










In	conclusion,	we	introduce	DPT	as	a	pseudotime	measure	that	overcomes	the	deficiencies	
of	existing	approaches:	it	is	able	to	deal	with	branching	lineages	and	identifies	metastable	or	
steady	states,	it	is	statistically	robust,	and	its	computation	can	be	scaled	to	large	datasets	
without	dimension	reduction.		Compared	to	Wanderlust6,	which	has	been	proposed	for	the	
lower-dimensional	mass	cytometry	data,	we	replaced	approximate	and	computationally	
costly	sampling	of	shortest	paths	by	the	exact	and	computationally	cheap	average	over	
random	walks	in	eq.	(1).	Compared	to	Monocle5,	which	works	on	RNA-seq	data	but	only	
after	dimension	reduction	and	on	medium	sample	numbers,	DPT’s	average	over	all	random	
walks	is	significantly	more	robust	than	Monocle’s	minimum	spanning	tree	approach	(Fig.	2e).	
	
In	 the	 future,	 robust	 computation	 of	 pseudotimes	 will	 allow	 inferring	 regulatory	
relationships	 with	 much	 higher	 confidence	 than	 based	 on	 perturbations	 alone15,	 and	 we	
expect	DPT	to	allow	scaling	this	to	genome-wide	models.	Recently	pseudotemporal	ordering	
has	 been	 applied	 to	 cell	 morphology	 to	 identify	 cell	 cycle	 states20	 –	 here	 diffusion	
pseudotime	would	allow	inclusion	of	branching	for	example	to	identify	cells	switching	into	a	
quiescent	 state	 as	 well	 as	 comparison	 to	 time-lapse	 microscopy	 via	 universal	 time.	 To	
summarize,	 diffusion	 pseudotime	 provides	 a	 powerful	 and	 robust	 tool	 to	 order	 cells	
according	to	their	state	on	differentiation	trajectories	in	single-cell	transcriptomics	studies.	
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Online	Methods	

Overview	of	DPT	algorithm	
0) (Initialization)	inputs	the	following:	

a. The	n	by	G	data	matrix	
b. One	(or	several)	root	cell(s).	
c. Diffusion	maps	options	“classic”	or	“locally	scaled”	and	respectively	the	

parameters	“θ”	(kernel	width)	or	“κ"	(numberof	nearest	neighbours	for	
adjusting	the	kernel	width).	

1) Computes	the	transition	matrix	T.	
2) Builds	the	accumulated	transition	matrix	M	and	computes	diffusion	pseudotime	with	

respect	to	the	specified	root.	If	several	roots	are	defined,	DPT	averages	the	
pseudotime	for	each	cell	y	over	these	roots.	

3) DPT	iteratively	assigns	cells	to	branches	and	subbranches.	DPT	groups	the	cells	for	
each	branch	and	provides	diffusion	pseudotime	for	each	group.	

	
Diffusion	pseudotime	
We	calculate	 the	diffusion	maps	 transition	matrix	T	 and	 its	 right	and	 left	eigen-vectors	ψ!	
and	𝜑! .	It	then	computes	the	accumulated	transition	probabilities	over	all	numbers	of	time	
steps.	

M = 𝑻! = (𝐼 − 𝑻)!! − 𝐼   where     𝑻 =  T - ψ!𝜑!! .   
!

!!!

	

This	 is	done	 relative	 to	 the	steady	state	𝜑! ,	which	stores	no	 information	about	dynamics.	
Fixing	a	known	root	cell	x	as	start	of	the	dynamical	process	of	interest,	Diffusion	pseudotime	
of	cell	y	is	defined	as	a	density	weighted	L!	norm	

dpt(𝑥,𝑦) =  𝑴 𝑥, . −𝑴 𝑦, . ! !!
.	

Further	details	are	given	in	Supplementary	Sec.	3.		
	
Branch	assignment	
We	find	the	cell	y	with	the	maximal	dpt	distance	from	the	root(s)	x	and	also	another	cell	z	
which	has	maximal	distance	to	x	and	y:	

z = argmax!!  dpt 𝑧′, 𝑥 + dpt 𝑧′,𝑦  .	

