or recall), minTPR , and minimum specificity, (also called true negative rate or one minus 

the false positive rate), minTNR , as follows:









 



N

n
n

yn
n yTPRy

n 1

min

1:
(10)

   







 



N

n
n

yn
n yTNRy

n 1

min

0:
11 (11)

Note that in Equation 10 


N

n
ny

1
is the number of positives and 




1: nyn
ny is the number 

of true positives. In Equation 11  



N

n
ny

1
1 is the number of negatives and  




0:
1

nyn
ny is the 

number of true negatives.

Using the notion of sample-specific weights (as represented by w ), we defined 

‘continuous’ versions of constraints on the sensitivity and specificity as follows:

   







 



N

n
nn

yn
nn ywTPRyw

n 1

min

1:
(12)

     







 



N

n
nn

yn
nn ywTNRyw

n 1

min

0:
11 (13)

Visualizations of LOBICO solutions in the ROC space using the constraints on the

‘continuous’ sensitivity and specificity are found in Supplementary Data 3.

LOBICO inputs: LOBICO was applied to each drug in the cancer cell line panel 

separately. The three main inputs for each LOBICO analysis were:

1. X , the PN  binary mutation matrix with N cell lines and 60P binary gene 

mutations. N differs per drug as not all drugs have been screened across all cell 

lines. For the large majority of drugs, N is between 600 and 700.
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2. y , the 1N binary vector indicating whether a cell line is sensitive (1) or resistant (0)

to the drug. This vector is obtained by binarizing the continuous IC50s using the 

binarization threshold, which is determined as explained above.

3. w , a 1N continuous vector with weights for each of the N cell lines. w is simply 

the absolute difference between the IC50s and the binarization threshold,

normalized per class:









nm yym
m

n
n bz

bz
w

:
2 (14)

Here, nz is the continuous IC50 of cell line n and b the binarization threshold for 

the drug. The normalization ensures that both classes (sensitive and resistant) have 

the same total weight, i.e. 0.5. Note that



n

nw 1 . In “Use of continuous output 

yields more robust and accurate models”, where we compared to the setup in which 

we did not use the sample-specific weights, 







nm yym

nw

:
12

1
.

Statistical performance constraints: For the analyses described in “LOBICO finds logic 

models around a user-defined operating point”, we systematically varied minTPR (Equation 

10) and minTNR (Equation 11). For all other analyses in the paper, we did not employ the 

statistical performance constraints.

Model complexities: We applied LOBICO with eight different DNF complexities, i.e. 

we used all combinations of natural numbers K and M provided that 4MK (see Table 

1). 

Cross-validation: For each LOBICO analysis in the paper, a stratified 10-fold cross-

validation (CV) strategy was employed.

Feature importance scores: We computed two types of FI scores for the analysis of 

the drug response models: 

1. Model-complexity-specific FI scores. The model-complexity-specific (MCS) importance 

of feature f is the non-zero average of the FI scores of feature f , fI (Equation 9),

obtained from the optimal solution and suboptimal logic models (if any) for particular 

model complexity (K and M ). Often the suboptimal solutions differ only slightly in 

error with respect to the optimal model, but contain different features. (See “Solving 
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the ILP using CPLEX” later in this section that explains how suboptimal solutions are 

found.) This means that the MCS FI score of feature f is the mean FI of f across all 

“good” logic models that contain feature f . Features that are neither part of the 

optimal logic model nor part of any suboptimal logic model get a score of zero. In this 

work, the sample-specific weights were normalized such that errors are between 0 

and 1, with random prediction resulting in an expected error of 0.5 (Equation 14). 

Hence, FI scores are between 0 and 0.5, although the large majority (about 90%) of 

the non-zero FI scores are smaller than 0.05, and only a small portion (about 5%) are 

larger than 0.1. The MCS FI scores were used in the robustness analysis (Figure 3b

and Supplementary Figure 2) and the ROC analysis (Figure 4). They are displayed in 

Supplementary Data 1 and the upper part of Figure 3a.

2. Aggregated FI scores. The aggregated importance of feature f is the non-zero

average of the MCS FI scores of all model complexities that have a CV error equal or

smaller than the CV error for the single-predictor model ( 1K and 1M ).

