










Figure 6. Power and polygenic score R2 plots, with in each plot h2

on the x-axis and cross-study genetic correlation on the y-axis. The
first row shows predictions from the theoretical model. Subsequent rows show
estimates based on respective simulation studies. The first column shows power
per causal SNP. The second column the R2 of a polygenic score in a hold-out
sample. Above each plot, the root-mean-square error (RMSE) is reported for the
difference between predictions from the theoretical model and the simulation-based
estimates.
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underlying our theory (Simulation 3), the RMSE in power remains below 3% and the RMSE in R2 of the 623

PGS below 0.2%. 624

S4 Data and Quality Control 625

Genotype data In the bivariate and univariate genomic-relatedness-matrix restricted maximum likelihood 626

(GREML) analyses we use genotype data from the Rotterdam Study (RS; Ergo waves 1-4 sample denoted 627

by RS-I, Ergo Plus sample denoted by RS-II, and Ergo Jong sample denoted by RS-III), the Swedish Twin 628

Registry (STR; TwinGene sample), and the Health and Retirement Study (HRS). For each study, details on 629

the genotyping platform, quality control (QC) prior to imputation, the reference sample used for imputation, 630

and imputation software, are listed in Table 4. 631

To increase the overlap of SNPs across studies, we use genotypes imputed on the basis of the 1000 Genomes, 632

Phase 1, Version 3 reference panel [48]. We only consider the subset of HapMap3 SNPs available in the 1kG 633

data. By using this subset we substantially reduce the computational burden of the analyses, while preserving 634

overlap between the SNP-sets in the studies and still having a sufficiently dense set of both common and 635

more rare SNPs (# SNPs after QC ≈ 1 million).

Table 4. Genotyping and imputation
Study Genotyping platform SNP exclusions Subject exclusions* Imputation**

MAF < Call rate < HWE p-val. < Call rate < Software
RS-I Illumina 550K 0% 97.5% 10-7 97.5% MaCH/Minimac
RS-II Illumina 550K 0% 97.5% 10-7 97.5% MaCH/Minimac
RS-III Illumina 610K 0% 97.5% 10-7 97.5% MaCH/Minimac
STR HumanOmniExpress 12v1A 1% 97.0% 10-7 97.0% MaCH/Minimac
HRS Illumina Omni2.5 1% 98.0% 10-4 98.0% IMPUTE2
* Individuals are also excluded on the basis of sex mismatch, close relatives, duplicates and ancestry outliers (STR excepted), or
autosomal heterozygosity outliers (HRS excepted)
** All samples have been imputed against the 1000Genomes, Phase 1, Version 3 haplotypes of all ancestries.

636

Quality control Prior to QC, we extract HapMap3 SNPs (source: http://hapmap.ncbi.nlm.nih.gov/ 637

downloads/genotypes/hapmap3_r3/plink_format/, accessed: December 11, 2014) from the imputed geno- 638

type data of each study and convert the allele dosages to best-guess PLINK [49], [50] binary files by rounding 639

dosages using GCTA [31]. Subsequently, we perform QC on the best-guess genotypes in two stages. In the first 640

stage, we clean and harmonize the imputed genotype data at the study level. The cleaned and harmonized 641

study genotypes are then merged into a pooled dataset. The second round of QC is aimed at cleaning the 642

pooled dataset, on the basis of the samples for which the phenotype is available. Hence, the first QC stage is 643

phenotype-independent, whereas the second stage depends on the phenotype of interest. 644

In the first QC stage (prior to merging), we filter out the following markers and individuals: 645
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1. SNPs with imputation accuracy below 70%. 646

2. Non-autosomal SNPs. 647

3. SNPs with minor-allele frequency below 1%. 648

4. SNPs with Hardy-Weinberg-Equilibrium p-value below 1%. 649

5. SNPs with missingness greater than 5%. 650

6. Individuals with missingness greater than 5%. 651

7. SNPs that are not present in all studies. 652

8. SNPs whose alleles cannot be aligned across studies. 653

Prior to the first QC stage, we apply the following two additional steps in HRS: 654

