bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Assembly of Long Error-Prone Reads Using de Bruijn Graphs

Yu Lin', Jeffrey Yuan', Mikhail Kolmogorov, Max W. Shen, and Pavel A. Pevzner

Department of Computer Science and Engineering, University of California, San Diego
! The first two authors contributed equally

Abstract. The recent breakthroughs in assembling long error-prone reads (such as reads generated by
Single Molecule Real Time technology) were based on the overlap-layout-consensus approach and did
not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover,
these studies often assume that applications of the de Bruijn graph approach are limited to short
and accurate reads and that the overlap-layout-consensus approach is the only practical paradigm for
assembling long error-prone reads. Below we show how to generalize de Bruijn graphs to assemble
long error-prone reads and describe the ABruijn assembler, which results in more accurate genome
reconstructions than the existing state-of-the-art algorithms.

1 Introduction

When the first reads generated using Single Molecule Real Time (SMRT) sequencing technology were made
available [18], most researchers were skeptical about the ability of existing algorithms to generate high-
quality assemblies from error-prone SMRT reads. Roberts et al., 2013 [51] even referred to this widespread
skepticism as the “error myth” and argued that new assemblers for error-prone reads need to be developed
to debunk this myth. Indeed, the key challenge for the success of SMRT and other recently emerged long
reads technologies lies in the development of algorithms for assembling genomes from inaccurate reads.

The pioneer in long reads technologies, Pacific Biosciences, now produces accurate assemblies from error-
prone SMRT reads [7, 16]. Goodwin et al. [19] and Loman et al. [37] demonstrated that high-quality assemblies
can be obtained from even less accurate Oxford Nanopore reads. Advances in assembly and mapping of long
error-prone reads recently resulted in accurate assemblies of various genomes [28,29, 31], reconstruction of
complex regions of the human genome [15,22], and resolving complex tandem repeats [60]. However, as
illustrated in Booher et al., 2015 [10], the problem of assembling long error-prone reads is far from being
resolved even in the case of relatively short bacterial genomes.

All previous studies of SMRT assemblies were based on the overlap-layout-consensus (OLC') approach [26]
or similar string graph approach [40], which require an all-against-all comparison of reads [39] and remain
computationally challenging (see [23,33,44] for a discussion of pros and cons of this approach).

Moreover, there is an implicit assumption that the de Bruijn graph approach, which dominated genome
assembly in the last decade, is inapplicable to assembling long reads. This is a misunderstanding since the
de Bruijn graph approach, as well as its variation called the A-Bruijn graph approach, was developed to
assemble rather long Sanger reads [45].

There is also a misunderstanding that the de Bruijn graph approach can only assemble highly accurate
reads and fails while assembling error-prone SMRT reads, yet another “error myth” that we debunk in this
paper. While this is true for the original de Bruijn graph approach to assembly [23, 44|, the A-Bruijn graph
approach was originally designed to assemble inaccurate reads as long as any similarities between reads can
be reliably identified. Moreover, A-Bruijn graphs have proven to be useful even for assembling mass spectra,
which represent highly inaccurate fingerprints of amino acid sequences of peptides [4, 5]. This A-Bruijn graph
approach has turned the time-consuming sequencing of intact antibodies into a routine task [21, 59]. However,
while A-Bruijn graphs have proven to be useful in assembling Sanger reads and mass spectra, the question
of how to apply A-Bruijn graphs for assembling SMRT reads remains open.

De Bruijn graphs are a key algorithmic technique in genome assembly [23, 9,12, 56,61, 6]. In addition, de
Bruijn graphs have been used for Sequencing by Hybridization [43], repeat classification [45], de novo protein
sequencing [4, 5, 21], synteny block construction [38, 46], multiple sequence alignment [48], genotyping [25],
and immunoglobulin classification [13]. A-Bruijn graphs are even more general than de Bruijn graphs, e.g.,
they include breakpoint graphs, the workhorse of genome-rearrangement studies [42, 35].

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

However, as discussed in [34], the original definition of a de Bruijn graph is far from being optimal for the
challenges posed by the assembly problem. Below, we describe the concept of an A-Bruijn graph [45], intro-
duce the ABruijn assembler for SMRT reads (including reads generated using Oxford Nanopore technology),
and demonstrate that it generates accurate genome reconstructions.

2 Assembling long error-prone reads

Below we describe how ABruijn assembles long and error-prone reads into an error-prone draft genome.
The challenge of assembling long error-prone reads. Booher et al., 2015 [10] recently sequenced im-
portant plant pathogens BLS256 and PXO99A representing Xanthomonas strains, and revealed the striking
plasticity of tal genes which play key role in Xanthomonas infections. Each tal gene encodes a TAL protein
that has a large domain formed by nearly identical TAL repeats (each TAL repeat has length ~ 35 aa). Since
variations in tal genes and TAL repeats are important for understanding the pathogenicity of various Xan-
thomonas strains, massive sequencing of these strains is an important task that may enable the development
of novel plant disease control measures [55]. However, assembling Xanthomonas genomes using SMRT reads
(let alone, short reads) remains challenging.

Depending on the strain, Xanthomonas genomes may harbor as many as 24 tal genes with each tal gene

encoding 17 TAL repeats on average (some tal genes encode over 30 TAL repeats). These repeats render
tal genes nearly impossible to assemble using short read technologies. Moreover, as Booher et al., 2015 [10]
described, the existing SMRT assemblers also face challenges assembling Xanthomonas genomes, e.g., HGAP
2.0 failed to assemble BLS256. The assembly of BLS256 and PXO99A datasets is particularly challenging
since these genomes have an unusually large numbers of tal genes (28 and 19, respectively).
From de Bruijn graphs to A-Bruijn graphs. In the A-Bruijn graph framework, the classical de Bruijn
graph DB(String, k) of a string String is defined as follows. Let Path(String, k) be a path consisting of
|String| — k + 1 edges, where the i-th edge of this path is labeled by the i-th k-mer in String and the
i-th vertex of the path is labeled by the i-th (k-1)-mer in String. The de Bruijn graph DB(String, k) is
formed by gluing identically labeled vertices in Path(String, k) (Figure 1). Note that this somewhat unusual
definition results in exactly the same de Bruijn graph as the standard definition (see [17] for details).