Calculating the aggregated FI score involves averaging across the logic models based

on all samples as well as the logic models based on the CV training folds. Hence, the

aggregated FI scores provide a more comprehensive view of the importance of

features in explaining the variation in the output variable. The aggregated FI scores

were used in the ground truth analysis (Figure 3c). They are displayed in

Supplementary Data 2 and the lower part of Figure 3a.

ILP

The ILP problems were solved using IBM ILOG CPLEX Optimization Studio V12.4, 

which is freely available for academic use. Importantly, ILP solvers guarantee optimal 

solutions (within a numerically small tolerance). Besides the optimal solution, we collected 

suboptimal solutions using CPLEX’s solution pool. Specifically, up to 25 solutions with a 

relative gap smaller than 0.1 were gathered using the default pool replacement strategy of 

replacing the least diverse solutions. We employed a time limit of 1 hour (3600 seconds) per 

ILP. Less than 1% of the ILP runs did not find the guaranteed optimal solution within this 

time limit (See Supplementary Figure 9). These solutions were all for 2x2 models. In these 

cases we used the best solutions found thus far. All other parameters were set to their 

default values.
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LOBICO is implemented in MATLAB and Python and is available through 

https://github.com/tknijnen/LOBICO.

Figure 1 | Workflow of LOBICO
LOBICO has two main inputs: (1) a binary matrix of samples by features (depicted in the blue
box). Here, the binary matrix contains the mutation status of 60 cancer genes measured 
across 642 cancer cell lines. (2) a continuous vector with a value for each of the samples
(depicted in the orange boxes). In this case, the vector contains the IC50 of each cell line in 
response to Afatinib, an EGFR/ERRB2 inhibitor. The continuous vector is transformed into a 
binary vector and a sample-specific weight vector using a binarization scheme. Particularly, 
the IC50s are binarized using a threshold leading to a set of sensitive and a set of resistant 
cell lines. The distances of the original IC50s to the binarization threshold are represented in 
the weight vector, which is normalized per class. Then, LOBICO finds the optimal logic model 
of features (gene mutations) that minimizes the total weight of misclassified samples (cell 
lines). In this case, the optimal 2-input OR logic formula is ‘EGFR OR ERBB2’ (depicted in the 
white box).

Figure 2 | Multi-predictor models outperform single-predictor models
Scatter plot with the 10-fold cross-validation (CV) error for single predictor models (x-axis) 
and the best (lowest CV error) multi-predictor model (y-axis). Each point represents one of 
the 142 drugs. Multi-predictor models that have a CV error lower than 0.35 and at least a 
25% improvement upon the single predictor model are highlighted in magenta. The two 
examples discussed in the text are highlighted in bold typeface.
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Figure 3 | LOBICO’s use of continuous output leads to robust and accurate models
a) Heatmaps depicting the feature importance (FI) scores across the 60 gene mutations for 
the logic models inferred to explain the drug response to the PI3K/mTOR inhibitor BEZ235. 
The upper heatmap represents FI scores for the 2-input OR model (K=2, M=1) using three 
different binarization thresholds for logic models with binarized output, i.e. not using the 
sample-specific weights. The middle of the three heatmaps represents the same FI scores, 
but for logic models with continuous output, i.e. using the sample-specific weights. The 
bottom two heatmaps depict FI scores aggregated across all model complexities, using the 
standard binarization threshold (t=0.05), for both the logic models with and without the 
sample-specific weights. The labels of the gene mutations with a large FI in any of these 
heatmaps are printed below. The ‘ground truth’ features, i.e. the expected or annotated 
targets of this drug, PTEN and PIK3CA, are printed in bold.  b) Scatter plot with the average 
Pearson correlation coefficients of the similarity of FI scores across the binarization 
thresholds for inferred logic models without (x-axis) and with (y-axis) the sample-specific 
weights. Each point represents one of the 142 drugs. The correlation scores are computed 
using the model-complexity-specific FI scores. The grey bars on top and to the right of the 
scatter plot represent histograms of these correlation scores for models without and with 
the sample-specific weights, respectively. c) Scatter plot with the importance of the ground 
truth features for inferred logic models without (x-axis) and with (y-axis) the sample-specific 
weights. Each point represents one of the 49 drugs, for which ground truth features were 
available. The importance scores of the ground truth features were derived from aggregated 
FI scores.

