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• Current address: LIRMM, Bâtiment 5 - 860 rue de St Priest 34095 Mont-
pellier cedex 5.

• Phone: +33/0 467 14 97 00

• E-mail address: guindon@lirmm.fr

Keywords: population genetics, structured coalescent, demographic inference.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/042135doi: bioRxiv preprint 

guindon@lirmm.fr
https://doi.org/10.1101/042135
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Understanding population dynamics from the analysis of molecular and spa-
tial data requires sound statistical modeling. Current approaches assume that
populations are naturally partitioned into discrete demes, thereby failing to
be relevant in cases where individuals are scattered on a spatial continuum.
Other models predict the formation of increasingly tight clusters of individuals
in space, which, again, conflicts with biological evidence. Building on recent
theoretical work, we introduce a new genealogy-based inference framework that
alleviates these issues. This approach effectively implements a stochastic model
in which the distribution of individuals is homogeneous and stationary, thereby
providing a relevant null model for the fluctuation of genetic diversity in time
and space. Importantly, the spatial density of individuals in a population and
their range of dispersal during the course of evolution are two parameters that
can be inferred separately with this method. The validity of the new inference
framework is confirmed with extensive simulations and the analysis of influenza
sequences collected over five seasons in the USA.
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1 Introduction

Kingman’s coalescent [24] is a cornerstone of population genetics. It provides
a mathematical framework in which the effective size of a population can be
estimated through the comparative analysis of genetic data from a sample of
individuals. The simplicity and utility of the coalescent explains its popularity
in biology (see [32] for a review). In its simplest form, the coalescent defines the
probability density of a genealogy of individuals sampled from a constant size,
panmictic population. However, the panmixia assumption becomes problematic
when considering the spatial distribution of individuals as degree of kinship is
generally correlated with geographic distance [37, 34, 25].

The coalescent was thus extended to incorporate spatial information. Under
the so-called structured coalescent [21, 33], the population is partitioned into
demes, each deme corresponding to a geographic entity. Sub-populations within
each deme are panmictic and only individuals in the same deme can coalesce.
Migrations between demes are governed by an homogeneous Markov process
with the migration rate assumed to be small and estimated from the combination
of spatial and genetic data. The structured coalescent has obvious connections
with standard models in population genetics, namely the island model [52, 30]
and the stepping stone models [29, 23] for which mathematical properties are
well understood. Inference under the structured coalescent using maximum-
likelihood [7, 8] and Bayesian techniques [15, 6, 46] has led to important advances
in biology [e.g., 40], but is limited for computational reasons to a relatively small
number of demes (typically less than ten) which are assumed known a priori
[46].

But many natural populations are not subdivided into discrete demes. In-
stead, they display a gradient of kinship across a continuous landscape. In
seminal works, Wright [53] and Malécot [28] proposed an extension of the
Wright-Fisher model that incorporates continuous spatial information. Under
the so-called “isolation-by-distance” (IBD) model, individuals are uniformly dis-
tributed on the landscape and the locations of offspring are random draws from
a Normal distribution with mean given by the parental position. Mathemat-
ical expressions were derived for the probability that two alleles are identical
by descent as a function of their spatial distance. However, Felsenstein [16]
showed that some of the assumptions of the IBD model are inconsistent. A
population evolving under this process displays ‘clumping’ of individuals, which
contradicts the uniformity assumption. The IBD model may provide a suitable
inference framework when considering short time scales over which clumping
can safely be ignored. In the general case, however, it is preferable that the
spatial distribution of the population is described by a stationary process.

Sawyer and Felsenstein [43] addressed this issue in a modified version of
the IBD model where the spatial distribution of individuals is governed by a
Poisson random field with density constant in time. However, their model relies
on the assumption that each pair of parents produces exactly two offspring,
which is constraining from a biological perspective. Moreover, their approach
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applies to the special case of a one-dimensional habitat and generalization to
two dimensions leads to mathematical difficulties [31].

Wilkins and Wakeley [51] proposed a different approach in which a popu-
lation is uniformly distributed along a one-dimensional finite habitat with the
location of parents correlated to that of offspring. Importantly, each individ-
ual occupies an interval inversely proportional to the size of the population,
thereby ensuring the population density is regulated at all points in space and
time. This model assumes that the spatial position of each lineage is subject to
a diffusion process backward in time, with the habitat having reflecting bound-
aries. The authors were able to derive analytic formula for the distribution of
the time to coalescence of a pair of sampled lineages. Wilkins [50] later pro-
posed a generalization of this model to two-dimensional landscapes. However,
Barton, Etheridge and Véber (2010b) suggested that this approach is sampling
inconsistent, i.e., the distribution of the time to coalescence of a pair of sampled
lineages depends on the size of the sample under consideration. Estimates of
parameters of this model may thus be difficult to interpret in practice.

More recently, Lemey et al. (2009) proposed a model whereby spatial loca-
tion is considered as a discrete character evolving along lineages according to
a continuous-time Markov chain. Unfortunately, this approach suffers serious
limitations. First, estimates of rates of migration are influenced by spatial vari-
ations in sampling intensity. Moreover, non-uniformity of population density is
ignored when calculating the density of the genealogy. Also, this model is a dis-
crete approximation of the IBD model when the migration process is isotropic
and thus suffers from the same shortcomings. Altogether, while this approach
is efficient from a computational perspective, it provides biased estimates of
demographic parameters in particular simulation settings [13] and should thus
be used with great caution.

In a recent series of articles [14, 9, 3, 5, 47, 4], Barton, Etheridge and col-
leagues described a new process, called the spatial Λ-Fleming-Viot process, for
studying the evolution of populations on a continuous landscape. Malécot’s ap-
proach and related models consider that the time of death and reproduction of
individuals are governed by a random process running along every lineage in
the evolving population. The new model assumes instead that the time and
position of these events are independent of the spatial location of lineages. The
authors describe the forward-in-time dynamics of a population evolving on an
unbounded spatial continuum, and the corresponding backward-in-time process
that characterizes the genealogy of sampled individuals.

The mathematical properties of the spatial Λ-Fleming-Viot model have been
studied extensively [9, 3, 47, 4]. In particular, it has been shown that this model
does not suffer from sampling inconsistency or clumping issues. Barton et al.
[2] showed that the analysis of pairs of sub-populations provides information
about neighborhood size, i.e., the product of the effective population density by
the dispersal intensity. These last two quantities are relevant from a biological
perspective and, ideally, one would like to estimate each of them separately
instead of their product.

In this study, we perform Bayesian inference under the spatial Λ-Fleming-
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Viot model applied to multiple individuals taken jointly. Using extensive simu-
lations, we demonstrate the accuracy and precision with which the parameters
of this model can be estimated. We compare our estimates to that obtained us-
ing two popular inference techniques, i.e., the regression on fixation index (Fst)
values [41] and the structured coalescent [21, 33]. Our results demonstrate the
good performance of our approach in these conditions. They also indicate that
the proposed framework permits the estimation of population density and dis-
persal intensity as two separate (i.e., identifiable) parameters, thereby going
beyond pairwise analyses. We further illustrate the validity of this new tech-
nique through the analysis of H1N1 sequences collected over five flu seasons in
the USA. We show that the 2009 flu pandemic had distinct population dynam-
ics compared to more recent seasons with smaller than usual neighborhood size
and larger than usual dispersal distance.

2 The model

The spatial Λ-Fleming-Viot model (noted as ΛV from here on for the sake of
brevity) assumes that reproduction, dispersal and death of lineages result from
‘events’ that occur at locations independent from that of individuals forming
the population under scrutiny. In the following, we refer to these events as
reproduction/extinction or REX events. From a biological perspective, one REX
corresponds to either (i) a single reproduction event accompanied by extinction
of the parent with the offspring dispersing over long distances or (ii) a sum
of multiple reproduction and extinction events, each reproduction accompanied
by dispersal of the offspring over short distances. In any case, the average time
between two successive REX in a given lineage is proportional to the generation
time of the species under scrutiny.