We now consider an arbitrary substring-free set of strings V' (which we refer to as a set of solid strings),
where no string in V' is a substring of another one in V. The set V consists of words (of any length) and the
new concept Path(String, V') is defined as a path through all words from V appearing in String (in order)
as shown in Figure 1, bottom. We further assign integer shift(v, w) to the edge (v, w) in this path to denote
the difference between the positions of v and w in String (i.e., the number of symbols between the start
of v and the start of w in String). Afterwards, we glue identically labeled vertices as before to construct
the A-Bruijn graph AB(String,V) as shown in Figure 1, bottom. Clearly, DB(String, k) is identical to
AB(String, X%=1), where X*~! stands for the set of all (k-1)-mers in alphabet X.

The definition of AB(String, V') naturally generalizes to AB(Reads, V') by constructing a path for each
read and further gluing all identically labeled vertices in all paths. Since an Eulerian path in AB(Reads, V)
spells out the genome [45], it appears that the only thing needed to apply the A-Bruijn graph concept to
SMRT reads is to select an appropriate set of solid strings V' and to construct the graph AB(Reads,V).
Below we illustrate that this question is not as simple as it may appear and describe how it is addressed in
the ABruijn assembler.

Selecting solid strings for constructing A-Bruijn graphs. Different approaches to selecting solid
strings affect the complexity of the resulting A-Bruijn graph and may either enable further assembly using
the A-Bruijn graph or make it impractical. For example, when the set of solid strings V' = %=1 consists of
all (k-1)-mers, AB(Reads, X*~1) may be either too tangled (if k is small) or too fragmented (if k is large).

While this is true for both short Illumina reads and long SMRT reads, there is a key difference between
these two technologies with respect to their resulting A-Bruijn graphs. In the case of Illumina reads, there
exists a range of values k so that one can apply various graph simplification procedures (e.g., bubble and
tip removal [45,61]) to enable further analysis of the resulting graph. However, these graph simplification
procedures were developed for the case when the error rate in the reads does not exceed 1% (like in the case
of Illumina reads) and fail in the case of SMRT reads, with the error rate exceeding 10%. This complication
led to the widespread opinion that the de Bruijn approach is not applicable to SMRT reads.

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Path(String, 3) Path(String, 3) DB(String, 3)

De Bruijn Graph

A-Bruijn Graph

Fig.1. Constructing the de Bruijn graph (top) and the A-Bruijn graph (bottom) for a circular
String=CATCAGATAGGA. (Top) From Path(String,3) to DB(String,3). (Bottom) From Path(String, V) to
AB(String, V) for V.= {CA, AT, TC, AGA, TA, AGG, AC}. The figure illustrates the process of bringing the
vertices with the same label closer to each other to eventually glue them into a single vertex (middle column).

We argue that k-mers that frequently appear in reads (for sufficiently large k) are good candidates for
the set of solid strings and define a (k,t)-mer as a k-mer that appears at least ¢ times in the set Reads. We
classify a k-mer as genomic if it appears in the genome and non-genomic otherwise. We further classify a
k-mer as unique (repeated) if it appears once (multiple times) in the genome. Given a k-mer a, we define its
frequency as the number of times this k-mer appears in reads. Figure 2 shows the histogram of the number
of unique/repeated/non-genomic 15-mers with given frequencies for the E. coli SMRT dataset described
in the “Datasets” section (referred to as ECOLI). As Figure 2 illustrates, the lion’s share of 15-mers with
frequencies from 8 to 24 are unique 15-mers in the E. coli genome. Since non-genomic and repeated genomic
k-mers complicate the analysis of the A-Bruijn graph [34], we remove all k-mers with frequencies exceeding
¢ x t from the set of (k, t)-mers used as solid strings when constructing the A-Bruijn graph (the default value
of the parameter c is 3).

For a typical bacterial SMRT assembly project with coverage 50X, ABruijn assembler uses k = 15 and
t = 8 as the default choice. While larger values of k (typical for short read assemblies) also produce high-
quality SMRT assemblies, we found that selecting smaller rather than larger k results in slightly better
performance.

Finding the genomic path in an A-Bruijn graph. After constructing an A-Bruijn graph, one faces the
problem of finding a path in this graph that corresponds to traversing the genome (i.e., the genomic path)
and correcting errors in the sequence spelled by this path. Since the SMRT reads are merely paths in the
A-Bruijn graph, one can use the path extension paradigm [9,47,58] to derive the genomic path from these
(shorter) read-paths. exSPAnder [47] is a module of the SPAdes assembler [6] that finds a genomic path in
the assembly graph constructed from short reads based either on read-pair paths or on SMRT read-paths
like in hybridSPAdes [1]. Recent studies of bacterial plankton [30], antibiotics resistance [2], and genome
rearangements [49] demonstrated that hybridSPades works well even for co-assembly with less accurate
nanopore reads.

Below we sketch the hybridSPAdes algorithm for co-assembling short and long reads [1] and show how
to modify the path extension paradigm to arrive at the ABruijn algorithm.

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

4
100000000
H non-genomic 15-mer
10000000
M repeated 15-mer
i 1000000 M unique 15-mer
3}
£ 100000
~
[T
=] 10000
™
3
< 1000
S
< 100
10
1

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
frequency of k-mers

Fig.2. The histogram of the number of 15-mers with given frequencies for ECOLI dataset. The bars for
unique/repeated /non-genomic 15-mers for the E. coli genome are stacked and shown in green/red/blue. ABruijn
defines solid strings as all 15-mers with frequencies from 8 to 24.

hybridSPades. Given a set of paths Paths in a directed graph Graph and a parameter minSupport, we
say that an edge in Graph is Paths-supported if it is traversed by at least minSupport paths in Paths. A
set Paths is consistent (with respect to a parameter minSupport) if the set of all Paths-supported edges
forms a single directed path in Graph. We further refer to this path as ConsensusPath(Paths, minSupport).
The intuition for the notion of the consistent (inconsistent) set of paths is that they are sampled, with the
exception of a relatively small number of chimeric paths, from a single segment (multiple segments) of the
genomic path (see [1]).