Figure 4 | LOBICO finds solutions at different operating points
a) ROC space with LOBICO solutions to explain drug sensitivity to the MEK1/2 inhibitor 
AZD6244. Blue crosses indicate the TPR and FPR at which the solution was found. The logic 
formula of the solutions is printed next to the blue crosses. The color of the genes in a
formula indicate their FI. Colors range from black (moderately important) to bright red 
(highly important). For comparison, the best single-predictor solutions are visualized in 
green. Pink arrows point to solutions discussed in the text. The inlay depicts the histogram of 
IC50s for AZD6244 together with the binarization threshold, which divides the cell lines into 
91 cell lines that are sensitive to AZD6244 and 515 that are resistant. b) Average FI scores for 
a group of 6 MEK/RAF inhibitors (including AZD6244), for high specificity solutions (orange) 
and high sensitivity solutions (magenta). High specificity solutions were defined as solutions 
with FPR<10%. Conversely, high sensitivity solutions were defined as solutions with 
TPR>90%. The FI scores of all solutions on the Pareto front (ROC curve) that met these 
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respective criteria across the six drugs were averaged. We distinguished between positive 
terms, indicating mutations (Mut.) and negated terms, indicating wild-type (WT). The two 
genes with the highest average FI score as mutants were printed at the top of their FI bar. 
The two genes with the highest average FI score as wild-types were printed at the bottom of 
their FI bar. c), d) Similar to b), but for a group of two PI3K inhibitors and a group of two 
AURKA/B inhibitors, respectively.   

Figure 5 | 3-layer Boolean circuit representing the structure of the LOBICO ILP formulation
In Layer 1 variables PKss ,...,11 are used to select the inputs ( Pxxx ,...,, 21 ) that are combined 
using a conjunction (AND gate) to create the K disjunctive terms in Layer 2. These 
disjunctive terms (the outputs of the AND gates) are represented by variables Ktt ,...,1 . In 
Layer 3 the disjunctive terms are combined using a disjunction (OR gate) resulting in the 
inferred binary output variable y . This figure is adapted from Figure 2.1 in Kamath et al.[18].

Tables

Table 1 | Overview of the optimal logic model complexity as determined by cross-

validation across the set of 142 drugs. For each of the 8 model complexities (columns 1-3), 

this table states the number of drugs best explained by the indicated model complexity

(column 4), as well an example of one drug, including drug name (column 5), drug target 

(column 6), the optimal logic formula (column 7) and the page in Supplementary Data 1 with 

the standard LOBICO visualization of the inferred logic models for the indicated drug 

(column 8).
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Model complexity Number of drugs 
best explained by 
indicated model 
complexity (%)

Example

K M Description Drug name Drug target Optimal logic model Page in 
SD1

1 1 Single predictor 21 (15%) PLX4720 RAF BRAF 41
1 2 2-input AND 11 (8%) Paclitaxel Microtubules CDKN2A  & TP53 64
1 3 3-input AND 9 (6%) Cytarabine DNA synthesis CDKN2A  & ¬EGFR  & ¬SMAD4 14
1 4 4-input AND 31 (22%) KIN001-102 Akt1 ¬APC  & ¬BRAF  & ¬EGFR  & ¬KRAS 135
2 1 2-input OR 12 (8%) BEZ235 PI3K, MTORC PIK3CA  | PTEN 55
3 1 3-input OR 17 (12%) AZD6244 MEK 1/2 BRAF  | KRAS  | NRAS 60
4 1 4-input OR 23 (16%) Afatinib EGFR, ERBB2 EGFR  | ERBB2  | JAK2  | SMAD4 39
2 2 2-by-2 18 (13%) JQ12 HDAC (CDKN2A  & ¬SMAD4)  |  (¬KRAS  & ¬TP53) 90

–

We investigated the robustness of the logic models across the ten CV training folds 

for each of the 142 drugs. The logic models for a drug were inferred using the model 

complexity (defined by K and M) selected by CV for that drug in the standard setting, i.e. 

with the sample-specific weights and t=0.05. The use of the continuous output resulted in a 

smaller variation in the FI scores across the CV folds (Supplementary Figure 2a). Particularly, 

the FI scores for the logic models across the CV folds had an average Pearson correlation 

coefficient larger than 0.75 for 113 drugs (80%), and 40 drugs (28%) had a correlation larger 

than 0.95. In contrast, for the logic models based on binarized data, there where 89 drugs 

(63%) had a correlation larger than 0.75 and 35 (25%) had a correlation larger than 0.95. 