1. Switch alleles to address a strand-flip error due to incorrect annotation. 655

2. Drop individuals of non-European ancestry. 656

After the first round of QC, a set of roughly 1 million overlapping SNPs, available for about 30,000 657

individuals is left. Panel I in Table 5 shows, for each study, the number of SNPs and individuals before and 658

after the first round of QC. 659

The second QC stage, applied to the pooled data set, comprises the following steps: 660

1. Keep only individuals for whom the phenotype of interest and all corresponding control variables are 661

available. 662

2. Drop SNPs with a minor-allele frequency below 1%. 663

3. Drop SNPs with Hardy-Weinberg-Equilibrium p-value below 1%. 664

4. Drop SNPs with missingness greater than 5%. 665

5. Drop individuals with missingness greater than 5%. 666

6. Keep only one individual per pair of individuals with a genomic relatedness greater than 0.025. 667

Since the data in STR consists of twins and having highly related individuals can bias estimates of SNP-based 668

heritability due to environment-sharing, we randomly select only one individual per twin pair after Step 1 in 669

the second QC stage. 670
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Panel II in Table 5 shows the sample size and the number of SNPs in the pooled dataset for each phenotype. 671

We only consider phenotypes that attain a sample size of at least 18,000 individuals after all QC steps. The 672

lowest sample size after QC is 19,184 for self-rated-health and the highest is 20,686 for CurrCigt. For all 673

phenotypes, the number of SNPs is slightly greater than one million.

Table 5. Number of individuals and SNPs
before and after quality control (QC) at the
study level (Panel I) and at the pooled level
(Panel II).

Panel I: study-level QC

Study N # SNPs
pre-QC post-QC pre-QC post-QC

RS-I 6,291 6,291 31,337,615 1,062,589
RS-II 2,157 2,157 31,337,615 1,062,589
RS-III 3,048 3,048 31,337,615 1,062,589
STR 9,617 9,617 31,326,389 1,062,589
HRS 12,454 8,652 21,632,048 1,062,589
Total 29,765 1,062,589

Panel II: pooled-level QC

Phenotype N # SNPs
pre-QC post-QC pre-QC post-QC

Height 29,765 20,458 1,062,589 1,052,572
BMI 29,765 20,449 1,062,589 1,052,600
EduYears 29,765 20,619 1,062,589 1,052,626
CurrCigt 29,765 20,686 1,062,589 1,052,524
CurrDrinkFreq 29,765 20,072 1,062,589 1,052,958
Self-rated health 29,765 19,184 1,062,589 1,053,190

674

Phenotype data For HRS, we use the RAND HRS data, version N, to obtain the phenotypes of interest. 675

These data consist of measurements from eleven waves. RS-I consists of four data waves (Ergo 1-4). In both 676

HRS and RS-I, data for some phenotypes are only available in a subset of the waves. RS-II, RS-III and STR 677

do not have multiple measures over time for the phenotypes considered in this study. Table 6 describes how 678

the phenotypes are constructed in each of the five studies. 679

As Table 6 shows, height, BMI, EduYears, and CurrCigt are measured quite consistently across waves. 680

The self-rated health phenotype is also measured quite consistently, although in RS respondents are asked 681

about health compared to members of the same age group, whereas a more absolute question is posed in STR 682

and HRS. The drinking measure CurrFreqDrink is also measured somewhat heterogeneously; the threshold for 683

what we treat as ‘frequent drinking’ is determined solely by how fine-grained the drinking frequency measure 684

is in the respective studies. 685
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Table 6. Study-level phenotype measures.
Phenotype Survey instrument in

RS-I RS-II RS-III STR HRS

Years of Constructed in line with [45] in all studies.
education
(EduYears)

Height Median height across Height Height Height Median height across
waves 1-4. waves 1-11

BMI Median BMI across BMI BMI BMI Median BMI across
waves 1-4. waves 1-11

Currently 1 if stated to be a current 1 if stated to be a Same as RS-II. 1 if stated to be a current 1 if responded positively to
smoking smoker of cigarettes in the current cigarette smoker. cigarette smoker. “currently smokes
cigarettes latest available measurement cigarettes?” in the latest
(CurrCigt) across waves 1-4. available measurement

across waves 1-11.