Given two paths P and P’ in a weighted graph, we say that P’ overlaps with P if a sufficiently long suffix
of P (of total weight at least minOverlap) coincides with a prefix of P’ and P does not contain the entire
path P’ as a subpath. Given a path P and a set of paths Paths, we define Paths,inoveriap(P) as the set of
all paths in Paths that overlap with P (with respect to parameter minOuverlap).

hybridSPAdes uses SPAdes to construct the de Bruijn graph from short reads and to further transform
it into an assembly graph by removing bubbles and tips [6]. It further represents long reads as read-paths in
the assembly graph and uses them for repeat resolution in the assembly graph. Our sketch of hybridSPAdes
omits some details and deviates from the current implementation to make similarities with the A-Bruin
graph approach more apparent, e.g., it only shows an algorithm for constructing a single contig.

hybridSPAdes(ShortReads, LongReads, k, minSupport, minOverlap)
construct the de Bruijn graph on k-mers from ShortReads
transform the de Bruin graph into the assembly graph
ReadPaths < the set of paths in the assembly graph corresponding to
all reads from LongReads
InitialPath < an arbitrary read-path from ReadPaths
GrowingPath < InitialPath
while forever
OverlapPaths < ReadPathsminoveriap (GrowingPath)
if the set OwverlapPaths is consistent (wrt parameter minSupport)
if ConsensusPath(QverlapPaths, minSupport) contains InitialPath
return the string spelled by GrowingPath (as the complete genome)
if ConsensusPath(OverlapPaths, minSupport) overlaps with
GrowingPath
extend GrowingPath by ConsensusPath(OverlapPaths, minSupport)

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

else
return the string spelled by GrowingPath (as one of the contigs)

From hybridSPAdes to longSPAdes. Using the concept of the A-Bruijn graph, a similar approach can
be applied to assembling long reads only. The pseudocode of longSPAdes differs from the pseudocode of
hybridSPAdes by only the top three lines shown below:

longSPAdes(LongReads, k, t, minSupport, minOverlap)
construct the A-Bruijn graph on (k,t)-mers from LongReads
transform the A-Bruin graph into the assembly graph

We note that longSPAdes constructs a path spelling out an error-prone draft genome that requires further
error-correction. However, error-correction of a draft genome is faster than the error correction of individual
reads before assembly in the OLC approach [7,16, 19, 37].

While hybridSPAdes and longSPAdes are similar, longSPAdes is more difficult to implement since bubbles
in the A-Bruijn graph of error-prone long reads are more complex than bubbles in the de Bruijn graph of
accurate short reads (see SI1: “Additional details on the ABruijn algorithm” for an example of a bubble in
an A-Bruijn graph). As a result, the existing graph simplification algorithms fail in the case of the A-Bruin
graph of long error-prone reads. While it is possible to modify the existing graph simplification procedure
for SMRT reads (to be described elsewhere), this paper focuses on a different approach that does not require
graph simplification.

From longSPAdes to ABruijn. Instead of finding a genomic path in the simplified A-Bruijn graph,
ABruijn attempts to find a genomic path in the original A-Bruijn graph. This approach leads to an algorith-
mic challenge: while it is easy to decide whether two reads overlap given an assembly graph, it is not clear how
to answer the same question in the context of the A-Bruijn graph. Note that while the ABruijn pseudocode
below uses the same terms overlapping and consistent as longSPAdes, these notions are defined differently
in the context of the A-Bruijn graph. The new notions (as well as parameters jump and maxOverhang) are
described later in this paper.

ABruijn(LongReads, k, t, minSupport, minOverlap, jump, mazxOverhang)
construct the A-Bruijn graph on (k, t)-mers from LongReads
ReadPaths < the set of paths in the assembly graph corresponding to

all reads from LongReads
InitialPath < an arbitrary read-path in the A-Bruijn graph
GrowingPath < InitialPath
ReadPath < InitialPath
while forever
OverlapPaths < all paths in ReadPaths overlapping ReadPath
(wrt minOverlap, jump and maxOverhang)
if the set OwverlapPaths is consistent (wrt parameter minSupport)
if InitialPath is a consistent path in OverlapPaths
return the string spelled by GrowingPath (as the complete genome)
ConsensusPath < a most-consistent path in OverlapPaths
(wrt parameter minSupport)
extend GrowingPath by ConsensusPath
ReadPath < ConsensusPath
else
return the string spelled by GrowingPath (as one of the contigs)

The constructed path in the A-Bruijn graph spells out an error-prone draft genome (or one of the draft
contigs). ABruijn uses a new approach to error-correction that first builds yet another A-Bruijn graph of
reads aligned to the draft genome (for simplicity, the pseudocode above describes construction of a single
contig and does not cover the error-correction step).

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

We note that while the A-Bruijn graph constructed from reads is very complex, the A-Bruijn graph
constructed from reads aligned to the draft genome is rather simple. While there are hundreds of thousands
of bubbles in this graph, each bubble is very simple, making the error correction step fast and accurate.
Common jump-subpaths. Given a path P in a weighted directed graph (weights correspond to shifts in
the A-Bruijn graph), we refer to the distance dp(v,w) along path P between vertices v and w in this path
(i.e., the sum of the weights of all edges in the path) as the P-distance. The span of a subpath of a path P
is defined as the P-distance from the first to the last vertex of this subpath.

Given a parameter jump, a jump-subpath of P is a subsequence of vertices vy...v; in P such that
dp(vi,vit1) < jump for all ¢ from 1 to t-1. We define Path;yump(P) as a jump-subpath with the max-
imum span out of all jump-subpaths of a path P. We further denote the span of this jump-subpath as
| Pathjump(P)|.

