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Abstract 
 
Nanopore sequencing instruments measure the change in electric current caused by DNA                       
transiting through the pore. In experimental and prototype nanopore sequencing devices it has                         
been shown that the electrolytic current signals are sensitive to base modifications, such as                           
5­methylcytosine. Here we quantify the strength of this effect for the Oxford Nanopore                         
Technologies MinION sequencer. Using synthetically methylated DNA we are able to train a                         
hidden Markov model to distinguish 5­methylcytosine from unmethylated cytosine in DNA. We                       
demonstrate by sequencing natural human DNA, without any special library preparation, that                       
global patterns of methylation can be detected from low­coverage sequencing and that the                         
methylation status of CpG islands can be reliably predicted from single MinION reads. Our                           
trained model and prediction software is open source and freely available to the community                           
under the MIT license. 

Main Text 

Epigenetics is the study of heritable changes in phenotype through a mechanism other than                           
genetic sequence, e.g., DNA cytosine methylation, histone post­translational modifications,                 
chromatin compaction and nuclear organization. The epigenome acts as a cellular memory,                       
retaining information after cell division. The epigenetic state of the cell is critical for regulating                             
gene expression and cellular response to stimuli; it provides a mechanism for the cell to retain                               
information even through multiple generations. Recent projects including the Encyclopedia of                     
DNA Elements​1 and the Epigenetic Roadmap​2 sought to characterize the epigenome.                     
Epigenetic signatures differ between somatic cells and stem cells​3​, between different tissue                       
types​4​, and between normal and cancer samples​4​. Many, if not all, human diseases are a result                               
of erroneous gene regulation, through mechanisms of genetic mutation, altered signal                     
transduction, or epigenetic alteration. 
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The epigenetic state is highly mutable, changing more easily and rapidly than genetic mutation                           
or alteration. This results in epigenetic variation among genetically homogeneous populations, a                       
variation that can grant selective advantage to cells or organisms. This is especially apparent                           
when comparing cancer and normal tissue – though normal tissue has clearly defined                         
epigenetic signatures, cancer epigenetic signatures vary from sample to sample​4​, and even                       
from cell to cell​5​. With the advent of high throughput DNA­sequencing technologies, methods                         
have been developed for examining nuclear organization​6​, chromatin state/histone post                   
translational modifications​7​, chromatin accessibility​8 and methylation state​9​. Currently,               
5­methylcytosine is typically profiled by treating DNA with sodium bisulfite to convert                       
unmethylated cytosine to uracil which is subsequently read as thymine when short read                         
sequenced. This widespread technique is limited in that it requires a separate assay, results in                             
extensive DNA fragmentation​10 resulting in material loss and does not reveal long­range                       
single­read patterns of methylation due to the short read length. The Pacific Biosciences RSII                           
instrument is able to directly detect methylation, without chemical treatment of the DNA prior to                             
sequencing, at both known and novel motifs with long reads via polymerase kinetics​11​.  
 
In previous work it has been shown that 5­methylcytosine can be distinguished from cytosine by                             
careful analysis of the electric current signals that are measured by nanopore­based                       
sequencing devices​12,13​. A nanopore based DNA sequencer, the Oxford Nanopore Technologies                     
MinION, is now commercially available. In this paper we develop and demonstrate a method to                             
directly detect DNA modifications, in this case 5­methylcytosine, based only on the electrical                         
readout of the MinION without any chemical treatment. We characterize the error rate of our                             
approach by sequencing negative and positive control samples and assess the biological                       
context of the methylation patterns we detect using low­coverage human genome sequencing                       
data.   
 
Results 
 
Our results have two main sections. First, we describe the development and training of a                             
probabilistic model of the electric signals measured by the nanopore for DNA containing                         
5­methylcytosine in a CpG context using methylated ​E. coli DNA. Second, we apply this trained                             
model to detect 5­mC using MinION reads of genomic DNA from a human cell line. We compare                                 
the detected methylation patterns to sequenced negative and positive controls consisting of                       
PCR­treated (to remove methylation) and enzymatically methylated (to methylate all CpGs)                     
DNA for the same sample. 
 
Throughout the results we will describe the data sets with a structured name containing the                             
method used to prepare the DNA, the lab that sequenced the sample and the date of                               
sequencing. For example data set PCR­timp­021216 refers to PCR­amplified DNA sequenced                     
by the Timp lab on February 12th, 2016. For a complete description of the data sets we                                 
generated for the study see ​Supplemental Table 5​. 
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Model Development and Training 
 
In previous work we and others have demonstrated how hidden Markov models can be used to                               
analyze nanopore sequencing data ​14–17​. In our HMM we compute the probability of observing a                             
sequence of signal­level ​events measured by the MinION given a nucleotide sequence ​S ​(see                           
the ​Supplementary Note​). In this work we extend our hidden Markov model used for de novo                               
assembly and SNP calling ​14,18​ to detect methylation. 
 
A hidden Markov model contains a set of emission distribution functions that model the                           
probability of some observed data for each state of the HMM. For MinION sequencing data the                               
observations are segmented electric current samples which are termed ​events​. Each event                       
represents a current level measured in picoamps over some interval of time. The emission                           
distribution functions of our HMM (and others’) model the event observations using DNA ​k​­mers                           
(in this work ​k​=6). The emission functions are Gaussian distributions with mean and standard                           
deviation that depends on the sequence of the particular ​k​­mer. For example the probability of                             
observing event  given that it came from ​k​­mer ​k​ is:ei  
 

 
 
Figure 1a shows an example of events, and the corresponding Gaussian distribution, for the                           
6­mer AGGTAG.  
 
Oxford Nanopore provides a reference set of parameters for all 4,096 6­mers over the standard                             
nucleotide alphabet (A,C,G,T) for each of the three “strand models”. The first strand model is                             
called the “template” model and is used for the first strand of DNA that passes through the pore.                                   
The other two models are for the “complement” strand that is sequenced after the template                             
strand when a hairpin adaptor is used to make a “two­direction” (2D) read. The two complement                               
models are called “complement.pop1” and “complement.pop2”. The Metrichor basecaller selects                   
one of the two complement models depending on whether it inferred that double­stranded DNA                           
reformed as the complement strand passed through the pore. 
 
We developed a procedure to learn new parameters ( ​) for each ​k​­mer for each of the                               
three strand models by aligning nanopore reads to a known reference genome. This training                           
method is described in ​Supplementary Note ­ Training Emission Distributions. 
 