2-a Forward-in-time dynamics of the population

We assume that a population inhabits a finite habitat represented by a rectangle
R(h,w), with height h and width w known a priori. Migrations crossing the
boundaries of the rectangle are forbidden. This differs slightly from Barton,
Etheridge and colleagues who assume that the population is distributed on a
two-dimensional torus or on R2.

Initial locations of individuals are determined by a homogeneous Poisson
point process with intensity ρ, producing a uniform distribution over R(h,w).
REXs occur at exponentially distributed waiting times with rate parameter λ.
The center of each REX is chosen uniformly at random across the habitat. Each
lineage then dies with some probability which depends on its distance to the
center. New lineages are born at an intensity that also depends on the distance
to the center. The choice of kernel modeling the dependency of the rates of
birth and death as a function of distance from the center is flexible [see 4]. We
choose a Normal kernel.
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Let ci := (xi, yi) be the center of the REX occurring at time ti. Suppose
lineage k has location l−i,k at time t−i , i.e., just before the event occurs (going
forward in time). That lineage dies at ti with probability

u(l−i,k, ci) = µ exp

(
−
‖l−i,k − ci‖2

2θ2

)
, (1)

where 0 < µ ≤ 1. We will refer to µ and θ as the death and radius parameters
from here on.

Individuals are born at time ti and location l according to an inhomoge-
neous Poisson point process with intensity ρu(l, ci)dl. Therefore, the expected
size of the population does not change after each REX event and the spatial
distribution of the population is still uniform, making this process stationary.

Finally, all individuals born at ti share a common parent who is chosen
from among the individuals existing immediately before the REX event. The
probability that lineage k with location l−i,k is selected as parent is then

v(l−i,k, ci) ∝ exp

(
−
‖l−i,k − ci‖2

2θ2

)
. (2)

2-b Backward-in-time dynamics of a sample

When considering a sample from the present population (corresponding to time
t0 = 0), its ancestry is traced towards the past (corresponding to t < 0) as
follows. REXs occur at the same rate λ as in the forward-in-time process and
centers (i.e., values of ci) are still uniform on R(h,w). Suppose a REX event
takes place at time ti and that lineage k has position l+i,k at time t+i , i.e., imme-
diately before the event that took place (going backward in time). k changes
location at the event, i.e., it is ‘hit’ by the REX event, with probability u(l+i,k, ci).

When it is hit, k jumps to a new, ancestral, location l−i,k with probability density

proportional to v(l−i,k, ci). When multiple sampled lineages are hit by the event,

all of them coalesce at time ti and location l−i,k.

2-c Interpretation of parameters

The ΛV model has three parameters: λ, µ and θ. λ has a straightforward
interpretation: it is the rate of REX events taking place in the whole habitat. It
is also common to refer to the rate per unit area λ′ := λ/s where s := wh is the
total area. Although the value of this parameter is linked to the expected time
elapsed between birth and the age of first reproduction, the precise relationship
between λ and generation time depends on the biology of the species under
scrutiny.

The probability density of the location of a lineage immediately after being
hit (going backward in time) given its location before the event is a bivariate
normal density with covariance matrix 2θ2I. 2θ2 is thus half the expected square
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Euclidean distance (in one dimension) between a parent and one of its immediate
offspring.

Also, considering the backward-in-time process here again, the probability
that a lineage is hit by a REX is approximated by 2πθ2µ/s. This probability
can be interpreted as the ratio between the rate of events that hit lineages and
the rate for both types of events. Therefore, given a fixed radius, the higher µ,
the higher this ratio.

Wright’s neighborhood size (N ) and dispersal intensity (σ2) are two standard
parameters in population genetics that can be expressed as functions of λ, µ
and θ. Assuming small values of θ, the distribution of the location of a lineage
at time t conditional on its location at time 0 is normal with variance σ2t, where
σ2 := 4θ4λ′πµ. In the limit where λ → ∞ and θ → 0, i.e., the jumps become
increasingly frequent and small, the backward-in-time motion of a single lineage
is a Brownian process with diffusion parameter σ2.

Considering again small values of the radius, the probability that any two
lineages coalesce in a REX event is simply the probability that both of them are
hit, i.e., (2πθ2µ/s)2 = 4π2θ4µ2/s2. The rate of these events is thus 4π2θ4µ2λ/s2.
We define this rate as 1/(2Ne), where Ne is the effective size of the (diploid)
population. Following the definition of the neighborhood size used in the Wright-
Malécot model, i.e., N := 4πNeσ

2/s, and using the definitions of σ2 and Ne
given above, we obtain N = 2/µ. The neighborhood size, which can be un-
derstood as the expected number of individuals participating in reproduction
in a disk or radius 2σ, is thus inversely proportional to µ. More details on the
derivations of the results in this section are given in SI 12 and [5].

3 Likelihood

We now derive the likelihood of the ΛV model for data consisting of the loca-
tions of a sample of present-day individuals and their ancestors. Let g be the
timed genealogy describing the ancestral relationships of the sampled lineages.
Suppose there are m REX events between t0 and the time of the most recent
common ancestor (MRCA, the root of g) and that the i-th event occurs at
time ti with center ci. Since we are considering the backward-in-time process,
ti > ti+1 for i = 0, . . . ,m − 1. Let l−i and l+i be the vector of locations of
the ancestral lineages at time t−i and t+i respectively. Also, let l−0 := l0 be the
known location data. Knowing g allows one to determine which locations in
l+i correspond to lineages that were born at ti and which location in l−i is the
parental one.

The likelihood for the observed data l0 and imputed data l−i , ti (with i =
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1, . . .m) and g is then

p(l−0 , . . . , l
−
m, c1, . . . , cm, t1, . . . , tm,g|λ, µ, θ,m, h, w, t0)

∝

[
m∏
i=1

p(l−i |l
−
i−1, c1, . . . , cm,g, µ, θ)

][
p(c1, . . . , cm|h,w)

][
p(t1, . . . , tm|λ, t0)

]

∝

[
m∏
i=1

p(l−i |l
+
i , ci,g, µ, θ)

][
s−m

][
λme−λ(t0−tm)

]
.

Note that p(g|l−0 , µ, θ) ∝ 1, i.e., the locations do not convey any information
about the genealogy directly (only genetic sequences do). Let Bi be the set of
indices of sampled lineages born at ti. We have:

p(l−i |l
+
i , ci,g, µ, θ) =[ ∏
j∈Bi

u(l+j,i, ci)
∏
j 6∈Bi

(1− u(l+j,i, ci))

][
v(l(p, ci))

I(|Bi|>1)

]
,

where l(p, ci) is the location of the parent of all offspring lineages born at ti and
I(|Bi| > 1) is an indicator function taking value 0 if no offspring were born at
REX i and 1 otherwise. The likelihood for the observed location data only (l−0 )
can be obtained via marginalization which we perform via MCMC sampling.

4 Simulations

4-a Range of parameter values

The habitat is a 10 by 10 square in our simulations. Individuals belonging to
the population of interest are never found outside this area. The effective size
of the population, Ne, was sampled from a uniform distribution on [100, 5000].
Values of the neighborhood size were then obtained by sampling uniformly in
[Ne × 10−3, Ne × 10−2]. Values of θ were sampled uniformly in [1.5, 4]. When
θ = 1.5, the probability that the offspring falls at a distance from its parent
smaller or equal to 1.0 is approximately 0.5 (the distance is measured here along
a single axis). When θ = 4, this probability is approximately 0.25. We thus
considered this range of values for θ to be broad enough to illustrate medium-
and long-range dispersal patterns respectively. The values of Ne, θ and N fully
determine that of µ, σ and λ.