A sequence of vertices in a weighted directed graph is called a common jump-subpath of paths P; and Py
if it is a jump-subpath of both P; and P,. The span of a common jump-subpath of P; and P; is defined as
its span with respect to path P; (note that this definition is non-symmetric with respect to P; and P;). We
refer to a common jump-subpath of paths P; and P> with the maximum span as Pathjymp(P1, P2) (with
ties broken arbitrarily).

Below we describe how the ABruijn assembler uses the notion of common jump-subpaths with maximum
span to detect overlapping reads.

Finding a common jump-subpath with maximum span. For the sake of simplicity, below we limit
attention to the case when paths P, and P, traverse each of their shared vertices exactly once.

A vertex w is a jump-predecessor of a vertex v in a path P if P traverses w before traversing v and
dp(w,v) < jump. We define P(v) as the subpath of P from its first vertex to v. Given a vertex v shared
between paths P; and P>, we define span;ump(v) as the largest span among all common jump-subpaths
of paths P;(v) and Py(v) ending in v. The dynamic programming algorithm for finding a common jump-
subpath with the maximum span is based on the following recurrence:

DA ump (V) =
all jump-predecessors 1 of v in both Py and Py {span;ump(w) + dp, (w, v)}

Note that finding a common jump-subpath with the maximum span becomes trivial when paths P; and

P, traverse their shared vertices in the same order (more than half of all overlapping read-paths satisfy
this condition). Note that, given a set of all paths sharing vertices with a path P, computing common
jump-subpaths with maximum span with P for all of them can be done using a single scan of P. See SI1:
“Additional details on the ABruijn algorithm” for a fast heuristic for finding a common jump-subpath with
maximum span.
Overlapping paths in A-Bruin graphs. We define the right overhang between paths P; and P; as the
minimum of the distances from the last vertex in Pathjymp(P1, P2) to the ends of P; and P». Similarly, the
left overhang between paths P; and P, is the minimum of the distances from the starts of P, and P, to the
first vertex in Pathjymp(P1, P2).

Given parameters jump, minOwverlap and maxQOuverhang, we say that paths P, and P, overlap if they
share a common jump-subpath of span at least minOuverlap and their right and left overhangs do not
exceed mazOverhang. To decide whether two reads have arisen from two overlapping regions in the genome,
ABruijn checks whether their corresponding read-paths P; and P, overlap (with respect to parameters
Jump, minOverlap, and maxOverhang). SI1: “Additional details on the ABruijn algorithm” describes how
ABruijn detects chimeric reads. SI2: “Choice of parameters in the ABruijn algorithm” describes the range
of parameters that work well for bacterial genome assembly.

Consistent paths. Although it appears that the notion of overlapping paths allows us to implement the path
extension paradigm for A-Bruijn graphs, there are two complications. First, while the algorithm for analyzing
chimeric reads removes the lion’s share of chimeric reads, 0.5% of chimeric reads evade this algorithm and
may end up in the set of overlapping read-paths extending GrowingPath in the ABruijn algorithm. Second,
since some of the paths (i.e., reads) overlapping with GrowingPath may have large insertions and deletions,
we want to exclude them when ABruijn selects a read-path during the path extension. SI1: “Additional
details on the ABruijn algorithm” describes the concept of a most-consistent path which addresses these
complications. Given a set of paths Paths overlapping with ReadPath, ABruijn selects a most-consistent
path for extending ReadPath. Also, the simplified ABruijn pseudocode is limited to generating a single

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

contig. In reality, after a contig is constructed, ABruijn maps all reads to this contig and uses the remaining
reads to iteratively costruct other contigs.

3 Correcting errors in the draft genome

Below we describe how ABruijn corrects errors in the draft genome.

Matching reads against the draft genome. ABruijn uses BLASR [14] to align all reads in the ECOLI
dataset against the draft genome (92% of all reads align to the draft genome over at least a 5 kb segment). It
further combines pairwise alignments of all reads to the draft genome into a multiple alignment Alignment.
Since this alignment against the error-prone draft genome is rather inaccurate, we need to modify it into a
different alignment that we will use for error correction.

Our goal now is to partition the multiple alignment of reads to the entire draft genome into hundreds of
thousands of short segments (mini-alignments) and to error-correct each segment into the consensus string of
the mini-alignment. The motivation for constructing mini-alignments is to enable accurate error-correction
methods (such as a partial order alignment [32]) that are fast when applied to short segments of reads but
become too slow in the case of long segments.

The task of constructing mini-alignments is not as simple as it may appear. For example, breaking this

alignment into segments of fixed size will result in inaccurate consensus sequences since a region in a read
aligned to a particular segment of the draft genome has not necesarily arisen from this segment, e.g., it
may have arisen from a neighboring segment or from a different instance of a repeat. We thus search for a
good partition of the draft genome that satisfies the following criteria: (i) most segments in the partition are
short, so the algorithm for constructing the partial order alignment is fast, and (ii) with high probability, the
region of each read aligned to a given segment in the partition represents a version (possibly error-prone) of
this segment. Below we show how to address the challenge of constructing a good partition by building an
A-Bruijn graph AB(Alignment) (Figure 3).
Defining solid regions in the draft genome. We refer to a position (column) of the alignment with the
space symbol “” in the reference sequence as a non-reference position (column) and to all other positions as
a reference position (column). We refer to the column in the multiple alignment containing the i-th position
in a given region of the reference genome as the i-th column. As illustrated in Figure 3, the non-reference
columns in the alignment are not numbered. The total number of reads covering a position ¢ in the alignment
is referred to as Cov(i).

A non-space symbol in a reference column of the alignment is classified as a match (resp., substitution)
if it matches (resp., does not match) the reference symbol in this column. A space symbol in a reference
column of the alignment is classified as a deletion. We refer to the number of matches, substitutions, and
deletions in the -th column of the alignment as Match(i), Sub(i), and Del(i), respectively. We refer to a
non-space symbol in a non-reference column as an insertion and denote Ins(i) as the number of nucleotides
in the non-reference columns flanked between the reference columns i and i + 1 (Figure 3).