In comparison to changing the binarization threshold (Figure 3a), we observed that 

logic models inferred from the randomly sampled subsets, i.e. the CV folds, showed more 

variability in the FI scores, and thus a smaller correlation amongst the CV folds. We 

hypothesized that the inclusion or exclusion of samples, especially those far away from the 

binarization threshold, can have a large effect on the optimization function (Equation 1), and 

therefore a large effect on the inferred optimal logic model and the resulting FI scores. To 

test this hypothesis, we compared the similarity between CV folds with the similarity of the 

FI scores derived from the logic models trained on these CV folds. Specifically, for each of the 

142 drugs separately, we computed:
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1. for each pair of the CV training folds, say a and b , the similarity between the 

CV folds a and b in the following manner: 

a. We took w , the 1N continuous vector with weights for each of the 

N samples. w is the absolute difference between the IC50s and the 

binarization threshold, normalized per class  (Equation 14).

b. We created aw and bw , where aw is identical to w , except that all 

samples that are not part of the training set of a are replaced by 0, 

and similarly for bw .

c. As a metric of the similarility between CV folds a and b , we computed 

the Pearson correlation coefficient between vectors aw and bw .

2. for each pair of the CV training folds, as a metric of the similarility of the FI 

scores between the two members a and b , the Pearson correlation 

coefficient between the FI score vectors derived from the logic models trained 

on CV folds a and b .

With the 142 drugs and 10-fold CV strategy, this resulted in 6390
2

10
142 










pairwise correlation scores for the similarity in the weight vectors and 6390 pairwise 

correlation scores for the similarity in the FI scores. We observed a clear relationship 

between these correlation scores (Supplementary Figure 2b). Particularly, pairs of CV folds 

with a small correlation between the weight vectors often had a small correlation between 

the FI scores. We observed that in about 5% of the cases the correlation between the weight 

vectors was quite low, i.e. the correlation coefficient was smaller than 0.7. These are cases, 

where the two CV folds include (and exclude) different samples with extreme IC50s, i.e. 

those far away from the binarization threshold. These ‘important’ samples have large 

weights in the weight vector, and when set to 0 in one of the folds, but not the other, lead to

the low correlation scores between the folds. It is thus not surprising that the logic models 

inferred on these distinct CV folds lead to different FI scores.

This analysis confirmed our hypothesis that the larger variation in FI scores observed 

across CV folds is due to the inclusion or exclusion of samples with large weights, i.e. those 

far away from the binarization threshold. 
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– yeast

We re-analyzed the genetic linking map of a cross of two natural yeast strains, a 

strain isolated from the bark of an oak tree that sporulates at 99% efficiency, and a strain 

originating from a wine barrel that sporulates at only 3.5% [21]. The genetic linkage map 

consists of 225 loci genotyped in 374 segregants. For each of the 374 recombinant offspring, 

the sporulation efficiency was measured as a percentage between 0 and 100. Gerke et al.

[21] used composite interval mapping based on a stepwise regression model to find loci that 

significantly cosegregated with variation in sporulation efficiency, leading to 5 significant 

loci, L7-9, L10-14, L13-6, L7-17 and L11-2 (Table 1 in [21]). Next, a second stepwise 

regression was used to select significant predictors from the five loci and all 2 and 3-way 

interaction terms involving these five loci. The final model included three significant 2-way 

interaction effects and one 3-way interaction effect. All these interactions were comprised 

of combinations of the three most significant individual loci, i.e. L7-9, L10-14 and L13-6

(Table S2 in [21]).

We applied LOBICO to this dataset to evaluate which (logical) interaction effects 

would be uncovered. The genotype information was straightforwardly transformed into 

binary predictor variables: Alleles from the oak strain (wine strain) were set to 1 (0), 

resulting in a truth table with 225n loci and 374p segregants. The sporulation 

phenotype data was binarized by applying a threshold of 50%. Samples were weighted using 

the distance to this threshold. No specificity and sensitivity constraints were applied. We 

employed the eight model complexities also used for the cell line panel analysis, i.e. all 

combinations of K and M with 4MK .