Nucleotide sequences of length 500 bp evolved along the genealogies under
the Kimura-2-parameter model [22] with a transition/transversion ratio set to
4.0. The 5% and 95% quantiles of the nucleotide diversity estimated from the
sequence alignments hence generated are 0.44% and 1.56% respectively, well in
line with that observed in Drosophila melanogaster for instance [1].
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4-b Data collection process

In real experiments, collection of data is rarely uniform over the habitat. In-
stead, samples are often obtained from disconnected and seemingly randomly
scattered regions. In an attempt to mimic these patterns, the sampling scheme
used in our simulations relies on throwing random triangles on the habitat. Lin-
eages are then sampled uniformly at random from each of these triangles (see
SI 10).

The evolution of a population counting 5,000 individuals was simulated un-
der the forward-in-time process for each simulation. Each of these stopped after
100,000 REXs. These particular values for the population size and number of
REXs were selected so that computation could be performed with a reasonable
amount of memory. In fact, the size of the population used here is not relevant
to the effective population size, which is a function of λ, µ, θ and s only.

Sampling sites were then randomly scattered on the landscape, as just ex-
plained. A sample of 50 individuals was obtained by selecting individuals uni-
formly at random within the available sites. In cases where less than 50 individ-
uals happened to be within the sampling regions, new regions and individuals
were drawn. This procedure was repeated until the obtention of a sample of size
50. In all simulations, the sampled individuals did coalesce in the time period
considered (i.e., the time required to reach 10,000 REXs).

5 Bayesian parameter estimation

Samples of genetic sequences, s, along with locations of sampled lineages, l0,
are used to infer the parameters of interest, namely λ, µ and θ. The model also
involves multiple nuisance parameters which we impute; the genealogy of the
genetic sequences under study and the spatial coordinates of ancestral lineages
being the main ones. Random draws from the joint posterior distribution of all
these parameters are obtained using MCMC techniques. The posterior density
is as follows

p(g, l−1 , . . ., l
−
m, c1, . . . , cm, t1, . . . , tm,m, λ, µ, θ|s, l0, t0, h, w, η) ∝

Pr(s|g, t0, . . . , tm, η)×
p(l−0 , . . . , l

−
m, c1, . . . , cm, t1, . . . , tm,g|λ, µ, θ,m, h, w, t0)×

p(θ, λ, µ|h,w),

where η is the substitution rate. In what follows, we assume that this rate
does not vary across lineages nor sites of the alignment and its value is known
a priori. The parameters (t0, . . . , tm, η) fully specify the edge lengths in g in
terms of expected number of substitutions (between nucleotides, amino-acids or
codons) per position along a sequence. The probability Pr(s|g, t0, . . . , tm, η) is
calculated using Felsenstein’s (1981) pruning algorithm. The joint prior density
p(θ, λ, µ|h,w) is given by the product of the three densities p(θ|h,w), p(λ|h,w)
and p(µ|h,w). The prior distributions of µ, λ and θ are uniform on [0, 1],
[10−6, 10+2] and [0, 5] respectively.
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Random draws from the joint posterior distribution were obtained using the
Metropolis-Hastings algorithm. A total of fifteen operators updating the values
of every model parameter, including the tree topology, were implemented (see
SI 11). We validated the implementation and verified the correctness of the
data simulation algorithm by comparing the distribution of summary statistics
in simulated data to that inferred using our sampling technique (see SI 13). For
each (real and simulated) data set, the chain was sampled for a maximum of 100
hours on a computer server equipped with 2.7-2.8 GHz CPUs. The sampling
halted when the effective sample sizes of λ, µ and σ2 all exceeded 100.

6 Results

6-a Population density

Neighborhood size (N ), a quantity proportional to the product of population
density and dispersal intensity, can be inferred from pairs of sequences and their
spatial coordinates. Indeed, estimates of N are often derived from the slope of
the regression of Fst values for pairs of sequences on the corresponding geo-
graphic distances (see [41] and SI 14). In our simulations, Pearson’s correlation
between true neighborhood values and estimates obtained using this technique
are equal to 0.074 and -0.006 for two and ten sampling regions respectively.
For the ΛV model, estimates of neighborhood sizes are taken as the posterior
medians. The correlation between true and estimated values is equal to 0.631
and 0.669 for two and ten sites respectively. A more detailed analysis of the
posterior distributions estimated from the simulated data indicates that accu-
rate and precise inference of this parameter is achievable using our technique,
at least for values of N smaller than ∼20 (see SI 15).

The structured coalescent is often used to estimate the effective size of popu-
lations in a context similar to that of our simulations: each deme corresponds to
a sampling region as opposed to a genuine element of a partitioned population.
We used MultiTypeTree [46] from the BEAST2 package [10] to estimate the
parameters of the structured coalescent model applied to our simulated data
(see SI 17). Posterior medians and 95% credibility intervals for the popula-
tion densities estimated with the structured coalescent and the ΛV models are
presented in Figure 1. The structured coalescent generally overestimates pop-
ulation densities with the strongest biases observed with two demes and more
accurate estimates obtained with ten. Estimates obtained under the ΛV model
are better overall, both in terms of accuracy and, to a lesser extent, precision,
with very little difference between two and ten demes.

6-b Dispersal intensity

Figure 2 displays the simulated values of dispersal intensity (σ2) against the
posterior medians inferred using the Bayesian approach. Parameter inference
is fairly accurate overall but precision is limited, especially for large values
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of this parameter. Increasing the number of sampling regions improves the
quality of inference however. Overall, these results suggest that it is possible
to extract valuable information about dispersal patterns using our approach,
although obtaining precise estimates requires sampling a large number of sites.

6-c Computation times

Each simulated data set was allocated a maximum of 100 hours of computation
time. Effective sample sizes (ESS) for the parameters λ, µ and σ2 were mon-
itored during this period. For two sampling sites, 60%, 62% and 95% of the
data sets had ESS greater than 100 for λ, µ and σ2 respectively. For ten sites,
the corresponding percentages are 56, 80 and 99. Usable estimates of the ΛV
model parameters are thus generally obtained in a reasonable, yet substantial,
computation time.

6-d Influenza seasons in the USA

Homologous nucleotide sequences from the NA segment of the Influenza A virus
(H1N1 sub-type) were retrieved from the Influenza Research Database [45].
Five flu seasons (2009-2010 to 2013-2014) in the USA were considered in five
separate analyses. Hawaii and Alaska were excluded from the analysis in order
to approximate the shape of the habitat with a rectangle. Multiple sequences
are generally available for each state and season. Two distinct sets of sequences
(with a single sequence per state for each set) were analyzed for each season,
thereby providing two independent biological replicates for each of the five flu
seasons. Each sequence alignment was analyzed using the HKY [19] model of
nucleotide substitution with the FreeRate model of rate variation across sites
[44] and a covarion-like model of site-specific rate variation across lineages [18].

Figure 3 gives the posterior distributions of the neighborhood size and the
radius parameter for the five seasons and two replicates. We focused on the ra-
dius (θ) rather than the dispersal intensity parameter (σ2) as the latter requires
knowledge about the rate of nucleotide substitution which we could not infer
because of the lack of calibration information in the data considered.

