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Abstract

Distant-dependent correlations in spontaneous retinal activity are thought to be
instructive in the development of the retinotopic map and eye-specific segrega-
tion maps. Many studies which seek to investigate these correlations and their
role in map formation record spontaneous retinal activity from different pheno-
types or experimental conditions and compare the distance-dependence of the
correlations between different conditions. They seek to demonstrate that these
correlations differ significantly, and this analysis is often key to the study’s con-
clusions. In this work, we assess the methods of inference which have been pre-
viously used to investigate this problem and conclude that they are inadequate.
We propose a hierarchical Bayesian framework to model distant-dependent cor-
relations in spontaneous retinal activity data and specify a method which uses
the data to specify the form of the model. This model allows us to assess the ev-
idence for/against differences in correlations between experimental conditions
in a more robust and credible way. We demonstrate the use of this method by
applying it to data from two studies of spontaneous retinal activity. We believe
however the framework to be rather more general and that it can be used in a
wide range of datasets where distance and correlation are substitute for other

independent and dependent variables from experiments.
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Introduction

During early development of the visual system, the retina generates sponta-
neous patterns of neuronal activity [22,40]. Pairs of retinal ganglion cells (RGCs)
that are close to each other tend to have highly correlated activity, whereas activ-
ity in pairs of neurons that are a long distance apart (typically over 300-500 pum)
is less correlated [33,166]. This distance-dependence in correlation between pairs
of RGCs is thought to be a cue to help establish topographic maps [65] as when
the distance-dependence correlations are perturbed (e.g. in a mutant mouse)
topographic maps are perturbed [34].

The standard approach [66] used by investigators to assess distance-dependent
correlations is to record spontaneous activity using a multielectrode array (MEA).
For each pair of electrodes in a recording, we then plot the correlation in activity
of the two spike trains as a function of distance separating the two electrodes.
For an MEA with N spike trains, this generates N(N — 1) /2 datapoints which
can be plotted individually (Figure[TJA) or are commonly summarised by fitting
an exponential decaying function to them (Figure [I[B; [66]). By assessing spon-
taneous activity under two different experimental conditions (e.g. wild type vs
mutant) we can then compare their resulting distance-dependence profiles. In
the first example dataset shown in Figure[IB, the two curves seem quite differ-
ent, leading us to conclude that the correlations are quite different. However,
in Figure [IIC, it is harder to discern whether the curves are distinct. Further-
more, sometimes, we may wish to compare more than two curves simultane-
ously (Figure2D) when we have either more than two experimental conditions,
or when there are multiple recordings from each condition.

[Figure 1 about here. ]

In this work, we assess the methods which were used in previous studies
to assess if the correlation-distance relationship differs significantly between
experimental conditions. We argue that the methods which have been pre-
viously used are insufficient given the complexity of the data and result in
misleading conclusions. We propose a flexible modelling framework for data

from these studies which specifies a hierarchical Bayesian model for the data
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which is used to assess the evidence for/against differences in correlation (we
avoid the term “inference” since this is more appropriate in a frequentist frame-
work). We demonstrate its use by applying it to data from two studies of spon-
taneous retinal development. We believe our framework is quite general and
can be applied to a wide range of independent and dependent variables, not
just distance-dependent correlations.

Methods

In this paper we develop a new framework to test whether correlations in spon-
taneous retinal activity differ between two or more experimental conditions. In
our case, the different experimental conditions are genotypic differences in mice
(e.g. wild type versus one line of mutant mouse). Our method involves fitting
a Hierarchical Bayesian model to the data which is then used to assess the evi-
dence for/against phenotype-level differences. Most of the methods section is
devoted to how we fit this model.

In this paper we use the spike time tiling coefficient (STTC) as our mea-
sure of correlation (the dependent variable) as it has been demonstrated to be
highly suited to analysing correlations in spontaneous retinal activity data [15].
For brevity, we refer to the independent variable, electrode separation, as “dis-
tance”. However, we believe that our method can be adapted with minimal
changes to incorporate other combinations of dependent and independent vari-
ables.

Form of the full model

For each recording (of a specified phenotype) the distribution of the correlation
values at a fixed distance is modelled by a probability distribution which we
refer to as the data-generating distribution. This distribution is assumed to be
the same for all distances, recordings and phenotypes (so that all data points
are parametrised identically). The parameters of this distribution (called data-
generating parameters) depend on the distance, recording and phenotype. The

data-generating parameters are specified deterministically by a function (a distance-
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dependence function)which models their distance-dependence whose parameters
(called distance-dependence parameters) depend on the recording and phenotype.
To parametrise all recordings and phenotypes identically this function is as-
sumed to be the same for all recordings and phenotypes, that is the form of the
function is the same but its parameters vary. The distance-dependence parame-
ters for each recording are assumed to be drawn from a probability distribution
(a phenotype-dependence distribution) whose parameters depend on the pheno-
type (phenotype-level parameters).

In the Section “Modelling process” we describe how to use the data to spec-

ify the necessary distributions and functions to obtain precise form of the model.

Alternative models

In addition to the full model described above we also evaluate three alternative
models (Figure 2) to test the assumptions that there are differences between
phenotypes and recordings:

e Model A assumes that correlations depend only on phenotype and not on
recording.

e Model B assumes that correlations depend only on recording and not on
phenotype.

e Model C assumes that correlations depend neither on recording nor on
phenotype.

e Model F is the full model which assumes correlations depend both on

phenotype and recording.
[Figure 2 about here. ]

The mathematical differences in the specification of these models are de-

scribed in Section “Step 3: Model recording- and phenotype-level variation”.
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Modelling process

We use a hierarchical Bayesian model to investigate our data. The form of the
model described previously is encapsulated in the likelihood function. To spec-
ify this, we choose well-fitting data-generating and phenotype-dependence dis-
tributions and distance-dependence functions. There is no reason to assume a
specific form for these, so we use the data to find well-fitting models. The form
of the phenotype-dependence distributions are chosen to be the standard model
for inter-species variation (that observations are normally distributed among
animals of the same species or genotype).

The process of finding the form of the likelihood function, running and test-
ing the model and performing inference can be described in seven steps:

Steps 1-3: specify likelihood function

Step 1: Choose a probability distribution to model the distribution of the corre-
lation values at each distance. We call this the data generating distribution.

Step 2: This distribution will have associated parameters (the data-generating
parameters). Choose functions to model the distance dependence of these
parameters (distance-dependence functions).

Step 3: These functions will have associated parameters (distance-dependence pa-
rameters). Model their dependence on phenotype and recording (specify
the phenotype-dependence distribution and phenotype-level parameters).

Steps 4-7: run model and assess output

Step 4: Specify prior distributions on model parameters.

Step 5: Sample from the model’s posterior distributions. Plot the resulting pos-

teriors.

Step 6: Assess chosen model for goodness of fit, ease of sampling and robust-

ness. Alter the model and repeat if there are issues.

Step 7: Assess evidence for/against differences between phenotypes.
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Figure 3| shows a schematic diagram of steps 1-3 and in the following all

steps are explained in more detail.