The largest single effect found in Gerke et al., loci L7-9, is also the best single

predictor uncovered by LOBICO (Supplementary Figure 4). The two-input AND model found 

by LOBICO consisted of loci L7-9 and L10-14. This interaction, which is also one of the 2-way 

interaction effects found in Gerke et al. has a much higher specificity and precision than the 

single locus model, although a smaller recall. Many of the offspring with the highest 

sporulation efficiency have both the L7-9 and the L10-14 locus from the oak strain. The best 

model according to CV is a 2-by-2 model, which contains the same three loci as in the 

interaction effects found in Gerke et al., i.e. L7-9, L10-14 and L13-6. (Actually, the LOBICO 2-
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by-2 model contained L13-7 instead of L13-6; they are highly correlated. The fourth feature 

in the 2-by-2 is L7-11, which is highly correlated to L7-9.) Thus, LOBICO finds interactions

between the same three loci as the regression model employed by Gerke et al..

It is important to point out that LOBICO uncovered these interactions using the 

complete dataset of 225 loci, and not by first filtering on individual features as was done in 

Gerke et al.. Surely, the (biological) interpretation of the logic model and the additive linear 

model is quite different. We would argue that the logic model is more intuitive and sensible 

than the linear model.

3–

-complete

The Boolean Function Synthesis Problem (BFSP) is a particular type of Boolean 

Satisfiability Problem, where the goal is to find an algebraic sum-of-products expression for 

an incompletely specified Boolean function    1,01,0:  n . The sum-of-products 

expression is also called a disjunctive normal form (DNF), i.e. a disjunction of conjunctions. 

Each Boolean function can be expression in DNF. An element of the domain of  is called a 

minterm of  . The set of minterms for which  evaluates to 1 (resp. 0) is called the 

set-ON (resp. set-OFF ). An incompletely specified Boolean function is one for which 
n2set-OFFset-ON  . Supplementary Figure 10 displays an incompletely specified 

Boolean function with 10n input variables, 1021 ,...,, xxx and an output variable y .

The number of rows in the Boolean truth table is given by p (

set-OFFset-ON p ), and is 40 in this case ( 10240  ). Note that in most biology 

applications,  is incompletely specified. The sought after algebraic expression is a Boolean 

DNF expression that evaluates to 1 for all minterms in the set-ON ( set-OFF ) and to 0 for all 

minterms in the set-OFF . Formally, the problem is as follows: Given an set-ON and an 

set-OFF of minterms that characterize a Boolean function  , find a DNF of  with 

maximally K disjunctive terms having each maximally M variables. The corresponding 

decision problem is NP-complete [22].

The decision version of LOBICO is as follows: Given inputs X , y , w , K ,M and a 

parameter , does there exist a logic function ̂ expressed in DNF(K ,M ), i.e. a DNF having 

at most K disjunctive terms and M literals, such that the weighted sum of incorrectly 
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inferred samples as described in Equation 1 is less than or equal to  ? Cleary, the problem is 

in NP. It is easily shown that this problem is also NP-complete by the following polynomial-

time reduction from BFSP: Given an instance of BFSP we construct an instance for LOBICO by 

deriving X from the minterms, y from the set-ON and set-OFF and by setting w to 1, i.e. 

nwn 1 . Now, BFSP can be satisfied if and only if LOBICO has a solution with an error of

0 . Since the BFSP decision problem is NP-complete, the LOBICO decision problem is also 

NP-complete.

4–

Logic regression (LR) [3, 4] is a generalized regression methodology that can be 

applied to data with binary predictors, although continuous predictors are also allowed. The 

goal of LR is to find linearly weighted logic combinations of the original predictors that 

explain a continuous response variable or class label. We configured the implementation of 

LR, i.e. the R-package ‘logreg’, such that it infers logic models with a predefined model 

complexity. Specifically, logreg has a scoring function for classification using sample-specific 

weights, which we used to give it the same objective function as LOBICO (Equation 1). Also, 

logreg can be configured to output a single logic model (a tree) with predefined logical 

operators and size. (See below for experimental details.)

We ran LR for each of the 142 drugs in the cancer cell line panel using the model 

complexity (defined by K and M) selected by CV for the associated drug when using LOBICO. 