To test and validate our training procedure we used nanopore reads from PCR­amplified DNA                           
from two ​Escherichia coli strains, one sequenced sample of K12 MG1655 and two sequenced                           
samples of K12 ER2925. The PCR amplicons are generated without defect or methylation                         
marks, so we expect that events measured by the MinION, and hence our trained parameters,                             
will closely match the ONT reference parameters. To assess this we trained new parameters for                             
the three PCR data sets independently and counted the number of ​k​­mers whose trained means                             
differed from the ONT reference value by more than 0.1pA, 0.5pA, 1.0pA and 2.0pA for each of                                 
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the three strand models. These results are summarized in ​Supplementary Table 1​. For all                           
three PCR samples the trained template and complement.pop1 parameters closely match the                       
values expected from the ONT reference models; very few ​k​­mers have a trained mean that is                               
more than 1pA different than the ONT mean. However, for one of the samples                           
(PCR­timp­113015) the complement.pop2 model has many ​k​­mers with a trained mean more                       
than 1pA different than the ONT value. This result was explained by a low flowcell temperature                               
of 31­32C, relative to the expected 37C, which Oxford Nanopore Technologies indicated might                         
affect the signal levels. We resequenced this sample after eliminating the temperature variation                         
by controlling room ventilation more precisely to obtain the dataset PCR­timp­021216. The                       
trained parameters for this run are consistent with the ONT reference models for all three                             
strands. 
 
We then enzymatically methylated the same two PCR­amplified ER2925 DNA samples from                       
above with M.SssI methyltransferase (Zymo), which converts cytosine in a CpG context to                         
5­mC. We validated the methylation state of these samples using whole genome bisulfite                         
sequencing on an Illumina MiSeq, resulting in 89% and 97% methylation for                       
PCR+M.SssI­timp­113015 and PCR+M.SssI­timp­021216. Each sample was run on its own                   
flowcell and we ran our training procedure for these runs as before. In this case for both runs                                   
and all three strand models we observe many ​k​­mers with trained means that are more than                               
1pA different when compared to the ONT reference models (​Supplementary Table 2​). As these                           
differences are consistent across the two runs and the three strand models, and far exceed the                               
difference we observed for the anomalous sample (PCR­timp­113015 complement.pop2), we                   
conclude that the differences are caused by 5­mC. 
 
Next, we sought to learn a new set of strand models for a ​k​­mer collection that includes                                 
methylated cytosine. We refer to this alphabet as the CpG alphabet which contains the symbols                             
(A,C,G,T,M) where M stands for 5­mC and can only appear in a CpG context. We trained new                                 
parameters over this expanded alphabet by converting all CG dinucleotides in the ​E. coli                           
reference genome to MG​. ​The results of training using the PCR + M.SssI data set (timp­021216)                               
over this expanded alphabet are presented in (​Supplementary Table 4)​. ​Again, we observed                         
many ​k​­mers whose trained means are more than 1pA different than the ONT reference                           
parameters, for all three strand models (in this case we compared the mean for methylated                             
k​­mers to the unmethylated version in the ONT reference model). 
 
To confirm that this effect was not due to simply increasing the alphabet size of the model,                                 
which implicitly trains 7­mers rather than 6­mers for a subset of ​k​­mers, we ran the same                               
procedure on the PCR (unmethylated) datasets in parallel. Here we do not observe the same                             
magnitude of difference for the trained means (​Supplementary Table 3​). ​Figure 1b is an                           
example of a strong difference in signal for 6­mer AGGTMG, between the unmethylated data                           
set PCR­timp­021216 and the methylated data set PCR+M.SssI­timp­021216. We note however                     
that not all 6­mers demonstrate a difference in signal (​Figure 1c​). 
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We determined that the difference in trained mean when compared to the ONT reference model                             
is dependent on the position of the methylated base in the 6­mer (​Figure 2​). When the                               
methylated base is in the 5th and 6th position of the ​k​­mer (​k​­mers with pattern abcd​M​f and                                 
abcde​M) ​we see a consistent shift towards higher current observations. However, when the                         
methylated base is in the first position of the ​k​­mer (pattern ​M​bcdef) very little difference with                               
respect to the ONT reference model is observed. 
 
Detecting methylation in human samples 
 
We applied our model to a biologically relevant sample with a reference methylome to confirm                             
our observations of detectable signal differences from methylated DNA. These experiments use                       
the emission distributions that we trained over the CpG alphabet using dataset                       
PCR+M.SssI­timp­021216 to predict which CpGs are methylated in human samples. 
 
We performed three sequencing runs of genomic DNA extracted from a human female                         
lymphoblast cell line (Coriell NA12878), along with two control runs. We generated a                         
methylation­negative control by sequencing PCR­amplified NA12878 DNA, then treated an                   
aliquot of the PCR amplicons with M.SssI to generate a methylation­positive control. We refer to                             
the three sequencing runs from the Coriell NA12878 as the “natural DNA” dataset, as the cell’s                               
methylation state was preserved. When we analyze all three natural DNA runs jointly we refer to                               
it as the “merged” data set. 
 
We apply our trained model to calculate the log likelihood ratio between a methylated and                             
unmethylated versions of a substring of the reference genome: 
 

 
 
Here is a substring of the reference genome that contains at least one CG dinucleotide (we                                 
consider nearby sites jointly as a group as each event’s current level is affected by multiple                               
bases). is a modified copy of where all CG dinucleotides have been changed to MG.                                 
Presently our model cannot detect non­CG methylation, nor ​k​­mers with a mix of methylated                           
and unmethylated CGs, as our training set is limited to completely methylated or unmethylated                           
sequence. We assume the CG sites under consideration are not hemi­methylated, e.g. both                         
strands are methylated equally, so we sum the log­likelihood ratio from the two strands (indexed                             
by ​j​) of the 2D nanopore reads. The likelihoods are calculated by computing the probability of                               
observing the events aligned to this portion of the reference genome, ​, given the                           
hidden Markov model parameterized by or ​. For complete details of this calculation see                             
Supplementary Note ­ Classifying CpG Sites​. 
 
Figure 3 is a histogram of log likelihood ratios computed from three datasets. In this analysis we                                 
restricted the histogram to only include “singleton sites” ­ the CpG groups described above that                             
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only contain a single CG. The log likelihood ratio distribution for the negative control (PCR) and                               
positive control data sets are clearly shifted to be less than zero (stronger evidence for no                               
methylation) and greater than zero (stronger evidence for methylation), respectively. The                     
histogram for the merged runs of natural NA12878 DNA has a single peak around zero and is                                 
wider than the distribution of the two control samples; this reflects the underlying biology as CGs                               
for natural human DNA consist of a mixture of methylation states. 
 