For each reference position i, Cov(i) = Match(i) + Sub(i) + Del(i). We define the match rate, the
substitution rate, the deletion rate, and the insertion rate at position i as Match(i)/Cov(i), Sub(i)/Cov(i),
Del(i)/Cou(i), and Ins(i)/Cov(i), respectively.

Given an [-mer in a draft genome, we define its local match rate as the minimum match rate among the
positions within this l-mer. We further define its local insertion rate as the mazimum insertion rate among
the positions within this /-mer.

An l-mer in the draft genome is called («, §)-solid if its local match rate exceeds « and its local insertion
rate does not exceed 3. When « is large and (3 is small, («, 5)-solid l-mers typically represent the correct [-mers
from the genome. SI3: “Additional details on constructing necklaces” describes how to use the draft genome
to construct mini-alignments, demonstrates that (0.8,0.2)-solid l-mers in the draft genome are extremely
accurate, and describes the choice of parameters for specifying («, 8)-solid I-mers that work well for assembly.
The last row in Figure 3 (bottom left) shows all of the (0.8,0.2)-solid 4-mers (ATGA, CAGT, and ATGA)
in the draft genome.

The contiguous sequence of (a, 8)-solid {-mers forms a solid region. There are 1,146,866 (0.8,0.2)-solid
10-mers in the draft genome for the ECOLI dataset, which form 141,658 solid regions. Our goal now is to
select a position (landmark) within each solid region and to form mini-alignments from the segments of reads
spanning the intervals between two consecutive landmarks.

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

8
Path(read;, V')
ref AT G A A - - C A GTOCTT CAT G A "\ canca GTeTCATy
readf A - G A A AT C A G T C A T G A ref (wer ” ”
ref A T G A A CAGTOCTCGCATG A S R
reads AT C A T T C A G T - T C A - G A read; [sToa A >
ref A T G A A C A G T C T C A T G A
reads A T G A A A CA - T CCTOCGA AT G G read, @ CATTCA GrIoA
ref AT G A A - CA GTOC T - C AT G A
readq AT G A A ACAGTATTATCATG A read @ GAAACA, ——
3 . > ?
ref AT G A - ACAGTOCT C AT G A
reads A T G A G G T A G T CTTA AT - A
s GAAACA, GTATTACAT
read, @ > >
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 reads (vras GAGGTA, GTCTTAAT,
ref A T G A A C A G T C T C A T G A 5 4 ”
read; A G A A A TOCAGT C A T G A
readc A T C A T T C AGT T C A G A
reads A T G A A A C A T C C T C G A T G G
ready A T G A A A C A G T A T T A C A T G A AB(Alignment)
reads A T G A G G T A GT C T T A AT A
Cov(i) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 GAAATCA GTeAT
Match(i) 5 4 4 5 3 4 5 4 5 3 4 3 5 4 4 4 p—
Del(i) o 1 0o o0 1] 0 1] 1 1] 1 1 1 0 1 1 1] -
Sub(4) 0 0 1 0 2 1 0 0 0 1 0 1 0 o 0 1 RSISgNSSE
Ins(i) 2 4 1 3 1 NegATTACAPY
\% (ATGA,1) W

Fig. 3. (Top Left) The pairwise alignments between a reference region ref in the draft genome and 5 reads Reads =
{reads, readsz,reads, reads, reads}. All inserted symbols in these reads with respect to the region ref are colored in
blue. (Bottom Left) The multiple alignment Alignment constructed from the above pairwise alignments along with
the values of Couv(i), Match(i), Del(i), Sub(i) and Ins(i). The last row shows the set V of (0.8,0.2)-solid 4-mers.
(Right) Constructing AB(Alignment), i.e., combining all paths Path(read;, V) into AB(Alignment). Note that the
4-mer ATGA correspond to two different nodes with labels 1 and 13. The three bubble boundaries for this example
are between positions 2 and 3, 7 and 8, and 14 and 15.

Breaking the multiple alignment into mini-alignments. Since (¢, §)-solid [-mers are very accurate (for
appropriate choices of a, 5 and 1), we use them to construct yet another A-Bruijn graph with much simpler
bubbles. Since analyzing errors in homonucleotide runs is a difficult problem [16], we select landmarks outside
homonucleotide runs (SI3: “Additional details on constructing necklaces” describes how ABruijn selects
landmarks). ABruijn analyzes each mini-alignment and error-corrects each segment between consecutive
landmarks (the average length of these segments is only ~35 nucleotides). This procedure results in 135,417
mini-alignments.

Constructing the A-Bruijn graph on solid regions in the draft genome. We label each solid region
containing a landmark by its landmark position in Alignment and break each read into a sequence of segments
aligned between consecutive landmarks. We further represent each read as a directed path through the vertices
corresponding to the landmarks that it spans over. To construct the A-Bruijn graph AB(Alignment), we
glue all identically labeled vertices in the set of paths resulting from the reads (Figure 3 (right)).

Labeling vertices by their positions in the draft genome (rather than the sequences of solid regions)
distinguishes identical solid regions from different regions of the genome and prevents excessive gluing of
vertices in the A-Bruijn graph AB(Alignment).

The edges between two consecutive landmarks (two vertices in the A-Bruijn graph) form a necklace
consisting of segments from different reads that align to the region flanked by these landmarks. The SI3:
“Additional details on constructing necklaces” describes how ABruijn constructs a consensus for each necklace
(necklace consensus) and transforms the inaccurate draft genome for the ECOLI dataset into a rather
accurate pre-polished genome with an error rate of only 0.1%.