If	the	manifold	is	branching,	then	as	defined	y	and	z	will	provide	cells	at	two	different	tips	of	
two	branches.	
DPT	 then	obtains	 two	orderings	Oy=dpt(.,y)	 and	Oz=dpt(.,z)	 and	determines	 the	 cutoff	 cell	
until	which	the	sequence	of	ordered	cells	in	Ox		(call	them	Xi),	Oy	and	Oz	become	maximally	
correlated	using	Kendall’s	rank	correlation.	DPT	thus	assigns	cells	Xi	to	the	branch	of	x.			
DPT	 treats	 y	 and	 z	 as	 root	 of	 the	 subbranches	Yi	 and	 Zi	 respectively	 and	 in	 a	 similar	way	
searches	 for	 new	 subbranches	 within	 each	 branch.	 Further	 details	 are	 provided	 in	
Supplementary	Sec.	4.	
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Metastable	states	
The	 pseudotemporal	 ordering	 of	 cell	 populations	 reflects	 gradual	 and	 switch-like	 changes	
along	a	certain	branch.	Highly	similar	cells	have	small	distance	in	the	gene	space	and	a	high	
probability	to	be	reached	by	a	random	walk	as	defined	by	the	transition	matrix	T.	Then,	the	
difference	in	pseudotime	between	such	cells	is	small,	i.e.,	the	density	of	the	distance	to	the	
root	 cell	 dpt(r,.)	 increases	 at	 sites,	 where	 highly	 similar	 cells	 are	 found.	 In	 particular,	
developmental	 steady	 states	 have	 high	 densities	 in	 the	 pseudotime	 measure,	 but	 these	
accumulation	sites	are	not	sufficient	to	depict	a	steady	state.	However,	these	accumulation	
sites	are	not	sufficient	to	depict	a	steady	state.	
 
Detecting	transcriptional	changes	
To	 identify	 the	 succession	 of	 switch-like	 transcriptional	 changes	 revealed	 by	 the	
pseudotemporal	 order	 in	 qPCR	 data,	 we	 computed	 an	 approximate	 derivative	 of	 the	
smoothed	 gene	 expression	 level	 along	 branch	 1.	 A	 switch-like	 change	 is	 defined	 as	 the	
maximum	in	the	derivative	(details	in	Supplementary	Sec.	7.2).	
 
Differential	expression	analysis	
We	employed	a	two-part,	generalized	linear	model	that	allows	to	quantify	the	proportion	of	
cells	 expressing	 a	 certain	 gene	 as	 well	 as	 the	 mean	 expression	 level,	 a	 modified	 Hurdle	
model1.	 Briefly,	 the	 model	 has	 two	 parts:	 A	 discrete	 part	 to	 decide	 whether	 a	 gene	 is	
expressed	and	a	continuous	part	using	a	normal	distribution	if	the	gene	is	expressed.		Then,	
a	 likelihood	 ratio	 test	 is	 used	 to	 identify	 differentially	 expressed	 genes	 (details	 in	
Supplementary	Secs.	5	and	7.3.	and	Finak	et	al1).		
 