We then assessed the accuracy of making a binary methylated/unmethylated call for singleton                         
sites from a single 2D nanopore read. We randomly sampled 100,000 singleton sites from each                             
of the negative and positive NA12878 control datasets then used the log likelihood ratio to make                               
a binary classification for each site (if the log likelihood ratio was positive we classified the site                                 
as methylated). We computed accuracy by considering each site from the negative control to be                             
unmethylated and each site from positive control to be methylated as ground truth. When                           
considering all randomly sampled sites this classifier had 82% accuracy for singleton sites. We                           
further characterized the accuracy of per­site methylation detection by setting a threshold on                         
how extreme the log likelihood ratio had to be to make a call at that position (if the absolute                                     
value of the log likelihood ratio was greater than the threshold a call is made, otherwise the site                                   
is ignored). These results are shown in ​Figure 4 for a threshold varying from 0 to 10. In panel A,                                       
we see that the accuracy (1 ­ error rate) improves to over 95% as the stringency for making a                                     
call increases. However, this comes at the cost of making calls at fewer sites (panel B). When                                 
setting a threshold of 2.5 our classifier has 92% accuracy and makes calls at 62% of sites. 
 
We also explored the biological context of our predicted methylation sites. Using a log likelihood                             
threshold of 2.5 we made methylated/unmethylated calls for each group of sites in each sample.                             
We calculated the percentage of called CG sites that were methylated as a function of their                               
distance from an annotated transcription start site. We performed this analysis for the merged                           
natural DNA dataset, the positive and negative controls and a recent bisulfite sequencing                         
high­coverage dataset for the same sample from ENCODE (accession ENCFF279HCL). The                     
results are shown in ​Figure 5​. As expected we observe a tendency for CG sites that are near                                   
transcription start sites to be unmethylated, with percent methylation increasing as distance                       
from the TSS increases. The pattern of methylation for the nanopore calls closely tracks the                             
pattern for bisulfite data. This pattern is consistent across chromosomes (​Supplementary File                       
TSS­by­chromosome) with the exceptions of chromosome 21, which is noisy due to low                         
coverage and few genes, and chromosome X, which has a flatter profile likely resulting from                             
methylation arising from X­inactivation. The percentage of methylated CGs in the negative and                         
positive controls have a low and high percent­methylated profile respectively which is                       
independent of distance from the TSS.  
  
Finally, we compared the percentage of methylation calculated by our nanopore­based method                       
to bisulfite measurements at annotated CpG islands (CGIs). ​Figure 6 show the results for the                             
merged natural DNA data set. We find that the nanopore and bisulfite data have consistent                             
patterns of methylation at CGIs, with overall correlation of 0.84 (Pearson’s correlation                       
coefficient). CGIs that are in an annotated promoter show low levels of methylation, as                           
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expected. Note the quantization of the nanopore data is due to the low coverage of our data set.                                   
Repeating the calculation for our control data sets (Supplementary figures 1 and 2) breaks the                             
correlation. In ​Supplementary Figures 3­5 we show the three individual runs of natural                         
NA12878 DNA to demonstrate that the detected pattern is reproducible across replicates. 
 
Discussion 
 
In this paper we have demonstrated that 5­methylcytosine is identifiable when sequencing                       
natural DNA using Oxford Nanopore Technologies’ MinION instrument. We calculated the                     
accuracy of detecting isolated 5­mCs in a CpG context as 82%, increasing to 95% with more                               
stringent calling thresholds. Our human results used low­coverage data where the interrogated                       
sites were covered by a single nanopore read. In future work, as the throughput of the MinION                                 
and related sequencing instruments grows, we anticipate that the accuracy of our calls will                           
improve by integrating the signals from multiple overlapping reads. 
 
One limitation of our current model is that we used a training data set consisting of completely                                 
methylated DNA, reducing our ability to directly call heterogeneous methylation within a region.                         
This is especially relevant in high CG density regions, so part of our next set of experiments will                                   
be the generation of more extensive training sets for all possible combinations.   
 
There are other types of nucleotide modifications that have functional consequences in protein                         
binding​19 and DNA structure​20 including 5­hydroxymethylcytosine (5­hmC), 5­formylcytosine               
(5­fC) and 5­carboxylcytosine (5­caC). Previous work in research pores has demonstrated                     
discrimination of C, 5­mC, 5­hmC, 5­fC and 5­caC in a research setting; it seems likely that the                                 
general trend of detection via modulation of the nanopore current will hold true in any type of                                 
pore based sequencing​21​. We are also interested in training for adenosine variants ­                         
N6­methyladenosine has recently been shown to occur naturally in ​Drosophilia​22 ​and ​C. elegans                         
genomes​23​, even in mouse embryonic stem cells​24​. Exogenous methylation application also has                       
applications in research and discovery of nuclear architecture or protein occupancy, e.g.                       
damID​25 or NOME­seq​26​. Finally, general models of other DNA damage, resulting from heavy                         
metals, oxidation, UV damage or other alterations might be detected in natural DNA with this                             
method ­ these changes are otherwise impossible to probe on a single­base level. In future work                               
we will train models for these base modifications to generate a unified calling model that can be                                 
applied to detect interleaved patterns of these methylation marks for human DNA, allowing                         
comprehensive epigenetic profiling from a single assay. 
 
Methods 
 
We prepared and sequenced bacterial and human DNA samples under a variety of conditions                           
using the MinION instrument. We generated data in two laboratories (Johns Hopkins University                         
and the Ontario Institute for Cancer Research). ​Supplemental Table 5 presents the metadata                         
for each sequencing run we produced including the combination of protocols used to prepare                           
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and sequence the DNA, where the library was prepared and sequenced, how much data was                             
generated and the ENA accession number. 
 
E.coli and NA12878 unmethylated, M.SssI treated and native 
 
Escherichia coli K12 ER2925 unmethylated genomic DNA (Zymo Research) and genomic DNA                       
from CEPH lymphoblastoid cell line NA12878 (Coriell Biorepository) were sheared to 8kb using                         
Covaris G­tubes, by centrifuging 50 ng of sample in 45 ul of water at 2350x g for 1 minute, then                                       
inverting and centrifuging again with the same conditions. The sheared sample was end                         
repaired and dA­tailed using the Ultra II end repair module (NEB), and PCR adapters (Oxford                             
Nanopore Technologies) were ligated on using Blunt/TA Ligase Master Mix (NEB). The sample                         
was amplified with LongAMP master mix (NEB). Half of the PCR product was set aside for                               
sequencing (unmethylated control), and half was subjected to enzymatic methylation with                     
M.SssI methyltransferase (CpG methylase, Zymo), which converts nearly all cytosines in a CpG                         
context to 5­mC. The standard Zymo methylation protocol was followed, with modifications                       
made to S­adenosylmethionine concentration (16 mM), enzyme concentration (8 units) and                     
incubation time (18 hours). Natural ​E. coli ER2925 and NA12878 was also sheared and end                             
repaired according to the methods described above.  
 
