
 

We suggest that plant-derived cellulose biomaterials offer one potential approach for the 

production of implantable scaffolds. This approach is complementary to bacterial 

cellulose strategies which have demonstrated clear utility as well [66,69–

71,73,80,83,102,106,112–115]. However, plant derived materials are cost effective to 

produce and are extremely straightforward to prepare for implantation, exhibit clear 

biocompatibility, an ability to retain their shape while supporting the production of 

natural extracellular matrix and most importantly, the promotion of vascularization. In 

our previous work we have shown that the scaffolds can also be functionalized with 

proteins prior to culture in vitro. Such work will also be conducted in the future in order 

to explore the use of scaffold surface functionalization with growth factors and matrix 

proteins to promote the invasion of specific cell types, further minimize the early immune 

response and promote maximal vascularization. Moreover, the cellulose scaffolds can 

easily be formed into specific shapes and sizes, offering an opportunity to create new 

tissues with specific geometrical properties. Although there are numerous new avenues of 

research to follow, we have been able to demonstrate that acellular cellulose scaffolds are 

biocompatible in vivo in immunocompetent mice and might be considered as a new 

strategy for tissue regeneration.  
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FIGURE LEGENDS: 

 

Figure 1: Cellulose scaffold preparation. Macroscopic appearance of a freshly cut 

apple hypanthium tissue (A) and the translucent cellulose scaffold biomaterial post-

decellularization and absent of all native apple cells or cell debris (B). H&E staining of 

cross sectioned decellularized cellulose scaffold (C). The cell walls thickness and the 

absence of native apple cells following decellularization are shown. The 3D acellular and 

highly porous cellulose scaffold architecture is clearly revealed by scanning electron 

microscopy (D). Scale bar: A-B = 2mm, C-D = 100μm. 

 

Figure 2: Cellulose scaffolds implantation and resection. The subcutaneous 

implantations of cellulose scaffolds biomaterial were performed on the dorsal region of a 

C57BL/10ScSnJ mouse model by small skin incisions (8 mm) (A). Each implant was 

measured before their implantation for scaffold area comparison (B). Cellulose scaffolds 

were resected at 1 week (D), 4 weeks (E) and 8 weeks (F) after the surgeries and 

macroscopic pictures were taken (control skin in C). The changes in cellulose scaffold 

surface area over time are presented (G). The pre-implantation scaffold had an area of 

26.30±1.98mm
2
. Following the implantation, the area of the scaffold declined to 

20.74±1.80mm
2
 after 1 week, 16.41±2.44mm

2
 after 4 weeks and 13.82±3.88mm

2
 after 8 

weeks. The surface area of the cellulose scaffold has a significant decrease of about 

12mm
2 

(48%) after 8 weeks implantation (* = P<0.001; n= 12-14). 
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Figure 3: Biocompatibility and cell infiltration. Cross sections of representative 

cellulose scaffolds stained with H&E and anti-CD45. These global view show the acute 

moderate-severe anticipated foreign body reaction at 1 week (A), the mild chronic 

immune and subsequent cleaning processes at 4 weeks (B) and finally, the cellulose 

scaffold assimilated into the native mouse tissue at 8 weeks (C). Higher magnification 

regions of interest (D-F) allow the observation of all the cell type population within 

biomaterial assimilation processes. At 1 week, we can observe populations of 

granulocytes, specifically; polymorphonuclear (PMN) and eosinophils that characterize 

the acute moderate to severe immune response, a normal reaction to implantation 

procedures (D). At 4 weeks, a decreased immune response can be observed (mild to low 

immune response) and the population of cells within the epidermis surrounding scaffolds 

now contain higher levels of monocytes and lymphocytes characterizing chronic response 

(E). Finally, at 8 weeks, the immune response has completely resorbed with the 

epidermis tissue now appearing normal. The immune response observed with H&E 

staining is confirmed using anti-CD45 antibody, a well known markers of leukocytes (G-

I). The population of cells within the scaffold are now mainly macrophages, 

multinucleated cells and active fibroblasts. Scale bars: A-C = 1mm, D-F = 100μm and G-

I = 500μm. 

 

Figure 4: Extracellular matrix deposition. Cross sections of representative cellulose 

scaffolds stained with Masson’s Trichrome (A-C). After 1 week post-implantation, the 

magnification of region of interest in (A) show the lack of collagen structures inside the 

collagen scaffold (D, G). As fibroblast cells start to invade the scaffold, collagen deposits 

inside the cellulose scaffold can be sparsely observed after 4 weeks (E, H). Concomitant 

with the observation of activated fibroblast (spindle shaped cells) inside the cellulose 

scaffold, collagen network is clearly visible inside the cavities after 8 weeks (F, I). Scale 

bars: A-C = 1mm, D-F = 100μm and G-I = 20μm. * = collagen fibers; black arrows = 

cellulose cell wall; white arrow = fibroblast. 

 

Figure 5: Vascularization and Angiogenesis. Macroscopic observations of blood 

vessels directly in the surrounding tissues around the cellulose scaffold (A). Confirmation 
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of angiogenesis within the cellulose scaffold by the observation of multiple blood vessel 

cross sections in H&E staining (B) and Masson’s Trichrome staining (C) micrographs. 

The angiogenesis process was also confirmed with anti-CD31 staining to identify 

endothelial cells within the cellulose scaffold (D). Scale bars: A = 1mm, B = 50μm and 

C-D = 20μm. White arrows = blood vessels. 
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Figure 1 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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