Currently 1 if indicated to “drink one 1 if indicated to “drink 1 if indicated to “have 1 if indicated to “have 1 if indicated to “drink
drinking or more alcoholic beverages one or more alcoholic drunk at least two drunk at least two alcohol once per week or
frequently per week” in the latest beverages per week”. alcoholic beverages alcoholic beverages more” in the latest available
(CurrDrinkFreq) available measurement a month during the in the past month”. measurement across waves

across waves 1-4. the past year.” 3-11.

Self-rated health Only available in wave 1: Same as RS-I. n.a. Rate their general health. Mode of the 4-point self-
“How is your general health Response categories re- reported health measure in
compared to members of coded such that 0=bad, HRS across waves 1-11.
your age group?” 1=not so good, Responses reverse-coded
Response categories reverse- 2=average, 3=good, such that 0=poor, 1=fair,
coded such that 0=worse, 4=excellent. 2=good, 3=very good, and
1=same, and 2=better. 4=excellent.

S5 GREML Estimation 686

Height, BMI, EduYears, and self-rated health are treated as quantitative traits. CurrCigt and CurrDrinkFreq 687

are treated as binary outcomes. In each study, (after aggregating across waves, if applicable) we regress 688

quantitative phenotypes on age, squared age, sex, and an intercept. The residuals from the regression are 689

standardized to have a sample-mean equal to zero and variance equal to one. For both binary and quantitative 690

traits, the aforementioned covariates are also included in the GREML estimation. In addition, in bivariate 691

GREML and pooled GREML estimation (i.e., considering multiple studies jointly), the intercept is replaced 692

by indicator variables for the respective studies, capturing study-specific fixed effects. Finally, 20 principal 693

components from the phenotype-specific genomic-relatedness matrix are added to the set of control variables 694

in the GREML estimation, in order to correct for population stratification [51]. 695

S6 GREML Results 696

Details per phenotype on sample size, univariate estimates of SNP-heritability, and bivariate estimates of 697

genetic correlation, stratified across studies, and cross-study averages, are provided in Table 7. Results 698

stratified across sexes are listed in Table 8. 699
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Table 8. GREML estimates of SNP-heritability (h2
SNP) and genetic correlation (ρG) across

sexes.
Phenotype N Estimates h2

SNP
1 Estimate ρG

1

Females Males Total Females Males Average2 Females–Males

Height 11,553 8,905 20,458 43.2% (3.0%) *** 45.1% (3.8%) *** 44.0% 0.981 (0.067) ***
BMI 11,542 8,907 20,449 22.1% (2.9%) *** 23.8% (3.8%) *** 22.8% 0.794 (0.122) *** †
EduYears 11,653 8,966 20,619 18.1% (2.9%) *** 18.9% (3.7%) *** 18.4% 0.832 (0.162) ***
CurrCigt 11,706 8,980 20,686 22.3% (7.1%) *** 26.7% (9.1%) *** 24.2% 0.543 (0.257) *** †
CurrDrinkFreq 11,312 8,760 20,072 14.1% (4.6%) *** 0.9% (6.0%) 8.3% 1.000 (2.068) *
Self-rated health 10,866 8,318 19,184 8.6% (3.1%) *** 10.8% (4.0%) *** 9.5% 1.000 (0.349) ***

* h2
SNP and/or genetic correlation > 0 at 10% sign. †genetic correlation < 1 at 10% sign. ‡genetic correlation < 0 at 10% sign.

** h2
SNP and/or genetic correlation > 0 at 5% sign. ††genetic correlation < 1 at 5% sign. ‡‡genetic correlation < 0 at 5% sign.

*** h2
SNP and/or genetic correlation > 0 at 1% sign. †††genetic correlation < 1 at 1% sign. ‡‡‡genetic correlation < 0 at 1% sign.

1 Standard errors between parentheses.
2 Sample-size weighted average of univariate estimates across studies.
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