[Figure 3 about here. ]

Fitting the likelihood model: Steps 1-3
Step 1: fitting the distance-dependence distribution

Table [1]lists the 21 continuous 1-dimensional distributions which were consid-
ered as candidates for the distance-dependence distribution and which were fit-
ted to the data (the support of the distributions is transformed to encompass the
support of the STTC if necessary). All distributions are fitted using maximum-
likelihood (ML) estimates to the STTC values at each distance of each recording
(i.e. not pooled). Closed-form estimates are used if they exist, if not estimates
were found using a Nelder-Mead algorithm [43]]. The ML estimates are graphi-
cally compared with non-parametric kernel-density estimates of the data’s dis-
tribution (using a Gaussian kernel with width set using Silverman’s rule of
thumb [50]) to eliminate distributions which are poor fits. Remaining plausible
distributions are ranked using the Kolmogorov statistic [35] and the squared
errors between the ML estimates and the kernel-density estimates at a series of
equally-spaced points. Once distributions are ranked in order of fit, their practi-
calities are compared: two-parameter distributions are preferred to three as this
keeps model complexity to a minimum and distributions whose ML parameter
estimates have a small range are preferred (this increases the chances of find-
ing suitable starting values for Markov chain Monte Carlo (MCMC) sampling).
The ranked distributions were tested for the above qualities and, if necessary,
MCMC posterior samples were drawn from the candidate models to inform the
decision. The importance of the trade-off meant that more sophisticated means
of assessing distribution fit, e.g. the Akaike Information Criterion [2] were not
needed. Several distributions were very good fits so the final choice was made

on pragmatic grounds.

[Table 1 about here.]
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Step 2: Fit the distance-dependence functions

The chosen data-generating distribution will have two or three (data-generating)
parameters. All have a location and a scale parameter. The third parameter
varies but is generally related to skewness. Plotting the ML estimates of the lo-
cation and scale parameters shows a distance- dependence (concave monotonic
decay with a decreasing gradient), e.g. Figure @} which is modelled. Functions
are fitted to model the distance-dependence of the scale and location parame-
ters separately. For each parameter the same function is used for all recordings
(so that parameters can be compared across phenotypes). Several candidate
functions are fitted (Table 2) which have a maximum at zero and decay mono-
tonically with increasing separation to a fixed asymptote. Exponential and re-
ciprocal forms are considered for simplicity and because they occur frequently
in the biological and physical sciences. The functions were fitted to the ML
estimates of the data-generating parameters using a generalised least-squares
method.

[Table 2 about here.]

Functions were ranked by fit using the root mean square error (RMSE) for
each recording. A trade-off is necessary between fit and practicality. Functions
with fewer parameters are preferred as are those whose distance-dependence
parameter fits have a small range (as this helps MCMC sampling). In Table
F1-6 are preferred since all parameters have direct biological interpretations: a
- baseline value of correlation outside of waves, b - difference between maxi-
mum and baseline, i.e. the amount of extra correlation in waves and c - decay
parameter, i.e. a measure of the strength of the distance-decay or alternatively,
the extent of the waves. The ranked functions were assessed on their practical-
ities and if necessary MCMC samples were drawn to inform the decision and
a function was chosen. In practice, several functions fitted the data well so the
choice was made pragmatically.

When the chosen data-generating distribution had a third parameter, large
variations in the parameter value were always seen and the form of the distance
dependence was less clear than for the scale and location parameters. Since the
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quantity this parameter represents varies, the fitting procedure could not be
generalised. The parameter was transformed (e.g. logarithmically) to lessen the
variation and clarify its distance-dependence and appropriate functions were
titted on an ad-hoc basis. In practice the fitted distance-dependence parameters
relating to the third data-generating parameter had such large ranges that sam-
pling from their posterior distributions was impractical as it was prohibitively

difficult to find appropriate starting values and convergence times were long.

A note on Steps 1 and 2

It is more commson to fit both the data-generating distribution (sometimes
called the “error distribution”) and the distance-dependence function at the
same time as this ensures that the best fitting model is chosen. This was imprac-
tical for the data sets chosen and the large number of candidate data-generating
distributions and distance-dependence functions, so the two stages were per-

formed separately.

Step 3: Model recording- and phenotype-level variation

The chosen distance-dependence function has a set of distance-dependence pa-
rameters whose dependence on recording and phenotype are modelled. To il-
lustrate this, suppose the Gumbel distribution [26] is the data-generating distri-
bution and the distance-dependence functions for the location and scale param-
eters (any third parameter is considered identically) are F1 and F3 respectively.

Then
STTC ~ G(u,v) (1)
u= wa+pe 1" 2)
v= A+ Be ¢ (3)

where x is the electrode separation.
The distance-dependence parameters are («, B, y) which dictate the value
of the data-generating location parameter and (A, B, C) which dictate the data-
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generating scale parameter (we use this convention throughout). In the full
model (F) the parameter-value for each recording is assumed to be normally-
distributed with a phenotype-dependent mean and standard deviation. We call
these parameters the phenotype-level mean and phenotype-level standard de-
viation.

For instance, if a recording j is of phenotype Z (denoted j(Z)) then its a7

distance-dependence parameter is modelled as:

Xj(z) ~ N(uZ,c?) (4)

Where uZ and 0Z are the phenotype-level parameters. Likewise if recording i is
of phenotype Y then its parameter «;(Y) is drawn from a Normal distribution
with parameters ! and o).

Models A, B and C vary these assumptions. Model A assumes no recording-
level differences i.e.njz) = uZ for all recordings of phenotype Z and Xi(y) = ut
for all recordings of phenotype Y. Model B assumes no phenotype-differences
i.e. aj ~ N(pa, 04) regardless of phenotype. Model C assumes no recording- or
phenotype-differences i.e. a; = i, for all phenotypes.

Step 4: Specifying the priors

The first three steps generate the likelihood function; priors on the phenotype-
level parameters are needed to complete the Bayesian model.

There may be constraints on the phenotype-level parameters which are spec-
ified by the likelihood function. We have no extra knowledge about them, so
we choose an uninformative prior. The size of the model and data sets meant
that it was impractical to perform MCMC sampling without specifying bounds
on the parameters. It was therefore efficient to choose maximum entropy prior
[12] as our uninformative prior, as for a bounded, continuous support, it is the
uniform distribution [30]. In practice, many parameters are naturally bounded
by the range of the STTC and the forms of the likelihood function. For those

which were not, conservative bounds were chosen (see Results).

10


https://doi.org/10.1101/037358

bioRxiv preprint doi: https://doi.org/10.1101/037358; this version posted January 20, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Step 5: Running the model

Models were implemented in Stan [56] and convergence was determined us-
ing the in-built Gelman-Rubin [23] diagnostic test (with values R < 1.1 being
adequately converged [23]) and verified by inspecting trace plots of the sam-
ples. Six separate simulations each generating 15,000 samples were run for each
model to ensure robustness [6]. Depending on the model, convergence required
16,000-50,000 iterations and took between 24 and 100 hours. Twice the number
of iterations required to achieve convergence were used as the burn-in period,
after which, samples were saved. All posterior distributions and synthetic data
shown in Figures were taken from/generated from six merged MCMC chains
each of 15,000 samples.