The comparison of parameter estimates across seasons and replicates shows
interesting features. First, the posterior distribution of parameters are similar
in the two independent biological replicates. This observation suggests that
variation of parameter estimates due to sampling is negligible. Second, the
evolutionary dynamics observed for the 2009-2010 season (corresponding to the
2009 flu pandemic in the USA) are clearly distinct from that observed for other
seasons. Comparatively smaller neighborhood sizes and larger radii are inferred
for this season. These two observations are indicative of a virus with limited
infection rate (low N ) but good ability to proliferate under various climatic
conditions (large θ). The fact that the 2009-2010 season lasted for a substantially
longer period of time compared to subsequent seasons and had a comparatively
mild incidence rate (see SI 16) corroborate this conclusion.
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7 Discussion

Understanding the forces shaping genetic diversity in space is a key objective in
ecology and population genetics. Recent years have seen the rise of methods that
essentially aim at visualizing the correlation between genetic and geographic dis-
tances [35, 34]. These exploratory methods can reveal interesting patterns in the
data such as long-distance admixture [12], migration corridors or barriers [36].
The present study focuses instead on inferring the parameters of a stochastic
model of population dynamics. This approach is well suited to testing biological
hypotheses and therefore provides a relevant complement to more exploratory
techniques.

Our results indicate that the spatial Λ-Fleming-Viot (ΛV) model [14, 9, 3,
5, 47, 4] is amenable to parameter inference under biologically realistic condi-
tions. Using a Bayesian inference technique that relies on augmenting the data
with the ancestral locations of sampled lineages, we show that accurate infor-
mation about neighborhood size and dispersal intensity can be recovered from
geo-referenced genetic data. It is a significant step forward in the analysis of
the spatial distribution of genetic diversity as partitioning populations into dis-
crete demes (as in the structured coalescent) or assuming a non-homogeneous
distribution of individuals in space and time (as in the Wright-Malécot model)
is not required with this new technique.

Estimates of neighborhood sizes obtained with the traditional approach
based on fixation indices (Fst) show virtually no correlation with the true val-
ues of this parameter in our simulations. This inference technique was originally
designed for the analysis of diploid individuals and multiple unlinked loci with
each locus evolving under an infinite-allele model. It is robust to misspecifica-
tion of the mutation model [26] and is relevant in a broad range of experimental
conditions [49]. In our simulations however, all loci evolved along the same
genealogy while the number of alleles was limited to four nucleotides and only
one sequence per individual was considered. In these circumstances, which cor-
respond to standard experimental conditions, our Bayesian inference technique
returns precise estimates of neighborhood sizes, thereby providing a relevant
alternative to Fst-based methods. More importantly, while the traditional ap-
proach only estimates the product of population density and dispersal intensity
(i.e., the two parameters are not identifiable in the standard inference frame-
work, see e.g., [42]), both parameters can be estimated separately using the
proposed technique.

The structured coalescent provides estimates of population density. Al-
though this method assumes that each deme corresponds to a sub-population,
it is commonplace to equate a sampling region with a deme. In these circum-
stances, our results suggest that the structured coalescent overestimates the
population density when the generative model is ΛV. The bias decreases with
the increase of the number of sampling regions however. Yet, our Bayesian es-
timation technique clearly outperforms the structured coalescent here. In cases
where the population of interest is not strongly structured spatially but rather
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continuously distributed, we thus recommend that estimation is conducted un-
der the ΛV model.

Bayesian inference methods are generally computationally intensive com-
pared to other estimation techniques. Our approach is no exception, although
stable estimates of the three main model parameters were obtained after about
four days of computation in the majority of simulated data sets. Our implemen-
tation of the MCMC sampler fitting the ΛV model was extensively tested and
optimized. Nonetheless, new operators complementing the fifteen considered
here might improve the speed of convergence. Also, a substantial fraction of the
computation is spent on evaluating the likelihood of the model for REX events
that do not affect the location of any lineage. Integrating over the locations and
times of these events could potentially be done analytically, thereby decreasing
the computational burden.

The analysis of H1N1 sequences from five flu seasons in the USA provides
insight into the dynamics of the infection that is coherent with the variation in
the incidence of flu-related diseases. In particular, the patterns inferred for the
2009 pandemic, both in terms of neighborhood size and range of dispersal, are
notably distinct from that observed in other ‘regular’ flu seasons. The larger
than usual estimate of dispersal distance might be one of the factors explaining
why this season lasted for a longer period of time compared to other years. Also,
the incidence rate for the 2009 season was relatively mild which is consistent
with the small neighborhood size estimated here.

Our implementation of the ΛV model relies on several assumptions that re-
quire careful consideration. First, the size of the population and its habitat are
considered as fixed. Detecting expansion or contraction of population sizes dur-
ing the course of evolution is at the core of important questions in ecology and
population genetics (see e.g., [20]). Accommodating for deterministic changes
of population size in the ΛV framework is therefore of utmost interest and will
be the focus of future research. Second, our simulations assume a homogeneous
landscape. This assumption is not realistic in instances where mountains, rivers,
human activity, etc., impede migration of individuals. Relaxing the assumption
of isotropic migrations in the ΛV model presents a technical challenge that needs
to be addressed. Third, our simulations and inference method target multiple
linked loci. Extending our approach to accommodate for recombination is a
interesting research prospect. In fact, Barton et al. (2013) recently showed
that recombination patterns convey information about the distribution of rel-
ative parent position and neighborhood size under the ΛV model. Fourth, the
boundaries of the habitat are considered as known a priori in the present study.
Treating the area of the habitat as a random variable would be relevant for the
analysis of most real data sets. Further work on this question should also assess
the impact of over- or under-estimating this area on the accuracy and precision
of model parameter estimates.

Despite these limitations, the proposed approach is a relevant complement to
the exploratory analyses mentioned above and the inferential techniques based
on the structured coalescent or the fixation index. Fitting a ΛV model is partic-
ularly relevant in cases where the spatial distribution of individuals in the pop-
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ulation of interest does not display well-defined demes. Despite the substantial
computational burden involved with the Bayesian inference under this model,
the opportunity to infer the density of a population and characterize dispersal
distances from the combined analysis of genetic and spatial data should help
improve our understanding of the mechanisms underlying spatial distribution
of populations and species.

8 Software availability

The software phyrex implementing the MCMC algorithm for parameter infer-
ence under the ΛV model is available as part of the PhyML package from the
following URL: https://github.com/stephaneguindon/phyml.
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tation, linkage, migration) en génétique de populations. Ann. Univ. Lyon,
Sci. Sec. A 14:79–117.

[30] Maruyama, T. 1970. On the fixation probability of mutant genes in a sub-
divided population. Genetical Research 15:221–225.

[31] Nagylaki, T. 1986. Neutral models of geographical variation. Pages 216–237
in Stochastic spatial processes. Springer.

[32] Nordborg, M. 2001. Coalescent theory. in Handbook of Statistical Genetics
(D. J. Balding, M. Bishop, and C. Cannings, eds.). Wiley Online Library.

[33] Notohara, M. 1990. The coalescent and the genealogical process in geo-
graphically structured population. Journal of Mathematical Biology 29:59–
75.

[34] Novembre, J., T. Johnson, K. Bryc, Z. Kutalik, A. R. Boyko, A. Auton,
A. Indap, K. S. King, S. Bergmann, M. R. Nelson, et al. 2008. Genes mirror
geography within europe. Nature 456:98–101.

[35] Patterson, N., A. L. Price, and D. Reich. 2006. Population structure and
eigenanalysis. PLoS genet 2:e190.

[36] Petkova, D., J. Novembre, and M. Stephens. 2015. Visualizing spatial popu-
lation structure with estimated effective migration surfaces. Nature genetics
48:94–100.

[37] Ramachandran, S., O. Deshpande, C. C. Roseman, N. A. Rosenberg, M. W.
Feldman, and L. L. Cavalli-Sforza. 2005. Support from the relationship of
genetic and geographic distance in human populations for a serial founder
effect originating in Africa. Proceedings of the National Academy of Sci-
ences, U.S.A. 102:15942–15947.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/042135doi: bioRxiv preprint 

https://doi.org/10.1101/042135
http://creativecommons.org/licenses/by-nc-nd/4.0/


[38] Robert, C. P. 1995. Simulation of truncated normal variables. Statistics
and computing 5:121–125.