LR was run on the same computers (Intel(R) Xeon(R) CPU, E5645, 2.40GHz, 6 cores) as 

LOBICO and was given the same amount of CPU time (Supplementary Figure 11a). Then, we 

evaluated the logic formulas inferred by LR. Specifically, we looked at the Jaccard similarity 

of the selected predictors in the inferred LOBICO and LR models. (In computing the Jaccard 

similarity negated terms, e.g. ¬TP53, are treated as separate predictors from their positive 

equivalents.) For models with K=1 and/or M=1, a Jaccard similarity of 1 indicates that the 

exact same logic formula was found. For K=2 and M=2 (the 2x2 models) this is not 

necessarily the case, but we were not able to restrict logreg to output a DNF with K=2 and 

M=2 anyway. For example, for the drug ‘MG-132’ LOBICO inferred the 2x2 ‘(¬MYC & RB1) | 

(¬PIK3CA & ¬TP53)’, whereas LR inferred ‘(((¬TP53) or (RB1 or NOTCH1)) and (¬PIK3CA))’.

The LR model is clearly not a DNF with K=2 and M=2.

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/036970doi: bioRxiv preprint first posted online Jan. 15, 2016; 

http://dx.doi.org/10.1101/036970
http://creativecommons.org/licenses/by-nc-nd/4.0/


Overall, LR found the same (optimal) logic formulas as LOBICO (Supplementary 

Figure 11b). The main exception is the 2x2 model (K=2, M=2), but this is because of the 

reason mentioned above. For the 4-input OR models (K=4, M=1) we observed four cases 

where the logic formulas differed between LOBICO and LR. Upon further inspection, we 

found that in these cases the formula inferred by LR had the same (optimal) error as the 

LOBICO solution. These LR solutions were present in LOBICO’s solution pool, i.e. they were 

part of the set of (sub-)optimal solutions output by LOBICO. (See experimental details 

below.)

In conclusion, when logreg parameters are properly set, LR can find the optimal 

solution when given the same amount of time that was necessary for LOBICO to find the 

optimal solution on the cancer cell line dataset. Potentially, LR finds this solution faster than 

LOBICO on this dataset. It is however important to point out that LR cannot guarantee that 

the obtained solution is optimal, and it is known that ILP solvers spend a long time proving 

that the found solution is indeed optimal. In future work, we will investigate the 

performance of LR and LOBICO on other (larger) datasets, and assess how the two methods 

can be used in parallel to find optimal solutions faster. For example, we will investigate 

whether LR can be used to identify initial starting models for LOBICO.

Importantly, LR cannot incorporate statistical performance constraints, such as 

sensitivity and specificity (Equations 10 - 13), which we assert is the preferred and, in 

practice, most relevant scenario for LOBICO inferences. Additionally, in contrast to LR, 

LOBICO can output the pool of (sub-)optimal solutions, which we used to measure feature 

importance. 

Experimental details: LR was run using the R-packing logreg (version 1.5.8). We used 

simulated annealing as this search algorithm gave the best results. We followed the logreg’s 

documentation to set the upper and lower temperature of the annealing chain based on 

experiments with the cancer cell line panel. The number of iterations was set, such that the 

total CPU time spent on solving the problem was comparable to the CPU time that LOBICO 

needed to find the optimal solution (Supplementary Figure 11a). The simulated annealing 

parameters were set as follows (R-code):

myanneal <- logreg.anneal.control(start = 1, end = -5, iter = 

T*200000, update = T*20000)
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To infer a LR model with the same model complexity as LOBICO, we made sure that 

for 2-, 3- and 4-input AND models only AND operators were allowed. Similarly, for 2-, 3- and 

4-input OR models only OR operators were allowed. For 2x2 models we allowed both AND

and OR operators. The parameters of the logic ‘tree’ shape were set as follows (R-code):

if (K>M) mytreecontrol <- logreg.tree.control(opers=3) else 

mytreecontrol <- logreg.tree.control(opers=2)

if (K==2&M==2) mytreecontrol <- logreg.tree.control(opers=1)

LR was run to output one logic tree (ntrees=1), where the maximum number of 

leaves was set to K x M (nleaves=K*M). In the R-code below Y is y , X is X and W is w as used 

in the Methods Section and Equation 1. LR was run as follows (R-code):  

q<-logreg(resp=Y, bin=X, wgt=W, type=1, select=1, ntrees=1, 

nleaves=K*M,anneal.control = myanneal, tree.control = mytreecontrol)

5–

s

We compared the LOBICO models obtained on the cancer cell line panel with Elastic 

Net [1], a sparse linear regression model, and with Random Forests regression [2], a non-

linear regression model. Specifically, for the 25 drugs with the lowest CV error in the original 

analysis, we compared the model-specific FI scores (of the model complexity selected by CV)

with the regression weights inferred by Elastic Net (EN) and the importance scores inferred 

by Random Forests (RF). 