Step 6: Model assessment

Plots and summary statistics (deciles) of the posterior distributions were com-
pared between simulations to ensure all runs converged to the same distribu-
tions.

Posterior predicative sampling [49] is used to assess the fit of the model:
2000 repeats of draws from the posterior distribution of the model (for each
data point 2,000 synthetic data points are generated from the model using the
distance which corresponds to the data point and sampling from the poste-
rior distributions which match the phenotype and recording of that point) and
summary statistics are compared between data and the synthetic data for each
recording. (One minor issue is that in principle our simulated data can gener-
ate values outside the bounds of possible values [-1,+1] for STTC. However, in
practice, this happens rarely, and so we simply discard those values.) The me-
dian and interquartile ranges are compared since these are not parametrised by
the chosen data-generating distribution (Gumbel) but are close in interpretation
to its scale and location parameters.

The assumption that the phenotype-dependence distribution is normal was
assessed using pivotal density measures [31,[70]. For each parameter (e.g. a), a
draw was made from its posterior distribution from each recording («;) and a
draw was made from the posterior distributions of the corresponding phenotype-
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level mean (1) and standard deviation (X)) where X is the phenotype of record-
ing j. Then

(0 — p) N

o3

d; =

j N(0,1) ()

under the model and is therefore a pivotal density measure [31] and

d=7Y d ~x% (6)

where N is the number of recordings. 2,000 replicates of d were generated and
the distribution compared to the theoretical distribution (formalised tests exist
[70] but were found to be hyper-sensitive).

The robustness of the conclusions to perturbations in the model’s assump-
tions was also tested. Altering the distance-dependence functions was not pos-
sible as this would alter the parameters so a different inference was being made.
Instead, model robustness to the choice of data-generating distribution and
prior is tested by perturbing these distributions and testing if they affected
the resulting inference. The data-generating distribution was perturbed (from
Gumbel) to normal and the prior is perturbed (from uniform) to normal with
a small standard deviation and a mean which is off-set from the range of the
posterior which is obtained using a uniform prior. These perturbed models are
run and assessed as described previously. The perturbations are large (as op-
posed to subtler perturbation methods such as mixture distributions/priors) as
it is important that the conclusions are robust and remain unchanged under
different but still plausible models as this means they are more likely to reflect
something inherent about the system as opposed to being an idiosyncrasy of
one model which happens to fit the data well.

The Watanabe-Akaike information criterion (WAIC) [64] is used to assess the
relative impact of the assumptions made about recording- and phenotype- level
parameters of the model. This criterion accounts for model complexity and is
used to compare the fits of Models A, BC and F.
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Step 7: Assessing evidence for/against differences between phe-

notypes.

Evidence for the existence of phenotype-level differences is obtained by com-
paring the WAIC values of Model F and Model B (which does not model phenotype-
differences but which is otherwise identical to F). If the WAIC value of Model F
is sufficiently lower than that of Model B to provide evidence in favour of Model
F (AWAIC > 5 according to general guidelines [11]) then this is evidence that
there are phenotype-level differences in the data. If this is not the case we ei-
ther conclude that both models are equally parsimonious or that Model B is
preferred and there is no evidence for phenotype-level differences.

In addition to this, we compare the posterior distributions of the phenotype-
level parameters to ascertain in which features the correlations differ (and to
provide further evidence for/against differences between phenotypes). We use
the following ad-hoc test: if the 95% highest posterior density (HPD) regions are
disjoint between phenotypes this is evidence that there are differences between
phenotypes in this feature (parameter).

Presentation of data

In Figures [4, and [11] we use box plots to summarise the data for each phe-
notype (pooled across all recordings of the same phenotype). In all box plots
the “box” consists of the median and first and third quartiles of our data. The
“whiskers” show the largest and smallest values which are 1.5 times the in-
terquartile range outside the box. Points which fall outside the whiskers are

plotted individually as outliers.

Data sets used

We apply the framework described above to two different data sets to demon-
strate its use.
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Data from Xu et al. [69]

This paper compared the spontaneous retinal activity and retinotopic and eye-
segregation maps of wild type mouse and a mutant genotype 2(TG). A correlation-
distance plot was key to the analysis and demonstrated that the f2(TG) mutant

has truncated waves compared to wild type (that is, its correlations decay much
more strongly with distance). We apply the method described previously to this
data set to determine if the correlation-distance profiles differ between the two
phenotypes. The data set is summarised in Figure 4

[Figure 4 about here.]

The data from this paper is freely available from the CARMEN project [21]
and consists of 30 MEA recordings of spontaneous retinal activity, 13 wild type
post-natal day (P) 4 and 17 B2(TG) (P4). Most recordings are over 1,200 seconds.
The spike times are pre-sorted and each recording contains between 40 and 118

separate spike trains.

Data from Blankenship et al. [5]

This paper compared the spontaneous retinal activity and eye-specific segre-
gation in the lateral geniculate nucleus in wild type mouse and two mutant
genotypes Cx45ko and Cx36/45dko which lack either one or two neuronal con-
nexins. A correlation-distance plot was used to demonstrate the differences
in correlations. This data was later re-analysed using the STTC [15] using a
correlation-distance plot (Figure[FJA) from which it was concluded that the cor-
relations do not differ greatly between wild type and Cx45ko, but Cx36/45dko
has lower correlations and weaker distance-dependence than the other two phe-
notypes. The data set is summarised in Figure 4]

The data is freely available as before [21] and consists of five wild type, four
Cx45ko and six Cx36/45dko recordings. Recordings range in duration from
3,130-6,270 seconds and each has between 47 and 111 spike trains.

[Figure 5 about here. ]
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There are three phenotypes in this data set so we can test for evidence of dif-
ferences between phenotypes in general and between two phenotypes specif-
ically. We introduce a new Model G therefore to test for evidence for/against
differences between wild type and Cx45ko. This model is identical to Model
F except that the wild type and Cx45ko phenotypes are considered to be iden-
tical so are described by the same phenotype-level parameters and posterior
distributions. The Cx36/45dko phenotype is considered distinct and modelled
separately. Then, if Model G is preferred to Model F (according to the WAIC)
this is evidence that there are no significant differences between wild type and
Cx45ko.

Results

Distance-dependence of correlations in neural activity are typically assessed
by calculating pair-wise correlations from MEA recordings and plotting cor-
relation as a function of the separation of the electrodes from which the neu-
trons were recorded [66]. Since the distance dependence of these correlations
is thought to be instructive in topographic map formation [65], it is common
to use these plots to compare the distance-dependence of correlations between
different phenotypes/experimental conditions. Visual inspection of these plots
is, in itself, not sufficient to draw robust conclusions as to whether there are dif-
ferences between phenotypes. It is necessary to statistically assess the evidence
for (or against) differences in correlations between phenotypes.