Sequencing samples on MinION 
 
Samples were prepared for sequencing following the protocol in the genomic sequencing kit                         
SQK­MAP006 (ONT). Approximately 1 ug of DNA prepared as described above was end                         
repaired and dA­tailed (NEB), then subsequently cleaned with 1X Ampure XP (Beckman                       
Coulter) and eluted in water. Adapter ligation using Blunt/TA Ligase Master Mix (NEB) affixed                           
leader and biotinylated hairpin adapters on either end of the library molecules (SQK­MAP006                         
Genomic DNA Sequencing Kit, Oxford Nanopore), along with loaded motor proteins on leader                         
adapters and tether molecules designed to bind to the synthetic membrane surface of the pore                             
array. My­One Streptavidin C1 Dynabeads (Thermo Fisher) were used to enrich for library                         
molecules containing the biotinylated hairpin. Libraries were eluted off streptavidin beads using                       
elution buffer (Oxford Nanopore), added to Running Buffer and Fuel Mix, and loaded on the                             
MinION Mk1 sequencer and run for up to 48 hrs. The PCR­treated and PCR+M.SssI treated                             
NA12878 samples were prepared at JHU and sequenced at OICR, all other samples were                           
prepared and sequenced within the same lab (​Supplementary Table 5​).  
 
The ​E. coli K12 MG1655 run of PCR­amplified DNA was obtained from a public source (see                               
accession below). 
 
Illumina validation 
 
E. coli and reduced representation samples were assayed for CpG methylation content using                         
bisulfite sequencing with the Illumina Miseq. 500 ng of ​E. coli DNA was sheared to 300bp using                                 
the Bioruptor Pico (Diagenode), then end­repaired and dA­tailed using NEBNext Ultra II library                         
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prep kit (NEB). Methylated adapters (NEB) were ligated on using Blunt/TA ligase Master Mix,                           
then libraries were bisulfite converted (Zymo Methylation­Lightning). Libraries were then                   
amplified using indexed primers following NEB recommendations, but using Kapa Hifi Uracil as                         
the polymerase. 10 ng of reduced representation samples MDA­MB­231 and MCF10A were                       
prepared for Illumina sequencing using Accel­NGS Methyl­Seq (Swift Biosciences). All samples                     
were sequenced on an Illumina Miseq at JHU using v3 150 chemistry.  
 
Computational Methods 
 
The details of our probabilistic model, training and classification algorithms and a description of                           
analysis method we used to generate the results presented above are contained in the                           
supplement. Our analysis pipeline is reproducible and documented in the GitHub repository:                       
https://github.com/jts/methylation­analysis​. Our training and classification code is in               
https://github.com/jts/nanopolish​.  
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Figure 1: Differences between methylated and unmethylated 6-mers.
Panel A is a histogram of the measured event current levels aligned to 6-mer
AGGTAG for E. coli PCR sample (timp-021216). The solid red line is the Gaus-
sian distribution fit to these observations. In panel B the measured events and
Gaussian fits are shown for 6-mer AGGTMG for a methylated (blue) and unmethy-
lated (red) data set. In panel C are the events and Gaussian fit for 6-mer TMGAGT
for the same two data sets. In all panels the events shown are from the template
strand.
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Figure 2: Position dependence of methylation parameter shift. A
histogram of the difference between the trained mean for the methylated
(PCR+M.SssI-timp-021216) dataset and the ONT reference model. Each pane
is a set of k-mers from one of the three strand models (columns). Each row is the
subset of k-mers with the methylated base in the first position (Mbcdef), the
second position (aMcdef), and so on. We only included k-mers that contained
a single methylation position. We restrict the plotting range to differences in
the range -4 to 4 so some outliers are not shown.
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Figure 3: Log Likelihood Ratio comparison for human samples. A
histogram of the log likelihood ratios for unmethylated NA12878 DNA (top
pane), methylated NA12878 DNA (middle pane) and natural NA12878 DNA
(bottom pane). In these figures we only include singleton sites.
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Figure 4: Methylation classifier error rate vs threshold. Panel A shows
the error rate of the binary methylated/unmethylated classifier as a function of
the log likelihood ratio threshold required to make a call. Panel B shows the
number of calls made as a function of the threshold.
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Figure 6: NA12878 CpG island methylation. In the main panel each
point is an annotated CpG island in the human genome that was covered by
both bisulfite sequencing data and nanopore reads from the merged natural
NA12878 DNA data set. The x-coordinate of the point is the percentage of
CpGs in the island that were predicted to be methylated from bisulfite data.
The y-coordinate is the percentage of CpGs predicted to be methylated by our
model using the nanopore data. The points are colored by whether the CGI is
in a promoter(blue) or not(red). The histograms on the top and right of the
figure are the marginal distributions of methylation percentages for the bisulfite
and nanopore calls respectively.
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1 Supplementary Note

1.1 The nanopolish hidden Markov model

In previous work [1, 2] we developed a hidden Markov model to calculate the probability of observing a
sequence of electric current events e1, . . . , en (measured by the MinION) given a nucleotide sequence S.
The nucleotide sequence S parameterizes the hidden Markov model; S determines the structure of the
model, the transition probabilities and emission distributions used in each state.

The hidden Markov model has a block of states for every k-mer of S (in this work k = 6) with each
block containing a match state (indicating a particular event was observed from a particular k-mer), a
extra state (indicating additional observations of events from a particular k-mer, reachable from the
match state) and a skip state (indicating no event observations for a k-mer). In addition we have a
softclip state that allows events at the start and end of the event sequence to go unaligned, to account
for uncertainty in the end points of the event sequence.

Throughout this text we will refer to the likelihood of a sequence S, which is defined to be the
probability of observing the sequence of events given the hidden Markov model parameterized by S:

L(S|e1, . . . , en,Θ) = P (e1, . . . , en|S,Θ)

Here Θ is the complete set of model parameters; the transition distributions are as previously de-
scribed [1]. In the next section we describe the emission distributions.

1.1.1 Emission distributions

We follow the Oxford Nanopore Technologies basecaller (Metrichor) by modeling the probability of
observing an event ei given that the true sequence in the pore is k-mer k using a Gaussian distribution:

P (ei|k,Θ) = N (a+ bµk + cti, (dσ)2) (1)

where:

• ei: the measured current level for event i

• ti: the time at which event i is observed

• k: the k-mer

• µk: the mean current level for k-mer k

• σk: the standard deviation of the current level for k-mer k
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• a: the Metrichor shift parameter

• b: the Metrichor scale parameter

• c: the Metrichor drift parameter

• d: the Metrichor var parameter

The Metrichor parameters a, b, c, d are used to capture read-specific deviations from the base model
N (µk, σ

2
k). These values are provided within the HDF5-formatted FAST5 files. In this work we use these

values without modification.
Equation 1 is the emission distribution for the match states of the HMM where k is the k-mer

corresponding to the state. The emission distribution for the extra states has a similar form but we
scale the standard deviation by an additional factor v to account for more noise in the subsequent
observations from a k-mer (refer to [1] for more details). The skip state does not emit observations.
The softclip state has a log-scaled emission probability of -3.0 independent of the event observation.