We observed a large concordance between LOBICO’s FI scores and the EN regression 

weights (Supplementary Figure 5a). In the EN models, the large majority (63%) of all 

regression weights across the 60 features and 25 drugs were 0. Importantly, all of the 

important features according to LOBICO (FI>0.05) had a non-zero regression weight in EN. 

Moreover, the smallest EN regression weight for which the corresponding LOBICO FI was 

larger than 0.05, was 0.2752 (blue line in Supplementary Figure 5a), which was in the tail of 

the EN weights.

Similarly for RF, we observed a high degree of correlation between LOBICO’s FI scores 

and the RF importance scores (Supplementary Figure 5b). The important features according 

to LOBICO (FI>0.05) also had a high RF importance score. The smallest RF importance score 

for which the corresponding LOBICO FI was larger than 0.05, was 0.014, which marked the 

82% percentile of the RF importance scores.
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Experimental details: For EN, we used the MATLAB ‘lasso’ function with an alpha (mix 

between L2 and L1 penalty) of 0.5, 10-fold CV and sample weights w , the 1N continuous 

vector with weights for each of the N samples (Equation 14). For RF, we employed the 

Random Forests implementation for MATLAB v0.02 downloaded from 

http://code.google.com/p/randomforest-matlab/. The RF regression models were run with 

1000 trees each and default settings for the other parameters were used. The reported 

importance scores represent the mean decrease in accuracy. To accommodate the different 

sample weights, we created (for each drug) a dataset of 10,000 samples, which were 

randomly drawn with replacement from the original dataset, where the probability of being 

drawn was proportional to the sample weights in w .

Legends

Supplementary Figure 1 | Multi-predictor models outperform single-predictor models
Scatter plot with the continuous F-statistic for single predictor models (x-axis) and the best 
(lowest CV error) multi-predictor model (y-axis). Each point represents one of the 142 drugs. 
The continuous F-statistic is the defined as the harmonic mean of the continuous recall and 
continuous precision. By analogy to Equations 12 and 13, the continuous recall and 

continuous precision are defined as 
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continuous F-statistic uses the sample-specific weights that LOBICO uses in its optimization 
and is therefore a better performance measure than the standard F-statistic. Similarly, to the 
CV error depicted in Figure 2, the continuous F-statistic was computed on the inferred class 
labels of the samples in the test sets.

Supplementary Figure 2 | Robustness across CV folds
a) Scatter plot with the average Pearson correlation coefficients of the similarity of FI scores 
across the 10 CV folds for inferred logic models without (x-axis) and with (y-axis) the sample-
specific weights. Each point represents one of the 142 drugs. The correlation scores are 
computed using the model-complexity-specific FI scores. The grey bars on top and to the 
right of the scatter plot represent histograms of these correlation scores for models without 
and with the sample-specific weights, respectively. b) Boxplot comparing the pairwise 
correlation of weight vectors between CV folds (x-axis) with the pairwise correlations of FI 
scores between the same CV folds (y-axis). The pairwise correlation of weight vectors were 
binned by rounding the correlation to the nearest decimal. The number of correlations per 
box is indicated below the box.

Supplementary Figure 3 | Feature importance scores for ‘rule in’ and ‘rule out’ solutions
FI scores of 6 MEK/RAF, 2 PI3K and 2 AURKA/B inhibitors (rows) for high specificity (‘rule in’) 
solutions (left) and high sensitivity (‘rule out’) solutions (right). High specificity solutions 
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were defined as solutions with FPR<10%. Conversely, high sensitivity solutions were defined 
as solutions with TPR>90%. We distinguished between positive terms, indicating mutations 
(red) and negated terms, indicating wild-type (blue).

Supplementary Figure 4 | LOBICO results of the yeast cross phenotyped for sporulation 
efficiency
Standard LOBICO visualization of the uncovered logic models for the yeast cross dataset 
(Supplementary Note 2). See Supplementary Data 1 for an explanation of the visualization.