Previously used methods of inference are inadequate

Table 3] lists all studies which compared the correlations of two or more ex-
perimental conditions using the correlation index. Many of them include a
correlation-distance plot, although several plot and compare correlations at only
one distance. The method of inference used in each study is noted, as is the
method used to model the distance-dependence of correlation (if included).
Over half the studies did not use any formalised method of inference and sim-

ply appealed to inspection of the correlation-distance plots to support their con-
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clusion. The remaining studies used standardised significance tests which can
be group according to whether they compare two conditions (student’s t-test,
Mann-Whitney U test, Mood’s Median test) or two or more conditions (one-
way ANOVA and Kruskal-Wallis ANOVA) and whether they assume that the
data is normally distributed (student’s t-test, one-way ANOVA) or do not make
this assumption (Mann-Whitney U test, Mood’s Median test and Kruskal-Wallis
ANOVA).

[Table 3 about here.]

The common feature of these tests is that they only compare the distribution
of the data at one fixed distance and determine whether correlations differ at
that difference. Some studies (e.g. [57]) performed this test at one difference
(usually at zero electrode separation) and others (e.g. [60]) performed them at
all distances.

Given that the distance-dependence of the correlations is the feature which
is implicated in map formation, it is surprising how few studies attempted to
model it. Those that did fitted an exponential decay but did not use this in the
inference. Performing significance tests at one distance or at each distance sep-
arately does not capture the distance-dependence and loses vital information
about the data.

This loss of information is concerning since the differences in the correlation-
distance graphs are often key to the overall conclusion of the paper. A further
piece of information in the data is the variance which is seen between record-
ings of the same phenotype (which can be large, see Figures 4 and 5) is lost as
the data is pooled across recordings at each distance. Since both these factors
are likely to impact the inference, a credible inference must account for both. A
turther limitation of the current approaches is that they cannot distinguish how
correlations differ: a method which can do this could highlight specific features
of the correlation-distance relationship which may be implicated in map devel-

opment.

16


https://doi.org/10.1101/037358

bioRxiv preprint doi: https://doi.org/10.1101/037358; this version posted January 20, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Modelling approach

Since the previous methods used to compare correlations between phenotypes
are problematic, we aim to develop a framework which allows us to assess ev-
idence for/against differences in the correlation-distance relationship between
phenotypes in a credible manner.

We require that such a framework be robust and intuitive. As we wish that
it to be used on MEA data to replace the current standard statistical tests, it is
important that the method we propose requires minimal increases in terms of
conceptual understanding and computational effort. Robustness is important
to ensure that any effect measured represents an underlying biological phe-
nomenon and not an idiosyncrasy of a model which happens to fit the data
well.

We use a Bayesian approach to modelling partly due to the high-profile criti-
cisms of the use of standard frequentist tests in the biological sciences in general
[29] and neuroscience in particular [7], and also because Bayesian modelling al-
lows us to incorporate all relevant information (e.g. inter-recording variance)
in a straight-forward and flexible way. An additional benefit of using Bayesian
analysis in the biological sciences is that relevant information (e.g. from other
studies) can be incorporated into models in the form of the prior distributions.

Previous methods of inference have ignored the distance-dependence of the
correlations and the inter-recording variation, both of which are likely to be key
variables which explain the variations in the data. We therefore fit a Bayesian,
hierarchical model as described in Methods. As far as we are aware, there is no
biological evidence which suggests that the model should take a certain form
(e.g. that correlation values at one distance should be assumed to be normally
distributed or that the distance-dependence is exponential). We therefore fit
a variety of possible distributions and functions of data and compare fits to
choose a final model. In this sense our model is data-driven as opposed to
hypothesis-driven.

The form of the model which we use and the steps taken to fit, run and assess
the model and to evaluate the evidence from the model for/against differences

in phenotypes are presented in Methods. To avoid repetition, the rationale for
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the model is briefly noted in Methods.

Modelling data from Xu et al. [69]
Modelling process

The modelling process and the data set have been described in Methods. The
best-fitting data-distribution was found to be the Gumbel distribution which
has alocation parameter u and a scale parameter v and the distance-dependence
functions F1 and F3 were the best fits to model the distance dependence of u and
v respectively (Figure[6). The full model is therefore:

STTCj(z)(x) ~ Gumbel (uz)(x),vjz)(x)) (7)

where x denotes the electrode separation at which the correlation value is mea-
sured, j is the recording number and j(Z) denotes that recording j is from phe-
notype Z (here the two phenotypes are wild type and B2(TG)). u and v are
the parameters of the Gumbel distribution which depend on the recording (and
therefore the phenotype) and the distance.

[Figure 6 about here. ]
Uj(z)(x) = aj(z) + Bj(zye " ®)
_C. 2
Oj(z)(¥) = Ajiz) + Bjizye” I ©)

The six recording level parameters («;(z), Bj(z), Yi(z), Aj(z), Bi(z)/ Cj(Z)) all
have identical dependence on the phenotype:

Xj(z) ~ N(ug,0f) (10)

Where N is the normal distribution. For brevity we drop the phenotype
indicator from the phenotype-level parameters (o, pg, Hy, Ba, HB, HC) Ous OB,
04,04, 08, 0c), leaving it understood that their values depend on the phenotype
and use color to distinguish between them in the figures.
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The finite range of the STTC ([—1, 1]) and the form of the distance dependence-
functions allows us to put bounds on the ranges of the phenotype-level param-
eters. The range of the STTC implies —1 < u < 1 and from this we deduce
—1 < po < land 0 < pg < 2. p, must be positive (since u decays with dis-
tance) and since the scale of decay is hundreds of micrometers, 0 < u, <1
is a conservative bound. Bounds can be placed on the mean parameters of v
(1a, B, pc) and the standard deviation parameters (0u, 0p, 04,04, 0B, 0c) Us-
ing Popovicius inequality [48] on variances which bounds the variance of any
bounded probability distribution.

This bounds the variance of the STTC:

0<o?<1 (11)
Variance is related to the Gumbel distribution’s scale parameter v by the
following [26]:
2
o2 = %02 (12)
From which the following constraints follow: 0 < pa, up < \/?6. Uc is con-

strained using the same argument used to constrain p, so 0 < pc < 1. The
standard deviation parameters are constrained similarly using Popoviciu’s in-
equality.

MCMC samples from the model are generated as described in Methods us-

ing uniform priors over the bounds of the phenotype-level parameters.

Model assessment

The results of the modelling process are the posterior distributions of all the
model’s parameters. Since we are interested in phenotype-level differences we

only present the posterior distributions of the phenotype-level parameters (Fig-

ure[7).

[Figure 7 about here. ]
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Assessment of the model’s ability to match the data (Figure|8A and B) demon-
strates that the model is able to match the data well. The main cause of dis-
crepancy between the model’s synthetic data and the data is that the stochastic
nature of the model means that it can produce synthetic data with values > 1
which is not biologically feasible as these values fall outside the range of the
STTC [15].

[Figure 8 about here. ]

Assessment of the model’s performance at the recording level (Figure [8C)
shows that the assumption of a normal distribution is sound. pu, is slightly
under-dispersed compared to the theoretical distribution but this is not a con-
cern as there is no reason to suppose the generation of this parameter differs
from that of any other and the model fits the data well.