[39] Roberts, G. O., A. Gelman, W. R. Gilks, et al. 1997. Weak convergence
and optimal scaling of random walk metropolis algorithms. The Annals of
Applied Probability 7:110–120.

[40] Roman, J. and S. R. Palumbi. 2003. Whales before whaling in the North
Atlantic. Science 301:508–510.

[41] Rousset, F. 1997. Genetic differentiation and estimation of gene flow from
F-statistics under isolation by distance. Genetics 145:1219–1228.

[42] Rousset, F. 2003. Inferences from spatial population genetics. in Handbook
of statistical genetics (D. Balding, M. Bishop, and C. Cannings, eds.).
Wiley.

[43] Sawyer, S. and J. Felsenstein. 1981. A continuous migration model with
stable demography. Journal of Mathematical Biology 11:193–205.

[44] Soubrier, J., M. Steel, M. Lee, C. Sarkissian, S. Guindon, S. Ho, and
A. Cooper. 2012. The influence of rate heterogeneity among sites on the
time dependence of molecular rates. Molecular Biology and Evolution
29:3345–3358.

[45] Squires, R. B., J. Noronha, V. Hunt, A. Garćıa-Sastre, C. Macken,
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Figure 1: True vs. estimated effective population densities (ρe vs.
ρ̂e) obtained under the ΛV (orange) and the structured coalescent
(green) models. Left: two sampling sites. Right: ten sampling sites. 300
simulated data sets were considered in each case. The y-value for each dot
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areas are obtained by fitting a smooth line through the 97.5% and 2.5% quantiles
of the estimated posterior distributions of values of ρe.
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Figure 2: True vs. estimated dispersal intensity (σ2 vs. σ̂2) under
the ΛV model. See caption of Figure 1.
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Figure 3: Neighborhood size (N ) and radius parameter (θ) estimates
for five seasons of H1N1 in USA. The two rows give the results obtained
with two independent biological replicates (see main text). FLU seasons are
color-coded (see top).
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10 Sampling scheme

To generate a single triangle in which individuals are sampled, three points,
(xi, yi), i = 1, 2, 3, are first drawn uniformly at random on the square (0, w/2)×
(0, h/2). These points make up the vertices of the triangle. The resulting
triangle is then translated to the right and up so that the whole triangle remains
within the landscape. This is achieved by drawing u1 ∼ U(max{x1, x2, x3}, w)
and u2 ∼ U(max{y1, y2, y3}, h) and setting the vertices of the triangle to be
(xi + u1, yi + u2), i = 1, 2, 3. For each simulation, we iterate this procedure two
or ten times to produce the corresponding number of sampling regions. The
median area covered by two and ten triangles is 4% and 16% of the total area
respectively, thus corresponding to a broad range of sampling conditions.

11 MCMC operators

We describe below the different operators, also commonly referred to as “moves”,
for updating the model parameters in our Markov Chain Monte Carlo algorithm.
Each operator applies a random modification to the current state of the model.
These modifications and the corresponding ratios of probability densities (Hast-
ings ratio) are detailed below.

11-a Scalar scaling operator

This operator updates a scalar parameter which value is constrained to be in
[a, b]. Let x and x′ be the current and proposed values respectively. X and X ′

denote the corresponding random variables. u is a random draw from a uniform
distribution in [0, 1] (random variable U) and K is a tuning parameter. We use:

x′ = xα,

where α := exp{K(u − 1/2)}. α can thus be considered as a random draw
from a random variable A with pA(α) = 1/(Kα) and e−K/2 ≤ α ≤ eK/2. The
corresponding proposal density is therefore:

qX′|X(x′|x) =
pA(α)

|dx′/dα|

=
1

x

1

Kx′/x
=

1

Kx′
,

whenever x′ ∈ [a, b]. qX′|X(x′|x) = 0 otherwise. Similarly, we have:

qX|X′(x|x′) =
1

x′
1

Kx/x′
=

1

Kx

if x ∈ [a, b] and 0 otherwise. The Hastings ratio for this operator is thus:

qX|X′(x|x′)
qX′|X(x′|x)

=
x′

x
= α
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when x ∈ [a, b] and 0 otherwise. The parameters λ, µ and θ, as well as the
transition/transversion ratio, are updated using this operator. The value of the
tuning parameter K is adjusted during the first 106 iterations of the Markov
Chain Monte Carlo algorithm such that the frequency with which proposed
values replace current ones attains 0.234 [39].

11-b Vector scaling operator

Let xl be a vector of non-negative real values of length l. x′l is the proposed
value for that vector such that:

x′l = αl � xl,

where αl = (α1, . . . , αl) is the value taken by the random vector A = (A1, . . . , Al)
and � is the element-wise product operator. The corresponding proposal den-
sity is then:

qX′|X(x′l|xl) =
pA(αl)∣∣∣ ∂x′l∂αl

∣∣∣ .
The determinant of the Jacobian is equal to

∏l
i=1 xi. We thus re-write the

proposal density:

qX′|X(x′l|xl) =
pA(x′1/x1, . . . , x

′
l/xl)∏l

i=1 xi
.

In case all values in x are multiplied by the same scaling factor α, we have
x′i/xi = αi = α for all i = 1, . . . , l and we can write:

pA(x′1/x1, . . . , x
′
l/xl) = pA1(α)

l∏
i=2

δ(x′i/xi − α),

where δ(.) is the Dirac delta function. We thus have:

pA(x′1/x1, . . . , x
′
l/xl) = pA1(α)

l∏
i=2

δ

(
x′i − αxi

xi

)

= pA1
(α)

l∏
i=2

|xi|δ(x′i − αxi).

Similarly, we have:

pA(x1/x
′
1, . . . , xl/x

′
l) = pA1

(1/α)
l∏
i=2

δ (xi/x
′
i − 1/α)

= pA1
(1/α)

l∏
i=2

δ

(
αxi − x′i
αx′i

)

= pA1(1/α)

l∏
i=2

|αx′i|δ (x′i − αxi)
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Therefore,

pA(x1/x
′
1, . . . , xl/x

′
l)

pA(x′1/x1, . . . , x
′
l/xl)

=
pA1(1/α)

∏l
i=2 |αx′i|δ (x′i − αxi)

pA1(α)
∏l
i=2 |xi|δ(x′i − αxi)

=
pA1(1/α)

pA1
(α)

· α2l−2.

The Hastings ratio is therefore obtained as follows:

qX|X′(xl|x′l)
qX′|X(x′l|xl)

=
pA(x1/x

′
1, . . . , xl/x

′
l)/
∏l
i=1 x

′
i

pA(x′1/x1, . . . , x
′
l/xl)/

∏l
i=1 xi

=
pA1(1/α)

pA1(α)
· α2l−2α−l

=
pA1

(1/α)

pA1
(α)

· αl−2.

Using pA1
(α) = 1/(K · α) with e−K/2 ≤ α ≤ eK/2 as for the scalar scaling

operator, we obtain:

qX|X′(xl|x′l)
qX′|X(x′l|xl)

=
α/K

1/(K · α)
· αl−2

= αl.

The vector scaling operator is used for scaling the times of REX events up and
down. This operator is used in conjunction with another operator that updates
the value of λ. Indeed, the timing of REX events results from a Poisson process
with rate λ. It therefore makes sense to update these parameters together. In
particular, let Th and T ′h = αTh be the current and proposed time of the MRCA
of the sampled lineages (i.e., the height of the tree) and m the total number of
REX events. A new value of λ is obtained by dividing the current value of this
parameter by α. The Hastings ratio for this sub-operator is 1/α.