We define the length of a necklace as the median length of its segments and classify a necklace as long if
its length exceeds 100 bp. Although only 2,914 out of 135,417 necklaces constructed for the ECOLI dataset
are long, their analysis takes the lion’s share of the running time for the error correction step in the ABruijn
assembler. The SI3: “Additional details on constructing necklaces” describes how ABruijn reduces the number
of long necklaces (from 2,914 to 135), at the expense of increasing the number of necklaces (from 135,417
to 283,909); this reduces the overall running time. Below we describe the algorithm to error-correct the

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

pre-polished genome into a polished genome and to reduce the error rate from 0.1% to 0.0005% for ECOLI
dataset (only 25 putative errors for the entire genome).

A probabilistic model for necklace polishing. Each necklace contains read-segments Segments = {segy,
sega, . .., Segm }, and our goal is to find a consensus sequence Consensus maximizing Pr(Segments|Consensus)

= [Pr(segi|Consensus), where Pr(seg;|Consensus) is the probability of generating a segment seg; from a
i=1

consensus sequence Consensus. Given an alignment between a segment seg; and a consensus Consensus,
we define Pr(seg;|Consensus) as the product of all match, mismatch, insertion, and deletion rates for all
positions in this alignment.

The match, mismatch, insertion, and deletion rates should be trained using an alignment of any set of
reads (generated with the same technology) to any reference genome. Interestingly, the statistical parameters
of the P6-C4 ECOLI dataset are nearly identical to the parameters of P5-C3 and even those of the older
P4-C2 protocol for generating SMRT reads (SI5: “ Statistical analysis of errors in reads” describes statistical
parameters for the P6-C4, P5-C3 and P4-C2 datasets).

Starting from the initial necklace consensus (see SI3: “Additional details on aconstructing necklaces”),
ABruijn iteratively checks whether the consensus sequence for each necklace can be improved by introducing
a single insertion, deletion or substitution. If there exists a mutation that increases Pr(Segments|Consensus),
we select the mutation that results in the maximum increase and iterate until convergence. We further output
the final sequence as the error-corrected sequence of the necklace. As described in [16], this greedy strategy
can be implemented efficiently since a mutation maximizing Pr(Segments|Consensus) among all possible
mutated sequences can be found in a single run of the forward-backward dynamic programming algorithm
for each sequence in Segments. The error rate after this step drops from 0.1% to 0.003%.
Error-correcting homonucleotide runs. The probabilistic approach from [16] described above works
well for most necklaces but its performance deteriorates when it faces the difficult problem of estimating
the lengths of homonucleotide runs, which account for 46% of the E. coli genome (see discussion on pulse
merging in [16]). We thus complement this approach with a homonucleotide likelihood function based on the
statistics of homonucleotide runs. In contrast to previous approaches to error-correction of SMRT reads, this
new likelihood function incorporates all corrupted versions of all homonucleotide runs across the training set
of reads and reduces the error rate six-fold (from 0.003% to 0.0005%) compared to the standard likelihood
approach.

To generate the statistics of homonucleotide runs for a given experimental protocol, we need an arbi-
trary set of reads (generated using this protocol) aligned against a training reference genome. For each
homonucleotide run in the genome and each read spanning this run, we represent the aligned segment of this
read simply as the set of its nucleotide counts. For example, if a run AAAAAAA in the genome is aligned
against AATTACA in a read, we represent this read-segment as 4A1C2T. After collecting this information
for all runs of AAAAAAA in the reference genome, we obtain the statistics for all read segments covering
all instances of the homonucleotide run AAAAAAA (see the table in SI5: “ Statistical analysis of errors in
reads”). We further use the frequencies in this table for computing the likelihood function as the product
of these frequencies for all reads in each necklace (frequencies below a threshold 0.001 are ignored). Similar
to the results in SI5: “ Statistical analysis of errors in reads”, the frequencies in the resulting table hardly
change when one changes the dataset of reads, the reference genome, or even the SMRT protocol from
P6-C4 to the older P5-C3. To decide on the length of a homonucleotide run, we simply select the length
of the run that maximizes the likelihood function. For example, if Segments={5A, 6A, 6A, TA, 6A1C},
Pr(Segments|6A4)=0.155 x 0.473% x 0.1 x 0.02 > Pr(Segments|TA)=0.049 x 0.1542 x 0.418 x 0.022 and we
select AAAAAA over AAAAAAA as the necklace consensus.

While the described error-correcting approach results in a very low error rate even after a single iteration,
ABruijn re-aligns all reads and error-corrects the pre-polished genome in an iterative fashion (three iterations
by default).

4 Results

Datasets. The E. coli K12 SMRT dataset [27] (refered to as ECOLI) contains 10,277 reads with ~55X
coverage generated using the latest P6-C4 Pacific Biosciences technology (all reads are at least 20 kb long).

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

10

The E. coli K12 Oxford Nanopore dataset [37] (refered to as ECOLI,4,,) contains 22,270 reads with
~29X coverage (5,997 out of these 22,270 reads are at least 9 kb long). 99.6% of these 5,997 reads align to
the E. coli K12 reference genome over at least a 5 kb segment.

The BLS256 and PX0O99A datasets were derived from two plant parasites Xanthomonas oryzae strains
BLS256 (4,831,739 nucleotides) and PXO99A (5,240,075 nucleotides) previously assembled using Sanger
reads [8, 53] and re-assembled using Pacific Biosciences P6-C4 reads in Booher et al., 2015 [10] (SRA accession
numbers SRX502906 and SRX502899, respectively). The BLS256 and PXO99A datasets contains 21,996 and
17,577 long reads (longer than 14 kb), respectively.

Benchmarking. ABruijn assembles the ECOLI, ECOLI,, 4., and BLS256 datasets into a single circular
contig structurally concordant with the E. coli genome (see SI4: “Draft ECOLI assembly”). It also assembled
the PXO99A dataset into a single circular contig structurally concordant with the PXO99A reference genome
but, similarly to the initial assembly in Booher et al., 2015, it collapsed a 212 kb tandem repeat. Below
we focus on assembling the ECOLI dataset and describe other assemblies in SI7: “Additional details on
assembling Oxford Nanopore reads.” and SI8 “Assembling Xanthomonas genomes.”