Supplementary Figure 5 | Comparison of feature importance scores between LOBICO, 
Elastic Net and Random Forests
a) Scatter plot comparing LOBICO’s FI scores with EN’s absolute regression weights. These 
scores and weights are derived from inferred models of the 25 drugs with the lowest CV 
error in the LOBICO analysis (Supplementary Note 5). The red line depicts the FI score of 
0.05; features with a FI>0.05 are considered important predictors. The blue depicts the
minimal EN regression weight for which the corresponding LOBICO FI was larger than 0.05. 
b) Similar to a), except LOBICO’s FI scores are compared to RF’s importance scores.

Supplementary Figure 6 | Four-step-procedure to binarize IC50s for Nutlin-3a
a) b) Histogram plot for 
the upsampled distribution c) Visualization of an empirical model (obtained through density 
estimation) of the upsampled IC50s (depicted in blue).  was computed using rule i. (See 
Methods Section for details.) d) Visualization of the model of resistant cell lines (depicted in 
black), from which the binarization threshold b (depicted in orange) is derived.

Supplementary Figure 7 | Four-step-procedure to binarize IC50s for 
Similar to Supplementary Figure 6, except showing the procedure for drug , and 
the use of rule ii to find  .

Supplementary Figure 8 | Four-step-procedure to binarize IC50s for Erlotinib
Similar to Supplementary Figure 6, except showing the procedure for drug Erlotinib, and the 
use of rule iii to find  .

Supplementary Figure 9 | Time needed to find optimal solution
Boxplot of CPU time (y-axis) necessary to find the optimal solution as a function of 

the model complexity (x-axis). Each box is comprised of 142 values, i.e. the time necessary 

for CPLEX to find the optimal solution with the indicated model complexity for each of the 

142 drugs. These experiments were performed on a computer cluster, where each ILP was 

run on one node (Intel(R) Xeon(R) CPU, E5645, 2.40GHz, 6 cores) at a time. 

Supplementary Figure 10 | Example Boolean truth table
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Boolean truth table (black=1, white=0) with 10 input variables 1021 ,...,, xxx and 

output variable y . The DNF expression with 2K and 3M for the truth table depicted is 

below the table.

Supplementary Figure 11 | Comparison of solution time and uncovered logic models 
between LOBICO and logic regression

a) Scatter plot comparing the CPU time needed for LOBICO to find the optimal 

solution (x-axis) and the CPU time given to LR to find the best solution (y-axis). Each of the 

142 drugs is represented by a point. The magenta line is y=x. b) Plot of the Jaccard similarity 

between the LR and LOBICO solutions. Each of the 142 drugs is represented by a point. The 

points are alternately colored in blue and red for visibility. The drugs are grouped based on 

the model complexity (x-axis) for which the LOBICO and LR models were inferred.

Supplementary Data 1 | LOBICO visualization of the inferred logic models for all 142 drugs
PDF with a visualization of the LOBICO results for each drug (pages 8-149). The first 7 pages 
provide a visual explanation of the visualization.

Supplementary Data 2 | Drug information
Tab separated Excel table containing information about the 142 drugs. Specifically, (from left 
to right in the table), information about the drugs (ID, name and target), binarization 
thresholds, ground truth mapping to the gene mutation features, model performance 
statistics of the inferred logic models, and  aggregated feature importance scores for the 
gene mutation features in the inferred logic models.

Supplementary Data 3 | 25 ROC models visual
PDF with visualizations of LOBICO solutions in the ROC space for each of 25 drugs with the 
lowest CV error in the original analysis. Blue crosses indicate the true positive rate (TPR) and 
false positive rate (FPR) at which the solution was found. The logic formula of the solutions is
printed next to the blue crosses. The color of the genes in a formula indicate their FI. Colors 
range from black (moderately important) to bright red (highly important). For comparison, 
the best single-predictor solutions are visualized in green. The inlay depicts the histogram of 
IC50s of the drug together with the binarization threshold.
The PDF consists of 50 pages; each of the 25 drugs is represented by two visualizations: one 
using the standard (binary) definitions sensitivity (or TPR) and specificity (or 1-FPR), and one 
using the weighted definitions of sensitivity and specificity (see Equations 12 and 13). These 
visualizations are similar to Figure 4a. The visualizations are generated automatically; text 
strings are partially overlapping in some cases.

Supplementary Data 4 | Cell line information
Tab separated Excel table containing information about the 714 cell lines. Specifically, (from 
left to right in the table), information about the cell lines (ID, name and description), the 
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binary mutation status of the 60 gene mutation features, and the IC50s for each of the 142 
drugs.
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Correlation of FI scores across CV folds
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