11-c Insert/delete REX events without lineage displace-
ment

This operator adds or removes multiple REXs that do not affect the spatial
coordinates of any of the sampled lineages. Each of these events takes place at
a time between present (t0 = 0) and the time of the MRCA for the sampled
lineages (Th = th

1). Let m and m′ be the current and proposed number of
these events. M and M ′ are the corresponding random variables. M ′ follows a
Poisson distribution with parameter m. The proposal distributions are thus:

Pr(M ′ = m′|M = m) =
(m)m

′

m′!
e−m,

1This notation slightly deviates from the one used on the main text where the time of the
MRCA is noted as tm.
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and

Pr(M = m|M ′ = m′) =
(m′)m

m!
e−m

′
.

The Hastings ratio for that part of the operator is derived from these two proba-
bilities. Once m′ is known, one needs to set the times of newly inserted events or
remove some of the existing ones. We distinguish two cases: m′ > m andm′ < m
(if m′ = m, the model remains unchanged). If the first case, n+ = m′−m REX
new events are inserted. The times at which these events take place are chosen
uniformly at random in [th, t0]. The corresponding joint density of the new times
is thus (n+)! · (1/|th|)n+ . In the second case, n− = m−m′ existing REX events
are removed from the model. The probability of removing a particular set of n−
events in a model with currently m such events is 1/

(
m
n−

)
. The Hastings ratio

corresponding to the insertion of n+ events is thus:

1/
(
m+n+

n+

)
(n+)!(1/|th|)n+

,

and the Hastings ratio when removing n− events is as follows:

(n−)!(1/|th|)n−
1/
(
m
n−

) .

The third and last sub-operator concerns the spatial coordinates of the centers
for each inserted REX event. These coordinates are sampled uniformly at ran-
dom on the landscape of surface area s. When inserting n+ new REXs, the
Hastings ratio for this part of the operator is thus:

1

(1/s)n+
.

When deleting n− REXs, the Hastings ratio is simply:

(1/s)n− .

In summary, this operator is divided into three sub-operators. The Hastings
ratios corresponding to these three sub-operators are multiplied together to
determine the Hastings ratio for the whole operator. As for the operator that
rescales the tree height, the value of λ is also updated in the insert/delete
operator since the number of REX events taking place in a given time period is
highly correlated to that of λ. A new value for this parameter is proposed by
sampling from a left- and right-truncated normal distribution with mode equal
to m′/th and standard deviation equal to 0.1 ·m′/th. The normal distribution is
left-truncated at 0.0 and right-truncated at 1.2 ·m′/th (i.e., the mode plus two
times the standard deviation). We used the accept-reject algorithm described
in [38] to sample from univariate truncated normal distributions.
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Figure 4: Addition (and removal) of a REX event with lineage dis-
placement. l+ and l− are the coordinates of the lineage (projected on a single
axis) immediately before and after the proposed new REX event respectively.
l−− is the position of the same lineage immediately after the last REX event
(after the proposed one) that has hit this lineage.

11-d Insert/delete REX events with lineage displacement

This operator adds or removes one or more REXs, each of them hitting a sam-
pled lineage (i.e., REXs corresponding to coalescent events and those leaving
the spatial position of all sampled lineages unchanged are not affected by this
operator). The three sub-operators described in the previous section also apply
here. An additional sub-operator deals with the spatial coordinates of the newly
proposed REXs in case m′d > md, where m′d and md are the proposed and cur-
rent number of REX events with lineage displacement in the tree. Let L+ be
the random variable corresponding to the new spatial coordinates of one of the
lineages hit by one of the n+ proposed REX events (with n+ = m′d −md > 0).
C+ is the random variable corresponding to the coordinates of the center of this
REX and c is the value taken by C+. l− is the value taken by L+, while l+ is the
coordinate of the same lineage just before the displacement (going backward in
time). l−− is the position of the same lineage immediately after the next REX
event that affected it (see Figure SI 4).

We take L+ as a normally distributed random variable with mode (l−− +
l+)/2 and variance 2θ2. This distribution is left- and right-truncated (at 0 on
the left and h or w of the right) in order to avoid having lineages migrating be-
yond the limits of the habitat. Let pL+

(l−|l+, l−−, θ) denote the corresponding
density. The distribution of C+ is also a left- and right-truncated normal. The
mode of this distribution is l− and the variance θ. Let pC+(c|l−, θ) denote the
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corresponding probability density. Altogether, the joint probability density for
the proposed lineage and center positions is as follows:

pL+,C+
(l−, c|l+, l−−, θ) = pC+

(c|l−, θ)pL+
(l−|l+, l−−, θ).

Since each REX event with a lineage displacement can be chosen for removal
with equal probability, the Hastings ratio for inserting one such event is thus:

1/m′d
pC+

(c|l−, θ)pL+
(l−|l+, l−−, θ)

.

The Hastings ratio for deleting one event is as follows:

pC+
(c|l−, θ)pL+

(l−|l+, l−−, θ)
1/md

When adding or removing k ≥ 1 REX events with lineage displacements, the
Hastings ratio are:

k!(1/m′d)
k∏k

i=1 pC+(ci|l−i , θ)pL+(l−i |l
+
i , l
−−
i , θ)

,

for the insertions and∏k
i=1 pC+

(ci|l−i , θ)pL+
(l−i |l

+
i , l
−−
i , θ)

k!(1/md)k
,

for the deletions. As for the insert/delete REX without displacement operator,
the number of REX events inserted or deleted, k, is a random draw from a
Poisson distribution. The parameter of this distribution is given by the number
of REXs with lineage displacement in the current tree (or the proposed tree
for the reverse modification that updates the proposed model into the current
one). The corresponding two probabilities define the Hastings ratio for this
sub-operator.

11-e Path operator

This operator updates the series of displacements between a coalescent node
(the father) and one of the coalescent node immediately below the first (the
daughter). Let lf and ld be the coordinates of the lineage immediately after
the father and the daughter nodes arise in the genealogy. Let w be the current
number of lineage displacements between the two coalescent nodes and w′ the
proposed new number of displacements. (l1, . . . , lw) and (l′1, . . . , l

′
w) are the

current and proposed coordinates of the lineage under study. Figure SI 5 gives
an example illustrating this operator.

The proposed number of lineage displacements w′ is a random draw from a
Poisson distribution with parameter obtained by counting the current number
of displacements in the tree (excluding coalescent events) and dividing by the
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Figure 5: Path operator. lf and ld are the locations of the lineage un-
der scrutiny immediately after the corresponding REX events. In the current
state of the model, a single lineage displacement occurs between the father and
daughter coalescent nodes, thus w = 1 and l1 is the position of the lineage im-
mediately after the displacement occurs. In the proposed new state, w′ = 3 and
the locations of the lineage just after the corresponding REXs are l′1, l′2 and l′3.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/042135doi: bioRxiv preprint 

https://doi.org/10.1101/042135
http://creativecommons.org/licenses/by-nc-nd/4.0/


sum of edge lengths (in calendar time unit). The probability of having w′

displacement(s) between the father and daughter nodes is thus

Pr(W ′ = w′|m, z) =
(m/z)w

′

w′!
e−m/z,

where m is the current total number of lineage displacements in the genealogy,
excluding coalescent events and z is the sum of edge lengths.

The conditional distribution of L′i given L′i−1 (with i = 1, . . . , w′ and L′0 =
ld) is a left- and right-truncated normal with variance 2θ. The mode of that

distribution is l′i−1 +
(lf+l

′
i−1)

w′−i+1 , with l′0 = ld. The rationale behind shifting the
mode of the normal distributions is to implement a sampling strategy similar to
that used for generating a Brownian bridge. Lastly, the conditional distribution
of the center C ′i given L′i is a left- and right-truncated normal with mode set to
the value taken by L′i and variance θ.