Evaluating the accuracy of SMRT assemblies should be done with caution. For example, high-quality
short-read assemblies often have error-rates on the order of 10~°, which typically result in 50-100 errors
per assembled genome [52]. Since assemblies of high-coverage SMRT datasets are often even more accurate
than assemblies of short reads, short-read assemblies do not represent a gold standard for estimating the
accuracy of SMRT assemblies. Moreover, as the ECOLI dataset reveals, the E. coli K12 strain used for
SMRT sequencing differs from the reference genome (see SI6: “Differences between the genome that gave
rise to ECOLI dataset and the reference E. coli K12 genome”). Thus, the standard benchmarking approach
based on comparison with the reference genome [20] is not applicable to these assemblies.

We thus used the following approach to benchmark ABruijn and PBcR against the reference E. coli K12
genome. There are 2906 and 2925 positions in E. coli K12 genome where the reference sequence differs from
ABruijn and PBcR, respectively. However, ABruijn or PBcR agree on 2871 of them, suggesting that these
positions represent errors in the reference genome (or, more likely, mutations in E. coli K12 as compared to
the reference genome). We thus focused on the remaining positions where ABruijn and PBcR disagree with
the reference strain and with each other. We further classify a position as an ABruijn error if the PBcR
sequence at this position agrees with the reference but not with the ABruijn sequence (PBcR errors are
defined analogously). Table 1 illustrates that both ABruijn and PBcR generate accurate assemblies with 25
ABruijn errors and 54 PBcR errors.

In fact, ABruijn improves on PBcR after a single polishing step (leaving 35 errors represented by 8
insertions and 27 deletions) and further reduces the number of errors to 25 by re-aligning the reads and
re-applying the polishing procedure for 3 iterations. These iterations result in the extremely low error rate
of 0.0005%, which is rarely achieved even in high coverage sequencing projects with short reads. SI9: “ORF-
based error-correction” describes how to further reduce the error rates by ~ 20%.

Table 1. Summary of putative errors for ABruijn (three polishing step) and PBcR as compared to the E. coli K12
reference genome. All insertion and deletion errors for ABruijn and PBcR have length 1 bp with the exception of
a single PBcR deletion error that has length 8 bp. The last five rows summarize putative errors for ABruijn for
downsampled ECOLI dataset with reduced average coverage varying from 50X to 30X (single polishing step).

Substitutions|Insertions|Deletions
E. coli K12 3 113 957
PBcR 2 6 46
iterative ABruijn 0 7 18
50X 0 17 31
45X 0 26 47
40X 0 47 73
35X 0 86 130
30X 0 178 211

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

11

We further estimated the accuracy of the ABruijn assembler in projects with lower coverage by down-
sampling the reads from ECOLI to reduce the average coverage to 50X, 45X, 40X, 35X, and 30X. For each
value of coverage, we made five independent replicas and averaged the number of errors over them. Table 1
illustrates that ABruijn mantains excellent accuracy (similar to typical short read assembly projects) even
in relatively low coverage projects. The lion’s share of the ABruijn errors occur in the local low-coverage
regions, e.g., the accuracy in regions with coverage between 5X and 10X is rather low (on average, ~ 1 error
per 150 bps), while the accuracy in regions with coverage above 40X is extremely high. ABruijn makes ~ 1
error per 1400, 4300, 10600, 23200, 40900, and 57600 base pairs in regions with coverage 10X-15X, 15X-20X,
20X-25X, 25X-30X, 30X-35X, and 35X-40X, respectively.

We further used ABruijn to assemble the ECOLIL,,,,, dataset (see SI7 “Additional details on assem-
bling Oxford Nanopore reads”). Both assembler described in Loman et al., [36] and ABruijn assembled
the ECOLL,4,, dataset into a single circular contig structurally concordant with the E. coli K12 genome
with error rates 1.5% and 1.1%, respectively (2475 substitutions, 9238 insertions, and 40399 deletions for
ABruijn). Thus, in contrast to Pacific Biosciences technology, Oxford Nanopore technology currently has to
be complemented by hybrid co-assembly with short reads to generate finished genomes [1, 30, 2,49].

While further reduction in the error rate can be achieved by machine-level processing of the signal resulting
from DNA translocation [37], it is still two orders of magnitude higher that the error rate 0.008% for the
down-sampled ECOLI dataset with similar 30X coverage (Table 1) and below the acceptable standards for
finished genomes. Since Oxford Nanopore technology is rapidly progressing, we decided not to optimize it
further using signal processing of row translocation signals.

5 Discussion

Since the number of bacterial genomes that are currently being sequenced exceeds the number of all other
genome sequencing efforts by an order of magnitude, accurate sequencing of bacterial genomes is an important
goal. Since short-read technologies typically fail to generate long contiguous assemblies (even in the case of
bacterial genomes), long reads are often necessary to span repeats and to generate an accurate genome
reconstruction.

Since traditional assemblers were not designed for working with error-prone reads, the common view
is that OLC is the only approach capable of assembling inaccurate reads and that these reads must be
error-corrected before performing the assembly [7]. We have demonstrated that both these assumptions are
incorrect and that the A-Bruijn approach can be used for assembling genomes from error-prone SMRT reads.
While the running time of OLC assemblers is dominated by the overlap detection step, the running time of
the ABruijn assembler is dominated by the polishing step, with the assembly step itself being extremely fast
(see SI10: “Running time of ABruijn”). Since this error correction step is easy to parallelize, ABruijn has
the potential to become a very fast, scalable, and accurate SMRT assembler.

We have demonstrated that the ABruijn assembler works well for both Pacific Biosciences and Oxford
Nanopore reads. We further introduced a new error correction approach that differs from the previously
proposed approaches and generates extremely accurate genome sequences.

6 Acknowledgments

We are grateful to Mark Chaisson for his help with the PBcR and Quiver analysis as well as to Bahar Behsaz,
Anton Korobeinikov, Mihai Pop, and Glenn Tesler for their many useful comments.