Assessment of the model’s robustness to both its prior and its assumptions
(Figure [8D) show that the conclusions do not change. The perturbation to the
prior used is strong and yet the posterior distributions produced are almost
identical to those generated using a uniform prior. This implies that the data
dominates the prior which does not have undue effect. The perturbation to the
data-generating distribution shown in Figure 8D is also strong (from a Gumbel
to a Normal distribution). This results in shifts in the posterior distributions (re-
flecting the different parametrisations) however, the inference will not change
since posterior distributions which are disjoint for each phenotype remain dis-

joint and those which overlap, still overlap in the perturbed form.
[Table 4 about here.]

Assessment of the importance of including phenotype-level differences and
recording-level differences on model fit is performed using the WAIC (Table
). Model F is the most parsimonious (best fitting accounting for complex-
ity) closely followed by the model (B) which has recording differences, but no
phenotype level differences. The difference in WAIC between Models F and
B (~ 5.1) is sufficiently large to provide evidence to support the use of Model
F over Model B according to generally-held guidelines [11]. There is a large
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improvement in fit between Model B (recording-differences only) and Model
A (phenotype-differences) only which highlights the importance of including

inter-recording variation in modelling.
[Table 5 about here.]

The posterior distributions of parameters from models which have no recording-
level differences (models A and C) are much more localised than those which
include recording differences (Table [5), making them over-confident in the pa-
rameters’ locations (as has been noted in frequentist statistics [1]). This further

supports the importance of modelling inter-recording differences.

Assessing evidence for/against phenotype-level differences

The difference in WAIC values between the full model and that with no pheno-
type differences (Model B) provides evidence that there are phenotype differ-
ences between correlations (see Methods). The 95% highest-density posterior
(HDP) regions of each of the phenotype-level parameters are then inspected to
determine in which parameters the phenotypes differ. The 95% highest-density
posterior regions are disjoint for the following parameters: p,, y, 4 and op
(Figure [/). This can be interpreted biologically as follows: there is evidence
that wild type and B2(T'G) spontaneous retinal activity differ in the following
respects: the baseline level of correlated firing (lower in f2(TG)), the extent of
the waves - related to the rate of decay of correlations (82(TG) waves are trun-
cated), the variance in the amount of correlated firing outside of waves (lower
in B2(TG)) and the inter-recording variance in the amount of correlated firing
outside of waves (lower in B2(TG)).

Modelling data from Blankenship et al. [5]

To test the generality of our hierarchical Bayesian model, as well as analysing
the data from Xu et al. [69], we then tested how well the model could be applied
to another dataset without further modification of the model. As a validation
set, we therefore chose the dataset by Blankenship et al. [5] primarily because
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it has three phenotypes (one wild type and two mutant genotypes) rather than

just two.

Modelling process

The modelling process and the data set have been described in Methods. The
best-fitting data-distribution was found to be the exponentially modified Gaus-
sian (EMG) distribution with the Gumbel distribution being the next best fit
(Figure [9). The Gumbel distribution was chosen as the data-generating distri-
bution on the basis of the practical considerations described in Methods: the
Gumbel distribution has two parameters and the EMG has three. The third pa-
rameter of the EMG shows great variation and any distance-dependence func-
tion which was fitted had large errors and a large range of distance-dependence
parameters which made sampling difficult.

The Gumbel distribution has a location parameter 1 and a scale parameter v
and the distance-dependence functions. As with the data from Xu et al. [69], F3
was the best fit to the distance-dependence of v. F9 was the best fit for 1, with
F1 being the next best fit (Figure[9). F1 was chosen as the distance-dependence
function since it is preferred as all its parameters have a intuitive biological
interpretation and the range of fitted distance-dependence parameters are large
for F9 (which resulted in problems finding suitable initial values) and small for
F1.

[Figure 9 about here. ]

The full model is therefore as it was for the data from Xu et al. [69] with
the only difference being that the phenotype-level parameters exist for each
of the three (as opposed to two) phenotypes considered. The bounds on the

phenotype-level parameters are the same as those used for that model.

Model Assessment

The results of the modelling process are the posterior distributions of all the
model’s parameters. Since we are interested in phenotype-level differences we
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only present the posterior distributions of the phenotype-level parameters (Fig-

ure [10).

[Figure 10 about here.]

Our model (Figure and B) fits the data well; as with the data from Xu
et al. [69] the main cause of discrepancy is the fact that sampling from the model

occasionally produces STTC values which are > 1.
[Figure 11 about here.]

Assessment of the model’s performance at the recording level (Figure |11/ C)
shows that the distribution sampled from the data is over-dispersed compared
to the theoretical distribution. The posterior distributions of the phenotype-
level parameters are much less localised for this data set than those of the data
from Xu et al. [69] (compare Figures [ and [I0) which means that “extreme”
values are more likely to be drawn which can give large values of the PDM.
While this is not ideal, it is not overly concerning since the model’s ability to
replicate the data is good.

Assessment of the model’s robustness to both its prior and its assumptions
(Figure 11| D) show that the conclusions do not change, even with strong per-
turbations.

[Table 6 about here.]

Assessment of the importance of including phenotype-level differences and
recording-level differences is performed using the WAIC (Table [6). Model B
has the lowest WAIC, implying it is the most parsimonious fit, but the differ-
ence between its WAIC and that of Model F is too small (0.25) to be considered
indicative of a preferred model. The same is true of the difference in WAIC
between models F and G (1.14). This demonstrates that the differences be-
tween recording are key to explaining STTC variance in this data set, rather
than the differences between phenotypes. This is further backed-up by the fact
that there is a large improvement in fit between Models A and C (which have no
recording-level differences) and Models B, F and G (which do have recording
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level differences). In addition the posterior distributions of Models A and C are
highly localised compared to those of Models B, F and G (Table /) meaning that
these models would be over-confident in the location of the parameter.

[Table 7 about here.]

Assessing evidence for/against differences between phenotypes.

The difference in WAIC values between Models B, F and G are so small as to
provide no evidence that there are differences between phenotypes. This is fur-
ther supported by the fact that the 95% highest-density posterior (HDP) regions
are not disjoint between phenotypes for any of the phenotype-level parameters
so we conclude that there is no evidence for phenotype-based differences in this
data set. This goes counter to the previous conclusions, based upon visual in-
spection only, that the wild type and Cx45ko correlations are similar, and that

the Cx36/45dko is distinct from the two other distance-dependent correlations.

Discussion

This work has investigated the methods of inference used to decide if the correlation-
distance relationship of spontaneous retinal activity differs between experimen-
tal conditions. Less than half of all publications which contained a correlation-
distance plot tested for the significance of their conclusions and the remaining
publications used standard frequentist tests. We argued that these approaches
are problematic and proposed a framework for Bayesian modelling and infer-
ence on the correlation-distance relationship. To demonstrate its use we applied
it to two data sets Xu et al. [69] and Blankenship et al. [5]. We find evidence
that the distance-dependence of correlations differs between the wild type and
B2(TG) phenotypes in the data from Xu et al. [69] (this is in line with previous
conclusions based on visual inspection). We find no evidence that the distance-
dependence of correlations varies between the three phenotypes (wild type,
Cx45ko, Cx36/45dko) considered in the data from Blankenship et al. [5]. This

runs counter to previous conclusions based on visual inspection (that there were
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differences in correlations between phenotypes) and demonstrates the need for
thorough statistical analysis of the distance-dependence of these correlations in

order to draw robust conclusions.