When base-calling a read, Metrichor selects a set of emission distributions from one of three models,
depending on the inferred physical properties of the sequenced DNA. These models are called “template”,
“complement.pop1” and “complement.pop2”. The template model is always used for the first sequencing
strand; if a hairpin is detected, one of the two complement models is selected for the second strand.
Within our hidden Markov model we always use the same strand model selected by Metrichor. When
training new emission distributions later we will train the three strand models separately.

It is our goal to calculate whether a particular reference base is methylated. To do this we need to
expand upon the provided ONT models to include k-mers that contain methylated bases.

1.1.2 Expanding the emission alphabet

Previously our hidden Markov model used the four base nucleotide alphabet Σnuc = {A, C, G, T}. The
ONT-provided strand models therefore consisted of 46 = 4096 different Gaussian distributions.

To handle methylation we expand the alphabet to include a new symbol M representing 5-methylcytosine
(ΣCpG = {A, C, G, T, M}). This increases the number of emission distributions to 56 = 15625, but as we
are only interested in measuring 5mC in a CpG context in this work, many of these k-mers are invalid
methylation sites. For example AMTAGA is an invalid k-mer in this model as the methylated cytosine is
not followed by a G but GTAMGA and ACGATM are valid k-mers. In the main text we refer to this as the
CpG alphabet.

Later we will refer to the unmethylated version of a k-mer. By this we mean changing all of the M

symbols to C. For example AACGAA is the unmethylated version of AAMGAA.

1.2 Training Emission Distributions

In this section we describe how we use MinION reads aligned to a known reference genome to learn new
parameters for the emission distributions for each k-mer for each of the three ONT strand models.

First we extract the “two-direction” (2D) reads from a MinION run using poretools [3]. In this
study we use both “pass” and “fail” reads as reads containing methylated CpGs may have lower quality
scores. We then use bwa mem -x ont2d [4] to align these reads to the reference genome. Reads that
were ambiguously mapped (mapping quality 0) were discarded. We iterate over the 2D reads aligned in
base-space and realign them in event-space using the method described below in section 1.2.1. During
this procedure we collect a list of events aligned to each k-mer for each ONT strand model. An event
is used if it is not in the first or last 5 events of the alignment, if it was aligned to a match state of
the HMM and if its duration is at least 5 milliseconds. After realigning all reads we use the procedure
described in section 1.2.2 to learn new parameters µ′k, σ

′
k for all k-mers with at least 100 aligned events.

After new parameters are learned we start again from the realignment step for a total of five iterations.
We use the region from 50, 000 bp to 3, 250, 000 bp of the E. coli K12 MG1655 reference genome for

training over the nucleotide alphabet. We initialize the Gaussian parameters to the values in the ONT
models.

Prior to training k-mers over the CpG alphabet we change all CG dinucleotides in the reference to MG.
We use the same training region as above. The initial Gaussian parameters for unmethylated k-mers are
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taken from the ONT models. For methylated k-mers the parameters are initialized to the parameters
for the unmethylated version of the k-mer.

1.2.1 Aligning Events to k-mers

We use the Viterbi algorithm [5] on our HMM to obtain an alignment between events and k-mers of S.
When S is a known substring of a reference genome, we therefore obtain an alignment between events
measured by the MinION and reference k-mers.

To reduce compute time we align events to the reference genome in segments of 50 events using the
base-space alignments as a guide. We progressively align each segment using the aligned coordinates
of the previous segment to calculate the start point. This progressive event alignment algorithm is
implemented in the function align read to ref in nanopolish eventalign.cpp.

1.2.2 Fitting a Gaussian Mixture Model

Let Ex = (e′1, . . . , e
′
n) be the events aligned to k-mer x where e′i = ei−ai−citi

bi
is a transformation of

ei to account for the Metrichor shift, scale and drift parameters. To account for incomplete enzymatic
methylation in the training data set, we fit a two-component Gaussian mixture model to Ex when x
contains a methylated base (eg x has an M symbol):

P (e′i) = w1N (µ1, (diσ1)2) + w2N (µ2, (diσ2)2)

Here w1, w2 are mixture weights representing the proportion of events that originate from methylated
and unmethylated sequence, respectively (w1+w2 = 1). Similarly, µ1, σ1, µ2, σ2 are Gaussian parameters
for methylated and unmethylated versions of x.

We fit wj , µj , σj using ten iterations of the expectation-maximization algorithm. Let Zi be a random
variable indicating the component observation i comes from and xj be the k-mer for the j-th component
of the mixture. First we calculate the responsibility of component j for observation i:

ri,j =
P (ei|Zi = j, xj ,Θ)wj∑2
j=1 P (ei|Zi = j, xj ,Θ)wj

We update the weights and Gaussian parameters as follows:

w′j =

∑n
i=1 ri,j
n

µ′j =

∑n
i=1 ri,je

′
i∑n

i=1 ri,j

σ′j =

∑n
i=1 ri,j(

e′i−µ
′
j

di
)2∑n

i=1 ri,j

When training k-mers with a methylation site we initialize w1 = 0.95 and set the parameters for the
k-mer to be µ′1, σ

′
1 from the final iteration. When training k-mers that do not contain methylation sites

we simply fit a Gaussian distribution using equations similar to the µ′j and σ′j updates above.

1.2.3 Training Data Sets

In the main text we describe how we generated two types of training data - one type is PCR amplified
DNA, to remove any methylation and DNA damage, and the other type is PCR amplified DNA treated
with M.SssI, which will methylate nearly all cytosines in a CpG context. We train using both types of
data over the both the nucleotide and CpG alphabet, generating four combinations of data type/alphabet
(as shown in Supplemental Tables 1-4 and discussed in the results of the main text). We note however
that not all k-mers over the CpG alphabet can be trained. As we change all CG dinucleotides in the
reference genome to MG, there will be no events aligned to k-mers containing a CG and these will go
untrained, defaulting to the ONT-provided values. Importantly k-mers with a mixture of methylation
sites (like ACGMGT) cannot be trained. This limitation has an important effect on calling methylation,
which we discuss in 1.3.
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1.2.4 Assessing Model Training

The output of our training method is a new set of parameters (µ′k, σ
′
k) for every trained k-mer in the

alphabet, for each of the three strand models. To assess how well our training step performs we compared
the trained parameters to the ONT-provided parameters (µk, σk). We counted the number of k-mers
where the difference in means was greater than a threshold, |µ′k−µk| ≥ t, for t ∈ (0.1, 0.5, 1.0, 2.0). This
analysis code is in generate training table.py.