Altogether, the proposal density for this operator is then:

pC′|L′,W ′(c
′
1, . . . , c

′
w|l′1, . . . , l′w, lf , ld)pL′|W ′(l′1, . . . , l′w|lf , ld) Pr(W ′ = w′|m)

=
w′∏
i=1

pC′i|L′i(c
′
i|l′i)

w′∏
i=1

pL′i|L′i−1
(l′i|l′i−1)δ(l′0 − ld) Pr(W ′ = w′|m)

where C′ := (C ′1, . . . , C
′
w), L′ := (L′1, . . . , L

′
w) and L := (L1, . . . , Lw). The very

same reasoning is used to derive the proposal density for the reverse modification
of the model and the Hastings ratio for the path operator follows.

11-f Subtree Prune and Regraft (SPR) operator

This operator changes the topology of the tree. A coalescent node is first sam-
pled uniformly at random. The root node is included in the list of coalescent
nodes that can be chosen from only if its degree is strictly greater than two. Let
np be the number of “valid” coalescent nodes in the current tree. The coalescent
node selected has np,d direct descendants, where each direct descendant is the
first (coalescent or tip) node encountered when traversing the tree starting from
the selected node along each of the np,d paths leading to a tip. In the example
given in Figure SI 6, the selected coalescent node is noted as P and np,d = 3.
One of the np,d descendant nodes is chosen uniformly at random (noted as D
in Figure SI 6). The subtree with the selected descendant node as its crown is
pruned. The position in the tree at which the pruned subtree is re-grafted can
be either a coalescent node or, as in Figure SI 6, a “displacement node”, i.e., a
node of degree two corresponding to the displacement of a lineage. The re-graft
node is noted as G. The corresponding time for that node has to be older than
that of D. Also, the re-graft node cannot be on the path from P to D. Let
ng be the number of valid re-graft nodes. The pruned subtree is re-grafted to
the tree after generating a new series of lineage displacements between D and
G using the path operator.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2016. ; https://doi.org/10.1101/042135doi: bioRxiv preprint 

https://doi.org/10.1101/042135
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: SPR operator. P, D and G are the selected nodes for pruning, its
selected descendent and the re-graft node respectively.

The joint probability of selecting nodes P and D is equal to (1/np)(1/np,d).
The probability of selecting G as re-graft node is 1/ng. Altogether, the probabil-
ity of pruning a particular subtree and re-grafting it is thus (1/np)(1/np,d)(1/ng).
The probability of reverting this topological change is obtained after updating
the values of np, np,d and ng on the proposed new tree. The Hastings ratio for
the SPR operator also involves the ratio of densities of the (new and exisiting)
paths from D to P and D to G (see previous section).

11-g Backward simulation operator

This operator relies on the backward-in-time dynamics of the ΛV model. A
time point, t, is first chosen uniformly at random in the [0, th] interval. Let ti
be the most recent REX that occured after t. All the REXs strictly older than
ti are then discarded. A new “upper” part of the genealogy is then simulated
according to the ΛV model, using the current values of λ, µ and ρ. The Hastings
ratio for this operator is then as follows:

|(ti − t′i+1)/t′h|
|(ti − ti+1)/th|

,

where t′i+1 is the proposed time of the most recent REX that occured before t
and t′h is the time for the MRCA in the proposed genealogy.

11-h Other operators

Additional operators were used in our implementation of the MCMC sampler
for estimating the parameters of the ΛV model. These extra operators are more
straightforward than those described above, with Hastings ratios that obtained
immediately. For this reason, we do not give a detailed mathematical description
of these operators.
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The first operator changes the time of a REX event with lineage displace-
ment (which can also be a coalescent node). The proposed new time is sampled
uniformly at random in the interval with upper and lower bounds corresponding
to the next and previous REX events in the current model respectively. Note
that the two REXs defining the upper and lower bounds involve lineage dis-
placements or not. This operator is applied simulateously to a fixed fraction of
the current number of REX events in the model. Its Hastings ratio is equal to
one. A similar operator is also implemented whereby the proposed time of a
REX with lineage displacement is uniform between the next and previous REXs
with lineage displacement. This operator is applied to single REX events. Its
Hastings ratio is also equal to one.

Beside operators that update the time of REXs, we also found it helpful to
implement operators that potentially modify the spatial coordinates of lineages
and REX centers. In the first case, the coordinates of a lineage immediately
before a REX with lineage displacement are sampled from two truncated normal
distributions independently (one draw for the lattitude, one for the longitude).
The mode of each truncated normal is given by the centre of the corresponding
REX event. The standard deviation is set to θ, the current value of the radius
parameter. This operator was applied simultaneously to a fixed fraction of REXs
with lineage displacement. For each REX, the Hastings ratio is determined by
the densities of the aforementionned truncated normal distribution evaluated at
the new and the current lineage coordinates. A very similar operator is applied
to the centers of REX events with lineage displacements. The modes of the
truncated normal distributions are determined here by the coordinates of the
corresponding lineages immediately before the REX events involved.

12 Interpretation of parameters

When considering the backward-in-time process, the rate at which a lineage
is hit by a REX is the product of the rate at which these events occur (λ)
by the probability that a lineage is hit. Let l+i,k be the location of lineage k
just before the REX event that occured at time ti (going backward in time).
The probability that this lineage is hit conditional on the REX having location
ci := (cx, cy) is∫

u(l+i,k, ci)

s
d2l+i,k =

∫ h

0

∫ w

0

u(l+i,k, ci)

s
dlxdly (3)

=
πµθ2

2s

[
erf

(√
2cx
2θ

)
+ erf

(√
2(cx − w)

2θ

)]

×

[
erf

(√
2cy
2θ

)
+ erf

(√
2(cy − h)

2θ

)]
. (4)

In cases where the argument of the error functions is large enough (i.e., greater
than ' 2), the value returned is approximately equal to one. These conditions
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are met when θ � min(cx, cy) and ci is far enough from the edges of the habitat
(i.e., cx � w and cy � h). In this situation, the expression above simplifies and
gives ∫

u(l+i,k, ci)

s
d2l+i,k ' 2πθ2µ/s, (5)

which is also the unconditional probability of the lineage being hit. We will
consider that this approximation holds in what follows. The rate at which
a given lineage is hit is thus 2λπθ2µ/s. Also, the probability density of l−i,k
given l+i,k (with l−i,k 6= l+i,k) is 1

4π2θ4

∫
v(l−i,k, ci)v(l+i,k, ci)d

2ci. This integral yields

1
4πθ2 exp

{
− 1

4θ2 ||l
−
i,k − l

+
i,k||2

}
, i.e., a bivariate normal density with mean l+i,k and

covariance matrix 2θ2I. The variance of offspring location (noted as l+i,k,x) in a

one-dimensional space given the parental location (l−i,k,x) is thus:

Var(l+i,k,x|l
−
i,k,x) = Var(l+i,k,x − l

−
i,k,x|l

−
i,k,x) (6)

= E((l+i,k,x − l
−
i,k,x)2|l−i,k,x)− E(l+i,k,x − l

−
i,k,x|l

−
i,k,x)2 (7)

= E(d2x) (8)

= 2θ2, (9)

where d2x := (l+i,k,x − l−i,k,x)2. θ2 is thus half the expected square Euclidean

distance between parent and offspring in one dimension. Note that E(l+i,k,x −
l−i,k,x|l

−
i,k,x)2 = 0 since migrations are isotropic. In two dimensions, we have:

E

(
1

2
(d2x + d2y)

)
=

1

2

(
E(d2x) + E(d2y)

)
= 2θ2, (10)

i.e., θ2 is thus a quarter of the expected square Euclidean distance between
parent and offspring. In a n-dimensional space, θ2 is 1/2n times this expected
distance.