Insights from analysis of data

Our analysis provides evidence that wild type and p2(TG) phenotypes from Xu
et al. [69] differ in the extent of the wave (rate of decay of correlation), the level
of correlated firing outside of waves and the variation in correlations outside of
waves. The data from Blankenship et al. [5] showed no evidence for differences
between the three phenotypes (wild type, Cx45ko and Cx36/45dko): although
the posterior distributions of Cx36/45dko were offset from the other two phe-
notypes (in general), the long tails prevented differences being found by our
ad-hoc test which compared overlap of highest posterior density regions.

The results from Xu et al. [69] data broadly confirm the intuition from the
correlation- distance plots but the results from Blankenship et al. [5] demon-
strate that inspection of the correlation-distance plots can be misleading: the
summary statistics (median and IQR) mask the large inter-recording variance
and there is a tendency to concentrate on the median values and ignore the
effects of variance which leads to the conclusion that there are differences be-
tween Cx36/45dko and the other two phenotypes. Our analysis framework
models the full complexity of the data and demonstrates that these differences
are not significant.

The long tails of the posterior distributions in the Blankenship et al. [5] data
are an impediment to our ad-hoc test since HPD regions overlap despite clear
differences in the posteriors. These tails may be due to a greater amount of
variance across the data in all respects (making it hard to localise posteriors) or
due to the small number of recordings per phenotype Xu et al. [69] has 13 and
17 recordings per phenotype, Blankenship et al. [5] has 4,5 and 6).

The Cx36/45dko mutant shows defects in eye-specific segregation, but the
analysis did not show significant differences in correlations between this and
wild type. Three possible explanations are: firstly, that features which are not
measured in this model are responsible for the formation of eye-specific segre-
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gation. Secondly, that the Cx36/45dko mutant is different from the other two,
but the amount of data available is insufficient to give sufficiently localised pos-
teriors to distinguish this. Thirdly, that the weight of evidence which we require
to demonstrate that there is a difference is more stringent than that which is re-
quired for eye-specific segregation (i.e. the biological system is more sensitive
than our framework). Without more data it is difficult to be more specific.

The choice of model

The framework is flexible and can be used to fit models to other data sets. The
same model was fitted to both data sets considered here which implies that it
may capture some inherent features of the correlation-distance relationship and
is a reasonable starting point for performing inferences on other data sets (al-
though the assumptions should be checked and the model altered if necessary).

Itis not surprising that exponential decay was chosen as the distance-dependence
function: it is a relationship which occurs frequently in the biological world.
The choice of the Gumbel distribution is unlikely to have any physical relevance
to the system as, despite it fitting the data well (and being the most pragmatic
choice), there are discrepancies between it and the data (e.g. it has a fixed skew,
but the skew of the data varies).

The form of the fitted model was useful as it has bounded parameters mak-
ing computational time reasonable and convergence unproblematic. This may
not be the same for other models. Using the STTC also helped bound parame-
ters, but the approach can be used with any measure of correlation. The model
and model fitting is flexible: the number of variables can be increased to con-
sider any number of phenotypes, ages and experimental conditions.

This work highlights the importance of using hierarchical modelling to cap-
ture inter-recording variations within phenotypes. Models which ignored these
(A and C) were poor fits to the data with over-confidence in the parameter lo-
cations and the model with recording-level and no phenotype-level differences
(B) fit the data almost as well as (data from Xu et al. [69]) or as well as (data from
Blankenship et al. [5]) the full model. The distance-dependence of the correla-

tions is key to their differences and so the results from our framework are more
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credible than those which ignore this and inter-recording variation or inspection
alone. The framework has two further advantages: Bayesian analysis is more
informative than a hypothesis test alone (posterior distributions as opposed to
point-estimates) and the fact that the models parameters have a physical inter-
pretation so the features of the correlation which differ can be investigated, as
opposed to just if they differ in some (unknown) respect. We believe that the
method is sufficiently intuitive and pragmatic to be useful in practice and that
the improvement in the results is worth the extra complexity.

It should be noted that this method assesses the evidence for mathemati-
cal/statistical differences which is different from assessing evidence for biolog-
ical significance: the systems sensitivity to changes in correlation is unknown
and our definition of significant could be more or less stringent than that which
the visual system can discern. This is true for much of experimental biology
[32,41] evidence for a difference between phenotypes does not imply that this
difference has a biological significance but it demonstrates that it exists and is
unlikely to be caused by chance.

Wider applicability

In addition to a Bayesian framework, the methods of inference used in this pa-
per differ from those previously used in that we model the variation between
recordings of animals of the same phenotype as opposed to pooling across phe-
notypes. Data where multiple measurements are taken from the same object are
described as “nested”. Nested data is very common in neuroscience (e.g. neu-
ron morphology studies) and also in the wider biological sciences (e.g. in ge-
netics, families are not genetically independent and in medicine, patients can be
considered as nested by hospital). In a recent large literature review of eighteen
months of all molecular, cellular and developmental articles in Science, Nature,
Cell, Nature Neuroscience and (every first monthly issue of) Neuron, at least
53 % of 314 articles used nested data, but all of these studies used conventional
statistical analyses (e.g. t-test on pooled data) which failed to take account of
the nested nature of the data [1].

Pooling nested data violates the common statistical assumption that obser-
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vations are independent and leads to a large increase in the false positive rate
of standard statistical tests [1]. This is a contributing factor to the recently-
raised high-profile concerns about the contamination of neuroscience literature
by false positives [7, 29, 44]. Frequentist hierarchical (also called “fixed-effects”)
models can be used to accommodate nested data and analogies to the standard
frequentist tests can be used which may be adequate for some data sets, how-
ever we believe a Bayesian approach to be more appropriate for our data set
due to its flexibility and the very natural way of incorporating multiple-levels.

The expense and time involved in neuroscience investigations means that it
is advantageous to make as many recordings as possible from each subject and
the number of techniques where this is common practice is large. This is decid-
edly not limited to analysis of MEA data, nor electrophysiological recordings.
Aarts et al. [1] identify the following non-exhausting list of techniques where
nested data is frequently collected: analysis of immunofluorescence signal in-
tensity in slices, optogenetics, super-resolution microscopy, immunogold cyto-
chemistry and optophramcology. There is, in general, a caveat that the number
of recordings from each unit must be sufficiently large for multi-level recording
to be robust (otherwise these techniques are not helpful). As a rule of thumb this
is given to be about five observations per unit [37, 51], which is much smaller
than the number of observations per unit in the data sets considered here (of
the order 1,000).