1.3 Classifying CpG sites

In this section we describe how we call CpG sites for sequenced human genomes using our trained model.
First we describe the terminology we will use and give a high-level overview of the algorithm. In the
subsequent sections we describe the individual steps in more detail.

We will refer to a substring of the reference genome that we are testing for methylation as SR.
Below, we will construct SR such that it contains at least one, and possibly multiple, CG nucleotides plus
flanking sequence that does not contain a CG. We will refer to the CGs within SR as a group of sites.
We group sites together as the measured event current levels do not correspond to a single base but
rather a k-mer. For this reason we must jointly test closely-separated CGs for methylation in the same
manner that we tested haplotypes containing combinations of SNPs in previous work [2]. However, a
limitation of our training data is that it consists of completely methylated genomic DNA and we are
unable to train k-mers with a mixture of methylation patterns (for example we cannot train the k-mer
ACGTMG). When testing for methylation we assume all sites in the group have the same methylation
status. We refer to the methylated version of SR as SM . For example if SR = AAAACGCGAAAAA then
SM = AAAAAMGMGAAAAA. This assumption is reasonable as it is expected that the methylation status of
nearby sites is correlated [6, 7]. In future work we aim to remove this assumption. Often SR will contain
only a single CG dinucleotide. We call these cases ”singleton sites” and for some analyses later we will
only consider such sites.

Our procedure for classifying CpG sites as methylated or not has two main steps. First we align
basecalled nanopore reads to a reference genome and use the alignments to find and group the CG sites
that are covered by a read. We then call each group as methylated or unmethylated using log likelihood
ratios. We describe the two main components of the algorithm separately in the following sections.

1.3.1 Alignment and CpG site discovery

We begin by extracting 2D nanopore reads (pass and fail) for the run using poretools. We align the
extracted reads to the human reference genome (build GRCh38.p5 downloaded from Gencode) using
bwa mem -x ont2d. Reads that are ambiguously mapped (mapping quality 0) are discarded. For each
remaining aligned read we iterate over the aligned segment of the reference genome and extract the
locations of the CG dinucleotides. Let c1, . . . , cn be the reference coordinates of the extracted CG sites for
the current read. We partition the list of covered CG sites into groups that are separated by at least 10bp.
Each group is tested for methylation independently. Let cs and ce be the position of the first and last
CG in the current group. We extract the reference substring, SR, along with 10bp of flanking sequence:
SR = reference[cs − 10 : ce + 10]. We also extract from the aligned nanopore reads the template and
complement events aligned within the reference range [cs−10, . . . , ce+ 10]. We calculate a log likelihood
ratio between SM and SR using the method described 1.3.2 for the template and complement strands
independently. We assume the sequenced DNA is not hemimethylated so the log likelihood ratio for
the group is the sum of the log likelihood ratio for the two independent strands. This ratio, along with
the reference coordinates of the group, the number of CpG sites in the group, and SR is output in a
BED-formatted file for downstream analysis.

1.3.2 Calculating likelihood ratios

In the previous section we described how we extract SR, a substring of a reference genome that contains
one or more CG sites and at least 10bp for flanking sequence that does not contain a CG. SR, along with a
sequence of events ej,1, . . . , ej,nj

from sequencing strand j (either template or complement) of a nanopore
read is the input into the likelihood ratio calculation. Recall that SM is defined to be a modified version
of SR where all CG dinucleotides are converted to MG.
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In section 1.1 we defined the likelihood of an arbitrary sequence S to be the probability of observing
the sequence of nanopore events given a hidden Markov model parameterized by S. To calculate the
likelihoods used in this section we use the same method however we now use the trained emission
distributions over the ΣCpG alphabet for both SM and SR. Thus, the likelihood ratio between the
completely-methylated and unmethylated reference sequence is:

L(SM |ej,1, . . . , ej,nj
)

L(SR|ej,1, . . . , ej,nj
)

The log likelihood ratio used in section 1.3.1 is simply the log of this value, summed over the two
strands:

LogLikRatio(SM ) =
2∑
j=1

log(L(SM |ej,1, . . . , ej,nj
))− log(L(SR|ej,1, . . . , ej,nj

))

1.3.3 Classification

In some analyses we will make a binary methylated or unmethylated classification for groups of CG

sites rather than working directly with the log likelihood ratio. To improve the accuracy of this binary
classification we set a threshold t on how extreme the log likelihood ratio must be to make a call. For
a group consisting of n CG sites, we only make a call if |LogLikRatio(SM )| > nt otherwise the group is
ignored. When calling a group, we say that n sites are called and of the called sites n are methylated if
LogLikRatio(SM ) > 0.

1.3.4 Source code

The complete source code for the methods described in this section can be found in function
calculate methylation for read in nanopolish methyltest.cpp.

1.4 Evaluating Accuracy

To evaluate the accuracy of our methylation predictions we randomly sampled 100, 000 singleton sites
(groups containing only one CG) from each of the unmethylated and methylated NA12878 control samples.
We then calculated the number of these sampled sites that were correctly identified as methylated or
unmethyated, where the truth for each site was defined to be the data set that site originated from (all
sites sampled from the methylated data set were considered to be truly methylated and vice-verse). We
performed this analysis for call thresholds t ranging from 0 to 10. In Figure 4 of the main text we plot
the error rate of this classifier and the total number of calls as a function of t. This analysis code is in
calculate call accuracy.py.

1.5 Transcription Start Site Analysis

To calculate the percentage of CpGs that were methylated as a function of the distance to a transcription
start site (TSS) we generated a new database of TSSs using the script
https://github.com/sdjebali/MakeGencodeTSS on the Gencode v24 release
(http://www.gencodegenes.org/releases/24.html). This procedure is documented here:

https://github.com/jts/methylation-analysis/blob/master/annotations/README

We then used bedtools closest -D [8] to calculate the distance between each call and a TSS for both
the bisulfite data and the three nanopore data sets (NA12878 natural DNA and the two controls). We
parsed the resulting annotated BED files and counted the total number of CpG sites covered by a read
and the number of those sites called as methylated in 50bp bins in the range -3000bp to 3000bp. Here
negative distances refer to sites that are upstream of the TSS and positive distances are downstream of
the TSS. For the nanopore data we set the call threshold at 2.5. When a called group in the nanopore
data set had multiple CpG sites, they were counted together. For example if a group had 3 CpG sites
and the group was called as methylated, we counted 3 methylated calls in the corresponding bin.
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In Figure 5 in the main text we plot the aggregated results for the autosomes. In Supplementary
File TSS-by-chromosome we plot the results chromosome-by-chromosome.