ESC	qPCR	Data	
We	 reanalyzed	 a	 single-cell	 qPCR	 dataset	 (normalized	 version	 with	 3934	 cells,	 42	 genes)	
focusing	on	early	blood	development2.	For	each	gene,	the	limit	of	detection	(LOD)	was	the	
average	Ct	value	for	the	last	dilution	at	which	all	six	replicates	had	positive	amplification.	The	
overall	LOD	of	25	for	the	gene	set	was	the	median	Ct	value	across	all	genes.	Raw	Ct	values	
and	 normalized	 data	 can	 be	 found	 in	 Supplementary	 Table	 7	 of	 Moignard	 et	 al2.	 Gene	
expression	was	subtracted	from	the	limit	of	detection	and	normalized	on	a	cell-wise	basis	to	
the	mean	 expression	 of	 the	 four	 housekeeping	 genes	 (Eif2b1,	Mrpl19,	Polr2a	 and	Ubc)	 in	
each	 cell.	 Cells	 that	 did	 not	 express	 all	 four	 housekeeping	 genes	 were	 excluded	 from	
subsequent	analysis,	as	were	cells	for	which	the	mean	of	the	four	housekeepers	was	±3	s.d.	
from	 the	mean	 of	 all	 cells.	 A	 dCt	 value	 of	 −14	was	 then	 assigned	where	 a	 gene	was	 not	
detected.	85–90%	of	sorted	cells	were	retained	 for	 further	analysis.	Gata2	did	not	amplify	
correctly	 and	HoxB3	was	 not	 expressed	 in	 any	 cells,	 so	 these	 factors	 have	 been	 excluded	
from	the	analysis.		The	analyses	were	done	on	the	dCt	values	for	all	transcription	factors	and	
marker	genes,	but	not	housekeeping	genes.	
	
DropSeq	data	
We	reanalyzed	a	single-cell	RNA-seq	data	set	using	the	dropSeq	protocol	 from	Klein	et	al3.	
Here,	single	cells	along	with	a	set	of	uniquely	barcoded	primers	were	capture	in	tiny	droplets	
and	sequenced.	The	capabilities	of	 this	 technique	were	demonstrated	using	an	undirected	
differentiation	process	of	mouse	embryonic	stem	cells	upon	leukemia	inhibitory	factor	(LIF)	
withdrawal.	The	data	 set	 is	publicly	available	under	 the	GEO	accession	number	GSE65525.	
Count	data	were	normalized	by	 library	size	and	 log10	transformed	(see	Supplementary	Sec.	
8.1).	We	 corrected	 for	 cell-cycle	 and	 batch	 effects	 using	 scLVM4	 on	 	 2044	 highly	 variable	

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 29, 2016. ; https://doi.org/10.1101/041384doi: bioRxiv preprint 

https://doi.org/10.1101/041384
http://creativecommons.org/licenses/by-nc/4.0/


genes	 (see	 Supplementary	 Table	 3	 in	 Klein	 et	 al3).	 Then,	 diffusion	map	with	 local	 density	
rescaling	 (Supplementary	 Sec.	 2)	 visualizes	 the	 temporal	 order	 for	 all	 cells.	 Hierarchical	
clustering	 was	 performed	 in	 R	 (http://www.r-project.org/)	 using	 the	 hclust	 package	 on	
quantile-normalized	 data	 (Supplementary	 Sec.	 8.2)	 and	 displayed	 with	 ComplexHeatmap	
package,	 where	 the	 distance	 was	 defined	 as	 1	 –	 correlation	 between	 all	 samples	
(Supplementary	Sec.	8.3).	In	addition,	we	performed	a	rank	sums	test	on	the	first	side	branch	
to	identify	genes	being	uniquely	different	from	initial	pluripotent	and	late	epiblast-like	cells	
(Supplementary	Sec.	8.4).	
	
Concordance	of	pseudotime	with	time	labels	
We	subsampled	sets	of	 	~70%	of	data	and	 for	each	set	performed	Wanderlust5,	Monocle6	
and	DPT	pseudotime	orderings.	 Since	Monocle	does	not	perform	on	very	 large	number	of	
cells	(>103),	we	reduced	the	subsampling	to	700	cells	when	necessary.	The	concordance	for	
each	 subset	was	 then	measured	 as	 Kendall	 tau	 correlation	 of	 each	 pseudotime	with	 time	
labels	 of	 that	 subset.	 We	 then	 performed	 a	 t-test	 and	 calculated	 p-values	 between	 the	
histogram	of	the	concordance	measure	for	Wanderlust	and	Monocle	compared	to	the	DPT	
pseudotimes.	The	result	is	shown	in	Fig.	2f	of	the	main	text	and	Supplementary	Table	3.	 
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