Conclusions

We believe that the framework outlined in this work offers a substantial im-
provement on previously used methods of inference and is more robust and
credible than frequentist hypothesis tests as its specifies a model for the correlation-
distance relationship which was previously ignored and as it accounts for the
(often large) inter-recording variations within phenotypes. As it is able to high-
light features of the correlation-distance relationship which differ between phe-
notypes it should help form a more detailed understanding of the role of corre-

lations in map development.
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Figure 1: Determining if two experimental conditions differ based on in-
spection of graphical summaries is difficult and insufficiently rigorous.
A: Synthetic data from two different experimental conditions. Ten measure-
ments of a dependent variable are shown at nine different values of an in-
dependent variable for two experimental conditions. Is there a difference in
the dependent variable between the two experimental conditions? B: Data
from A summarised by mean (at each value of the independent variable)
and + one standard deviation (s.d.). Whilst this may aid visual clarity, in-
formation is lost and conclusions drawn on the basis of visual inspection
alone may be misleading. Visual inspection of A and B shows that a differ-
ence in observations between the two conditions is likely since there is no
overlap of points at any distance (and no overlap of error bars). It is diffi-
cult to judge whether there is a difference in the dependence on the inde-
pendent variable between the two conditions. C: A different synthetic data
set is summarised as per B, such that this time it is less obvious whether the
two populations differ e.g. there is partial overlap of error bars. D: A third
synthetic data set is summarised (mean =+ s.d.). Multiple recordings exist
from each experimental condition (three recordings from condition 1 and
two from condition 2). Here, it is difficult to judge whether the two popula-
tions differ since there is a large variation between recordings. Our aim in
this paper is to develop an objective method for deciding if two populations
vary where there are multiple recordings and where there is a dependence
on an independent variable.
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Figure 2: Diagrammatic representations of the four models considered.
Simplifying models (A-C) are used to test importance of key assumptions
in the full model (F). Model F consists of four levels. At the data-generation
(bottom) level the STTC values are modelled as being drawn from a speci-
fied data-generating distribution H with data-generating parameters (u, v)
which depend on the distance (x), the recording and the phenotype of the
STTC value. At the next (distance-dependence) level the data-generating
parameter values are specified deterministically by a distance-dependence
function (f,g) which depends on the distance and which is parametrised
by a set of distance-dependence parameters which depend on the recording
(and in turn on the phenotype). At the next (recording) level the distance-
dependence parameters for each recording are drawn from a phenotype-
dependence distribution which models the variation between animals of
the same phenotype. The final (phenotype) level specifies the phenotype-
level parameters of the phenotype-dependence distribution. These param-
eters are assumed to be phenotype dependent, i.e. there is a separate value
for each phenotype. Models A-C differ only in their assumptions about
recording- and phenotype-level dependencies (i.e. the data-generating dis-
tribution and distance-dependence functions remain unchanged). Model
A assumes no variations between recordings (i.e. distance-dependence pa-
rameters are identical for all recordings of the same phenotype). Model
B assumes no phenotype-level variation (phenotype-level parameters are
identical for all phenotypes). Model C assumes no recording or phenotype-
level dependencies (i.e. distance-dependence parameters are identical for
all recordings and phenotypes). 38
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Figure 3: Schematic of model fitting procedure. Step 1: A probability dis-
tribution () is chosen to model the distribution of STTC values at a fixed
distance (assumed to be the same for all distances, recordings and pheno-
types). The visualisation of the mean + standard deviation from the wild
type data at 800 um is isolated and rotated. The “rug plot” (vertical lines)
show the value of individual data points. Above this, the chosen probability
distribution H is drawn. This is captured by a set of parameters (here u and
v) which depend on distance, recording and phenotype. Step 2: we model
the distance-dependence of u and v (separately) as a function (assumed
identical for all recordings and phenotypes) which is parametrised by a
set of parameters which have a physical interpretation. e.g. the distance-
dependence of u can be parametrised by «, the baseline value of the curve, B,
the range of the data: the difference between its maximum value and «, and
7, the gradient i.e. decay constant of the curve. The distance dependence of
v can be modelled similarly. Step 3 models the dependence of («,5,7,A,B,C)
on recording and phenotype. Parameters for each recording are drawn from
a normal distribution (the model for variation between recordings of the
same phenotype) with mean and variance which are different for each phe-
notype (the model for phenotype-variation).
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Figure 4: Exploratory analysis of STTC data from Xu et al. [69].A: Mean
and =+ standard deviation of STTC values pooled across recordings by phe-
notype at each recorded distance. B: Boxplots (as described in Methods) of
the wild type and B2(TG) STTC values pooled across recordings by pheno-
type at a subset of all possible distances (every 100 um). C: The number of
STTC values at each distance for all recordings (each recording contributes
one point at each distance). D: Mean values of STTC at each distance for
all recordings. E: Standard deviation of STTC values at each distance by
recording. F: Skewness of STTC values at each distance by recording.
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Figure 5: Exploratory analysis of STTC data from Blankenship et al. [5]. A:
Mean and =+ standard deviation of STTC values pooled across recordings
by phenotype at each recorded distance. B: Boxplots (as described in Meth-
ods) of the wild type, Cx45 ko and Cx36/45dko STTC values pooled across
recordings by phenotype at a subset of all possible distances (every 100 um).
C: The number of STTC values at each distance for all recordings (each
recording contributes one point at each distance). D: Mean values of the
STTC at each distance for all recordings. E: Standard deviation of STTC
values at each distance by recording. F: Skewness of STTC values at each
distance by recording.
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Figure 6: Maximum likelihood (ML) fits of the data-generating distribu-
tion and least-squares (LS) fits of the distance-dependence functions to
data from Xu et al. [69]. A: Non-parametric kernel density estimates (solid
lines) of the data-generating distribution at a subset of all recorded distances
(every 100 um) in one wild type recording. Rug plots at bottom show the
STTC values being smoothed. The ML fits of the chosen data-generating
distribution (Gumbel) are shown as dotted lines, and the ML estimates of
the distribution’s parameters (1 and v) are written in the top-right corner. B:
One B2(TG) recording shown in same format as A. C,D: Plots of the ML fits
of the location u and scale v parameters of the Gumbel distribution (points)
at all recorded distances for the wild type recording used in A (C) or B (D).
The least-squares fits of the distance-dependence functions (F1 for u, F3 for
v; Table 2) are shown as lines.
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Figure 7: Posterior distributions of the phenotype-level parameters for
Model F with Xu et al. [69] data. Parameters are modelled separately for
each phenotype and the posterior distributions of each are plotted. Param-
eters are grouped according to whether they relate to location (1) or scale
(v) parameter of the Gumbel distribution and if they set the mean or the
variance across recordings. The biological interpretation of each parameter
(which feature of the correlation-distance graph it relates to) is noted at the
side. Posterior distributions were generated as described in Methods (Step
5). The dotted lines denote the 95% highest density region for each curve.
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Figure 8: Assessment of Model F of data from Xu et al. [69]. A: Box plots
comparing data and synthetic data generated using posterior predicative
sampling. Data (recorded and synthetic) is pooled across all recordings by
phenotype (left: wild type, right: f2(TG)). A sub-set of all recorded dis-
tances is shown (every 100 um). B: Median and interquartile range of data
(indicated by solid line and bars) from two recordings (left: wild type, right:
B2(TG)) and synthetic data (indicated by dotted lines and shading). In Pan-
els A and B for each recorded STTC value, a synthetic data point is gener-
ated with the same phenotype, recording and distance. C: Pivotal density
measures (PDM; see methods, Step 6) for each phenotype-level mean pa-
rameter. Histograms of 2,000 PDM replicates are plotted along with the the-
oretical distribution (x? with 28 degrees of freedom; two recordings were
removed as outliers). D: The posterior distributions of the phenotype-level
mean parameters (Methods, Step 5) of Model F are plotted along with poste-
rior distributions from two perturbed models where either data-generation
distribution was assumed to be normal, or where the prior distributions
were assumed to be normally distributed [y, ~ N(0,0.5), pg ~ N(1,0.5),
Uy, e ~ N(0.25,0.25), pa, up ~ N(0.5,0.5)].
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Figure 9: Maximum likelihood (ML) fits of the data-generating distri-
bution and least-squares (LS) fits of the distance-dependence functions
to data from Blankenship et al. [5]. Panels as per Figure [f] but with
three pheonotypes: one wild type (A,D), one Cx45 knockout (B,E) and one
Cx36/45 double knockout (C,F).
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Figure 10: Posterior distributions of the phenotype-level parameters for
Model F of data from Blankenship et al. [5]. Panels are as in Figure
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Figure 11: Assessment of Model F of data from Blankenship et al. [5]. Pan-
els are as described in Figure |8, with the following differences. A: Data is
shown for each of the three phenotypes (left - wild type, center - Cx45ko,
right - Cx36/45dko). B: Data is shown for three recordings, one from each
phenotype (order as in A). C: The theoretical distribution of the PDM is
x> with 14 degrees of freedom (as two recordings were removed as out-
liers). D: Prior distributions for the model with perturbed priors were as-