The analysis code is in calculate methylation by distance.py

1.6 CpG Island Analysis

We downloaded a database of CpG islands (CGI) for the GRCh38 reference genome from the UCSC
genome browser. We generated a BED file of promoters regions defined as 2000bp upstream and 200bp
downstream of the TSSs described above. We used bedtools map to annotate whether each CGI was
within a promoter. We then used bedtools intersect to find all methylation calls that overlap an
annotated CGI for the bisulfite data and all nanopore data sets. For each CGI we calculate the per-
centage of methylated CpGs by counting the total number of CpGs in the CGI that were covered by a
read and counting the number of those CpGs that were classified as methylated. This is implemented
in calculate methylation at cpg islands.py. In the output figures we plot the bisulfite percent
methylated against one of the nanopore datasets for CGIs that were covered by reads in both datasets.

1.7 Reproducibility

The analysis pipeline is implemented as a Makefile that begins from the raw data downloaded from the
ENA, downloads dependencies and versioned analysis code, runs our training method, calls methylation
for the human nanopore runs and generates the tables and figures in this paper. This Makefile, which is
annotated with a description of each step, is located on github:

https://github.com/jts/methylation-analysis/blob/master/pipeline.make
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2 Supplementary Tables

model sample run training events trained kmers 0.1 0.5 1.0 2.0

template
E. coli ER2925 (PCR) timp 113015 70M 4096 3257 589 16 0
E. coli ER2925 (PCR) timp 021216 123M 4096 2261 72 3 0
E. coli K12 (PCR) loman 250915 76M 4096 2149 50 2 0

comp.pop1
E. coli ER2925 (PCR) timp 113015 23M 4091 3041 417 21 0
E. coli ER2925 (PCR) timp 021216 25M 4091 2613 219 19 0
E. coli K12 (PCR) loman 250915 14M 4086 2551 221 23 0

comp.pop2
E. coli ER2925 (PCR) timp 113015 44M 4095 3392 1305 283 4
E. coli ER2925 (PCR) timp 021216 89M 4096 2497 224 21 1
E. coli K12 (PCR) loman 250915 56M 4096 2095 77 9 0

Table 1: Model training results for PCR-treated DNA over the nucleotide alphabet. The final four fields
are the number of k-mers where the mean of the trained Gaussian differs from the ONT-trained mean
by more than x pA.

model sample run training events trained kmers 0.1 0.5 1.0 2.0

template
E. coli ER2925 (PCR+M.SssI) timp 113015 102M 4096 3163 952 344 47
E. coli ER2925 (PCR+M.SssI) timp 021216 77M 4096 2619 773 318 62

comp.pop1
E. coli ER2925 (PCR+M.SssI) timp 113015 24M 4091 3291 1178 353 32
E. coli ER2925 (PCR+M.SssI) timp 021216 10M 4071 2874 884 289 44

comp.pop2
E. coli ER2925 (PCR+M.SssI) timp 113015 72M 4096 3335 1358 641 155
E. coli ER2925 (PCR+M.SssI) timp 021216 62M 4095 3046 1011 553 184

Table 2: Model training results for PCR+M.SssI-treated DNA over the nucleotide alphabet. The final
four fields are the number of k-mers where the mean of the trained Gaussian differs from the ONT-trained
mean by more than x pA.

model sample run training events trained kmers 0.1 0.5 1.0 2.0

template
E. coli ER2925 (PCR) timp 113015 70M 5120 4077 867 76 38
E. coli ER2925 (PCR) timp 021216 123M 5120 2972 158 18 6
E. coli K12 (PCR) loman 250915 76M 5120 2781 110 16 9

comp.pop1
E. coli ER2925 (PCR) timp 113015 23M 5107 3873 632 80 11
E. coli ER2925 (PCR) timp 021216 25M 5107 3390 468 76 1
E. coli K12 (PCR) loman 250915 14M 5097 3333 351 48 5

comp.pop2
E. coli ER2925 (PCR) timp 113015 44M 5117 4240 1650 458 33
E. coli ER2925 (PCR) timp 021216 89M 5119 3251 417 71 5
E. coli K12 (PCR) loman 250915 56M 5119 2872 180 33 2

Table 3: Model training results for PCR-treated DNA over the cpg alphabet. The final four fields are
the number of k-mers where the mean of the trained Gaussian differs from the ONT-trained mean by
more than x pA.
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model sample run training events trained kmers 0.1 0.5 1.0 2.0

template
E. coli ER2925 (PCR+M.SssI) timp 113015 101M 5120 4006 1683 997 331
E. coli ER2925 (PCR+M.SssI) timp 021216 77M 5120 3339 1554 1038 303

comp.pop1
E. coli ER2925 (PCR+M.SssI) timp 113015 24M 5108 4248 1900 971 307
E. coli ER2925 (PCR+M.SssI) timp 021216 10M 5068 3743 1631 960 320

comp.pop2
E. coli ER2925 (PCR+M.SssI) timp 113015 72M 5120 4255 2028 935 302
E. coli ER2925 (PCR+M.SssI) timp 021216 62M 5120 3874 1665 927 300

Table 4: Model training results for PCR+M.SssI-treated DNA over the cpg alphabet. The final four
fields are the number of k-mers where the mean of the trained Gaussian differs from the ONT-trained
mean by more than x pA.

structured name library/sequencing lab library protocols 2D yield accession

ecoli er2925.MSssI.timp.100215 Timp/Timp MSssI + ONT gDNA sequencing kit 54.8 Mbp ERR1309542
ecoli er2925.MSssI.timp.100615 Timp/Timp MSssI + ONT gDNA sequencing kit 89.5 Mbp ERR1309543
ecoli er2925.native.timp.102615 Timp/Timp ONT gDNA sequencing kit 94.6 Mbp ERR1309544
ecoli er2925.native.timp.110915 Timp/Timp ONT gDNA sequencing kit 107.1 Mbp ERR1309545

ecoli er2925.pcr MSssI.timp.113015 Timp/Timp ONT gDNA low input (SssI modification) 243.8 Mbp ERR1309549
ecoli er2925.pcr.timp.113015 Timp/Timp ONT gDNA low input 165.4 Mbp ERR1309547

NA12878.native.simpson.101515 Simpson/Simpson ONT gDNA sequencing kit 121.6 Mbp ERR1309550
NA12878.native.simpson.103015 Simpson/Simpson ONT gDNA sequencing kit 88.9 Mbp ERR1309551

NA12878.native.timp.093015 Timp/Timp ONT gDNA sequencing kit 92.2 Mbp ERR1309552
NA12878.pcr MSssI.simpson.021016 Timp/Simpson ONT gDNA low input (SssI modification) 80.2 Mbp ERR1309554

NA12878.pcr.simpson.021616 Timp/Simpson ONT gDNA low input (Timp) 177.8 Mbp ERR1309553
ecoli er2925.pcr.timp.021216 Timp/Timp ONT gDNA low input 309.5 Mbp ERR1309546

ecoli er2925.pcr MSssI.timp.021216 Timp/Timp ONT gDNA low input (SssI modification) 211.3 Mbp ERR1309548

Table 5: Metadata for sequencing experiments generated for this study
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3 Supplementary Figures

0

100

200

300

400

0 25 50 75 100

co
un

t Is CGI in a promoter?