Altogether, the variance of spatial coordinates of a lineage along a given axis
thus increases with time proportionally to

σ2 := 4θ4λπµ/s. (11)

In the limit where λ→∞ and θ → 0, the backward-in-time motion of a single
lineage is a Brownian process with diffusion parameter σ2.

Also, given REX i occurs at position ci := (cx, cy), two lineages j and k with
locations l+i,j := (lj,x, lj,y) and l+i,k := (lk,x, lk,y), in a slight simplification of the
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notation used previously, coalesce with probability

1

s2

∫ ∫
u(l+i,j , ci)u(l+i,k, ci)d

2l+i,jd
2l+i,k

=
1

s2

[∫ w

0

∫ h

0

µ exp
{
− 1

2θ2
(
(lj,x − cx)2 + (lj,y − cy)2

)}
dlj,ydlj,x

]
×[∫ w

0

∫ h

0

µ exp
{
− 1

2θ2
(
(lk,x − cx)2 + (lk,y − cy)2

)}
dlk,ydlk,x

]

=
µ2π2θ4

4s2

[
erf

(√
2

2θ
(cx − w)

)
− erf

(√
2

2θ
cx

)]2
×

[
erf

(√
2

2θ
(cy − h)

)
− erf

(√
2

2θ
cy

)]2
(12)

In cases where the radius is small (see above), the probability that the two
lineages coalescence, conditional on the position of the REX event is thus ap-
proximately equal to 4µ2π2θ4/s2, which also corresponds to the probability of
coalescence of two lineages without conditionning on the position of the REX.
Note that this probability could have been derived immmediately by noting that,
conditional on the location of the REX event, the event “lineage j is hit” is in-
dependent from the event “lineage k is hit”. The probability of interest is thus
simply the product of the probability of each lineage being hit in the event. The
rate at which pairs of lineages coalesce is therefore equal to 4µ2π2θ4λ/s2, which
we define as 1/(2Ne), where Ne is the effective population size. We therefore
have

Ne =
s2

8π2θ4µ2λ
. (13)

We now define the neighborhood size asN := 4πNeσ
2/s, following the definition

used in the Wright-Malécot model. Replacing σ2 by the expression given in
Equation 11 and Ne by that in Equation 13 yields N = 2/µ.

13 Validation of the implementation

We validated our implementation of the simulation and inference techniques by
sampling from the distribution of the following random variable

l−1 , . . . , l
−
m, c1, . . . , cm, t1, . . . , tm,g,m|λ, µ, θ, h, w, t0, l−0

in two different ways. Values of λ, µ and θ were fixed to the median values used
in our simulations throughout. Also, the locations observed at the tips of the
tree (i.e., values of l−0 ) were equally spaced on the habitat. The first sampling
technique relies on the functions used to simulate data backward-in-time under
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Figure 7: Distribution of the number of REX events and the tree
height obtained with our simulation and MCMC sampling techniques.
Black: distributions obtained with the backward-in-time simulation-based ap-
proach. Purple: distributions obtained with our MCMC sampler.

the ΛV model. The second technique relies on our MCMC sampler, which was
slightly modified such that values of λ, µ and θ were fixed to the median values
aforementionned. 3,000 data sets were generated using the simulation technique
while the Bayesian sampler was run for approximately 10 hours.

Figure SI 7 shows the marginal distributions of two summary statistics: the
number of REX events (i.e., m) and the time (before present) at the root of the
tree (i.e., tm). The distributions obtained with both sampling techniques are
virtually identical, suggesting that our implementation of the backward-in-time
simulation of the ΛV model is consistent with the corresponding distribution
sampled by our MCMC.

14 Estimation of neighborhood size using fixa-
tion index

The relationship between logarithm of spatial distance (r) and fixation index
(F (r)) for pairs of sampled individuals is linear in two-dimensional landscapes
[41, 48, 2]. The slope of the corresponding linear regression, noted as α, then
serves as a basis for the inference of Wright’s “neighborhood size”. Indeed,
assuming a Gaussian dispersal function, the equality α = (F (0)− 1)s/4πNeσ

2,
i.e., α = (F (0)− 1)/N , holds at equilibrium.

Values of F (r) were estimated for each pair of sequence with the ratio
Q(r)−Q
1−Q , where Q(r) is the proportion of sites with identical states when the
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Figure 8: True vs. estimated values of the neighborhood size (N vs.

N̂ ). For each number of sampling sites (two on the left and ten on the right),
300 simulated data sets were analysed. The y-value for each dot corresponds to
the posterior median estimate for a given data set. The upper and lower limits
of the colored areas are obtained by fitting a smooth line through the 97.5%
and 2.5% quantiles of the posterior distributions of values of N .

two sequences in the pair are at distance r. Q is the mean of Q(r) values taken
over all the distinct pairs of sequences. Estimates of F (0) were obtained for each
data set by taking the average of the fixation index values for every individual
and its closest neighbor, as suggested by [48].

15 Bayesian estimates of neighborhood sizes

Figure 8 shows the scatterplot of simulated vs. estimated values of the neigh-
borhood size (N ) obtained under the ΛV model.

16 Laboratory-confirmed influenza hospitaliza-
tions

Information about the incidence of influenza in the USA was gathered from the
Centre for Disease Control and Prevention web site. Cumulative incidence rates
per 100,000 population in the USA were fetched from the Influenza Surveillance
Network (FluSurv-NET) database. FluSurv-Net covers over 70 counties in more
than ten states: CA, CO, CT, GA, MD, MN, NM, NY, OR and TN were sampled
every flu season. IA, ID, MI, OK and SD were also sampled in the 2009-2010
season; ID, MI, OH, OK, RI and UT were sampled in the 2010-2011 season; MI,
OH, RI and UT during the 2011-2012 season, IA, MI, OH, RI and UT during
the 2012-2013 season; and MI, OH and UT during the 2013-2014 season.
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Figure 9: Cumulative incidence rate of individuals (per 100,000 pop-
ulation in the USA) that underwent laboratory-confirmed influenza
related hospitalization. Data from http://gis.cdc.gov/GRASP/Fluview/

FluHospRates.html.
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17 Estimation of coalescence rates using Multi-
TypeTree

The MultiTypeTree software from the BEAST2 software package [46, 11] was
used to estimate the rate at which pairs of lineages coalesce under the struc-
tured coalescent model in our simulations. The number of demes was set to
two or ten depending on the simulation setting. Relative rates of migration be-
tween demes were estimated from the data. Log-normal prior distributions with
default hyper-parameter values were used here. The rate of coalescence was esti-
mated in each deme and a log-normal distribution with default hyper-parameter
values was also used to model the prior distribution of the inverse of each of these
rates. Nucleotide sequence alignments were analysed under an HKY model [19]
with a log-normal prior distribution of the transition/transversion ratio. This
ratio along with the nucleotide posterior frequencies were estimated from the
data. The substitution rate was fixed to 1.0 expected substitution per site per
calendar time unit thoughout the tree (i.e., we assumed a strict-clock model).
We used the default values for the tuning parameters and weights of the various
MCMC operators available in BEAST2.

The structured coalescent permits the estimation of the rate at which pairs
of lineages coalesce in a set of demes. Let ri denote the rate of coalescence in
deme i and K the number of demes. Considering all demes, the rate at which
coalescence events occur is

∑K
i=1 ri. The effective size of a diploid population

can be defined as Ne := 1/(2
∑K
i=1 ri). The effective population density is then

ρe := Ne/s. The 2.5%, 50% and 97.5% estimates of the posterior quantiles of ρe
were obtained from the values of ri in each deme sampled from their posterior
distributions and given as output of MultiTypeTree.
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