sumed to be normally distributed [y, ~ N(0.05,0.5), g

~ N(0.75,0.5),

1y ~ N(0.1,0.25), 4 ~ N(0.3,0.25), ug ~ N(0.4,0.25) ,uc ~ N(0.1,0.1)].
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Normal Skew normal Cauchy
Exponentially modified Gaussian Logistic Gumbel
Student’s t Chi-square Log-normal
Gamma Inverse gamma Weibull
Rayleigh Pareto Pareto type II
Uniform Beta Frechet
Inverse chi-square Scaled inverse chi-square exponential

Table 1: The 21 continuous one-dimensional distributions considered as
data-generating distributions.
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Function Form

number

F1 a—+ be™*
F2 be=*
F3 a+ be— ¥
F4 be—c*
F5 a+ be—ex'?
Fé6 be—cx'’?
F7 a+ (chrx)
F8 G
F9 a-+ c fxz)
F10 ﬁ
F11 a+ W
F12 =)

Table 2: List of functions which were considered as possible distance-
dependence functions of the scale and location parameters of the data-
generating distribution. Functions are referred to by the identifier in col-
umn one.
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Inference type Modelling

No inference

Wong et al. [66] Linear regression on log CI
Butts and Rokhsar [8]

Demas et al. [16] Exponential fit

+ 95% confidence intervals
Cang et al. [10]
Bjartmar et al. [3]
Demas et al. [18]
Sun et al. [59]
Godfrey et al. [25]
Godfrey and Eglen [24] Exponential fit
Stafford et al. [55]
Hennig et al. [27]
Ding et al. [20]
Xu et al. [68]
Xu et al. [69]
Speer et al. [53]
Blankenship et al. [5]
Blank et al. [4]
Chabrol et al. [13]
Dhande et al. [19]
Soto et al. [52]
Demas et al. [17] Exponential fit
Kirkby and Feller [33]
Cain et al. [9]
Eglen et al. [21]
Lee et al. [36]
Maccione et al. [38] Exponential fit

Student’s t-test

McLaughlin et al. [42]
Wang et al. [63]
Huang et al. [28]
Speer et al. [54]

Xu et al. [67]

Mann-Whitney U test

Stasheff [57]

Sun et al. [60]
Zhang et al. [71]
Stasheff et al. [58]

Mood’s Median Test
Torborg et al. [62]

One way ANOVA +
Fisher’s PLSD Post-hoc test

MacLaren et al. [39]

Kruskal-Wallis ANOVA +
Dunn’s Post-hoc test

Personius and Balice-Gordon [45]
Torborg et al. [61]

Personius et al. [46]

Personius et al. [47]]

Chiang et al. [14]

Table 3: Publications using the correlation index to compare conditions
grouped by method of inference. Bold headings denote the type of signifi-
cance testing used. The publication is listed in column 1; column 2 notes the
method, if any, for modelling the distance-dependence of the correlation.
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Model WAIC

F -197999.3
B -197994.2
A -183034.5
C -148433.7

Table 4: WAIC values for each model, listed in increasing order, of the Xu
et al. data [69].
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Parameter | Model A Model B Model C Model F
™ 52‘2VTTG) 8:8887 0.02 0.001 g:g;
1 [ZZ‘EVTTG) 8:8; 0.1 0.02 g:g
Hoy [SZ‘EVTTG) 8:888; 0.04 0.0004 g:ggg
Ba prrc) | ooos 0% 0001 oo
1B ,BZV(VTTG) 8:8(1)7 0.02 0.006 g:g;
MC pa(rc) | oooonon ©00003 0000001 g il

Table 5: Widths of 95% highest posterior density (HPD) regions for Mod-
els A-F on Xu et al. data. The HPD widths of all phenotype-level mean
parameters are shown for each model. For models A and F where the pa-
rameter is phenotype-level dependent, the HPD widths for both wild type
and B2(TG) are given. Models B and F include a recording-dependence
and appear in bold. Narrower HPD regions indicate higher confidence in
the location of the parameters. Widths are given to one significant figure,
sufficient to compare widths among models.
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Model WAIC

B -95166.33
F -95166.08
G -95164.94
A -79468.68
C -79279.73

Table 6: WAIC values for each model, listed in increasing order, of the
Blankenship et al. data [5].
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Parameter Model A Model B Model C Model F Model G
WT 0.005 0.1 0.05
pe  Cxd5ko | 0.004 0.04 0.005 0.2 :
Cx45/36dko | 0.01 0.1 0.09
WT 0.04 0.6 04
KB Cx45ko | 0.04 0.4 0.02 0.7 .
Cx45/36dko | 0.02 0.3 0.3
WT 0.0006 0.008 0.002
Ky Cx45ko0 | 0.0005  0.002 0.0005  0.005 :
Cx45/36dko | 0.002 0.006 0.006
WT 0.003 0.03 o1
HA Cx45ko | 0.002 0.05 0.001 0.03 :
Cx45/36dko | 0.002 0.1 0.1
WT 0.01 0.1 0.09
HB  Cx45k0 | 0.02 0.1 0.01 0.2 :
Cx45/36dko | 0.01 0.09 0.09
WT 0.000002 0.00002
HC  Cx4S5ko | 0.000003 0.00002  0.000003 0.00002 °-00001
Cx45 /36dko | 0.00001 0.00004  0.00004

Table 7: Widths of 95% highest posterior density (HPD) regions for Mod-
els A-G for the Blankenship et al. data. Data are shown as per Ta-
ble BlFor models (A and F) where the parameter is phenotype-level de-
pendent, the HPD widths for both wild type, Cx45ko and Cx45/36dko
are given. Model G assumes that wild type and Cx45ko are indistinguish-
able, so only two phenotypes appear. Models (B, F and G) where there is
recording-dependence appear in bold.
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