●

●

FALSE

TRUE

● ●●● ●● ●●● ● ●● ●● ● ●●

●

●●●●

●

●●●●●●● ● ●●●●

●

● ●●●●● ●●● ●
●

● ●

●

●●

●

●●

●

●● ●● ●●● ●●

●

●

●

●

●● ●●●●●●

●

●

●
●●

●

●

●

● ●● ●●● ●● ●

●

●
●●●

●

●● ● ● ●●● ● ●● ●● ●●● ●●● ●

●●

●

●● ●
●

● ●

●

●●●●

●

●● ● ●●●● ●● ●
●

●

● ●●

●

● ●● ●● ●●

●

●●● ●●●●

●

●●● ● ● ●●● ●● ●●● ●

●

●● ●

●

●

●

●

●●

●

●●● ●

●

●● ●

●

●●●● ● ●●

●

●

●

●●●● ●●
●

●● ●●●●●● ●

● ●

●● ●

●
●

●

● ●●

●

●

●

●

●● ●● ●●●

●

●

●

●
●●● ●●

●

●● ●

●

●

●
●

●

●●

●

●●●

●

●●●●● ● ●●●● ●

●

●●●●●●●● ● ●● ● ●● ● ●●

●

●●●●●●●●●●● ●

●

●

●● ●●●

●

●

●

●● ● ●●● ●●● ●●

●

●●

●

●● ● ●●●●● ● ●● ● ●

●

● ●

●

● ●●●● ● ●
●

● ●● ●

●

●

●

●

●● ●● ●●

●

●●● ● ●●● ●● ● ●● ●● ● ●●●●

●

●●

●

●

●

●

●

●●●●● ●●● ●

●

●● ●●

●

● ●●●● ●● ●●● ●●● ●●● ●●

●

● ●●●

●

●

●●●● ●● ● ●●●●●● ● ●●● ●●●●●● ●

●

●

●

●

●

●

●

● ●● ●●●

●

●
●

●●● ● ●●

●

● ●●●

●

●

●

● ● ●●● ● ● ●● ● ● ●

●

●● ●●● ● ●●● ● ●●● ●● ●● ●● ●●● ●●●

●

●●

●

●● ● ●●●

●

●● ●●● ●● ●●●● ●● ●●

●

●●

●

●●● ●● ●● ● ●●● ● ●●●●●

●

●
●

●● ●●●● ●

●

● ● ● ● ●●● ● ● ●●●●

●

●● ●●●● ●● ● ●●● ●● ● ●● ● ●●● ●● ●● ●●●●●●● ●● ●● ● ● ●●

●

●

●●

●

● ●● ●●● ●

●

● ●●● ●●●●
●
● ●

●

●●● ●

●
●

●

●

●

●● ● ●
●

●

●

●●

●

●●●

●

●●● ●

●

●●● ●●●

●

●●●● ●●

●

●

●

●

●

●

●

●●● ●● ●●●

●

●● ●

●

● ● ●●

●

●

● ●● ●

●

●●●● ●●

●

● ●●●● ●●●●

●

●●● ●

●

●●

●

●● ●● ●●

●

●●● ●● ●● ● ●● ● ● ●● ●●

●

●● ●●

●

●● ●● ●

●

● ●●●● ●● ●

●

●

●

●

●

●
●

●

● ●● ●● ●

●

●

●

●

●●●● ●●● ●

●

●●●●●●● ●

●

● ●●● ●● ●● ● ●
●

● ●● ●●● ● ●

●

● ●●●● ●●● ●●●● ●●

●

●

●

●

●● ●●●●●

●

●

●● ●●● ●

●

●●

●

● ●● ●●● ●● ●

●

● ●●● ● ●● ●

●

●
●

●

●

●

●● ●

●

●
●

●●

●

●●●●

●

●

●

●●

●

● ●
●

●● ●●● ●

●

●● ● ●●●●●

●

● ●● ●●●●● ●

●

●●●

●

●

●

● ●●

●

●●● ●●

●

●●

●

●

●

●

●●● ●● ● ●

●

●●● ●●

●

●

● ●●● ●●● ● ●
●

●

●

● ●
●

●●●●●● ●

●

●

●

● ●

●

●● ●

●

●●●

●

●

●●

●

●●

●

● ●●●

●

● ●

●

● ●● ●●● ● ●

●

●●

●

●

●●●●

●

●
●

●●

●

● ●● ●● ●
●

●

●

●

●

● ●●●● ● ●●●●
●

●

●

●● ●● ● ●●

●

●

● ●
●

●●●● ●●

●

●● ● ●●●● ● ●● ●

●

●●● ● ●

●

●●●● ●

●

●

●

●● ● ● ●● ●●●● ●● ●● ●

●

● ●●● ●

●

●● ●

●

●

●● ● ●●●●●●●● ●●● ●

●

●● ●● ●

●

●

●●●

●

●
●

● ●●● ●

●

●

●

●

●●

●

●●●

●

●

●●●●● ● ●●● ●●

●

● ● ●

●

●●●● ●● ●●●●

●

●●●● ●
●●

● ●●●
●

●

●

●

●

●

● ●●

●

●

●

●●●●●● ●● ●●

●

● ●●●● ●●● ●●

●

●● ●● ● ● ●● ●

●

●●

●

●● ●●●● ●● ●● ●●● ●●● ●

●

●● ●

●

● ●● ● ●● ●

●

● ●●

●

●●●● ●●● ●● ●

●

● ●● ●●●● ●

●

●● ●

●

●● ●

●

●● ●●

●

● ●●

●

●

●

●●● ● ●● ●●

●

●●

●

●●● ● ●●

●
●

●

0

25

50

75

100

0 25 50 75 100
Percent methylated (bisulfite)

P
er

ce
nt

 m
et

hy
la

te
d 

(n
an

op
or

e)

0

25

50

75

100

0 300 600 900 1200
count

Figure 1: Bisulfite vs nanopore CGI methylation for the dataset PCR-simpson-021616
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Figure 2: Bisulfite vs nanopore CGI methylation for the dataset PCR+M.SssI-simpson-021016
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Figure 3: Bisulfite vs nanopore CGI methylation for the dataset natural-timp-093015
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Figure 4: Bisulfite vs nanopore CGI methylation for the dataset natural-simpson-101515
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Figure 5: Bisulfite vs nanopore CGI methylation for the dataset natural-simpson-103015
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