References

1. Antipov, D., Korobeynikov, A., Pevzner., P.A.: hybridSPAdes: an algorithm for co-assembly of short and long
reads. Bioinformatics (2015)

2. Ashton, P.M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., et al.: Minion nanopore sequencing identifies the
position and structure of a bacterial antibiotic resistance island. Nature Biotechnology 33, 296-300 (2015)

3. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM Journal on Computing 25
272-289 (1996)

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

12

4. Bandeira, N., Clauser, K.R.., Pevzner, P.A.: Shotgun protein sequencing: assembly of peptide tandem mass spectra
from mixtures of modified proteins. Molecular & Cellular Proteomics 6, 1123-1134 (2007)

5. Bandeira, N., Pham, V., Pevzner, P., Arnott, D., Lill, J.R.: Automated de novo protein sequencing of monoclonal
antibodies. Nature Biotechnology 26, 1336-1338 (2008)

6. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., et al.: SPAdes: a new genome assembly
algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19, 455-477 (2012)

7. Berlin, K., Koren, S., Chin, C.-S., Drake, J.P., Landolin, J.M., et al.: Assembling large genomes with single-
molecule sequencing and locality-sensitive hashing. Nature Biotechnology 33, 623-630 (2015)

8. Bogdanove, A.J., Koebnik, R., Lu, H., et al.: Two new complete genome sequences offer insight into host and
tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193, 5450-5464 (2011)

9. Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F., Corbeil, J., et al.: Ray meta: scalable de novo
metagenome assembly and profiling. Genome Biol 13, 122 (2012)

10. Booher, N.J., Carpenter, S.C.D., Sebra, R.P., et al.: Single molecule real-time sequencing of Xanthomonas oryzae
genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships.
Microbial Genomics 1, (2015)

11. Brocchieri, L., Karlin, S.: Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 33, 3390—
3400 (2005)

12. Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I.A., Belmonte, M.K., Lander, E.S., Nusbaum, C., Jaffe, D.B.:
Allpaths: de novo assembly of whole-genome shotgun microreads. Genome Research 18, 810-820 (2008)

13. Bonissone, S.R., Pevzner, P.A.: Immunoglobulin classification using the colored antibody graph. In: Research in
Computational Molecular Biology (RECOMB), pp. 44-59 (2015).

14. Chaisson, M.J., Tesler, G.: Mapping single molecule sequencing reads using basic local alignment with successive
refinement (BLASR): application and theory. BMC Bioinformatics 13, 238 (2012)

15. Chaisson, M.J., Huddleston, J., Dennis, M.Y., Sudmant, P.H., Malig, M., et al.: Resolving the complexity of the
human genome using single-molecule sequencing. Nature 517, 608-611 (2015)

16. Chin, C.-S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., et al.: Nonhybrid, finished microbial genome
assemblies from long-read smrt sequencing data. Nature Methods 10, 563-569 (2013)

17. Compeau, P.E.C., Pevzner, P.A.: Bioinformatics Algorithms: An Active-Learning Approach. Active Learning
Publishers (2014)

18. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., et al.: Real-time DNA sequencing from single polymerase molecules.
Science 323, 133-138 (2009)

19. Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M., McCombie, W.R.: Oxford nanopore
sequencing and de novo assembly of a eukaryotic genome. Genome Research 25, 1758-1756 (2015)

Genome Res. 2015 Nov;25(11):1750-6. doi: 10.1101/gr.191395.115. Epub 2015 Oct 7.

20. Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: QUAST: quality assessment tool for genome assemblies.
Bioinformatics 29, 1072-1075 (2013)

21. Guthals, A., Clauser, K.R., Bandeira, N.: Shotgun protein sequencing with meta-contig assembly. Molecular &
Cellular Proteomics 11, 1084-1096 (2012)

22. Huddleston, J., Ranade, S., Malig, M., Antonacci, F., Chaisson, M., et al.: Reconstructing complex regions of
genomes using long-read sequencing technology. Genome Research 24, 688-696 (2014)

23. Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. Journal of Computational Biology
2, 291-306 (1995)

24. Ip, C.L.C, Loose, M., Tyson, J.R., de Cesare, M., et al.: MinION Analysis and Reference Consortium: Phase 1
data release and analysis. F1000Research 4, (2015)

25. Igbal, Z., Caccamo, M., Turner, 1., Flicek, P., McVean, G.: De novo assembly and genotyping of variants using
colored de Bruijn graphs. Nature Genetics 44, 226-232 (2012)

26. Kececioglu, J.D., Myers, E.W.: Combinatorial algorithms for DNA sequence assembly. Algorithmica 13, 7-51
(1995)

27. Kim, K.E., Peluso, P., Babayan, P., Yeadon, P.J., Yu, C., et al.: Long-read, whole-genome shotgun sequence data
for five model organisms. Scientific Data 1 (2014)

28. Koren, S., Harhay, G.P., Smith, T., Bono, J.L., Harhay, D.M., et al.: Reducing assembly complexity of microbial
genomes with single-molecule sequencing. Genome Biol 14, 101 (2013)

29. Koren, S., Phillippy, A.M.: One chromosome, one contig: complete microbial genomes from long-read sequencing
and assembly. Current opinion in microbiology 23, 110-120 (2015)

30. Labont, J.M., Swan, B.K., Poulos, B., Luo, H., Koren, S., et al.: Single-cell genomics-based analysis of virushost
interactions in marine surface bacterioplankton. ISME J. 9, 2386-2399 (2015)

31. Lam, K.K., LaButti, K., Khalak, A., Tse, D.: Finishersc: A repeat-aware tool for upgrading de-novo assembly
using long reads. Bioinformatics 31, 3207-3209 (2015)

32. Lee, C., Grasso, C., Sharlow, M.F.: Multiple sequence alignment using partial order graphs. Bioinformatics 18,
452-464 (2002)

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

13

33. Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., et al.: Comparison of the two major classes of assembly algorithms:
overlap-layout—consensus and de-Bruijn-graph. Briefings in Functional Genomics 11, 25-37 (2012)

34. Lin, Y., Pevzner, P.A.: Manifold de Bruijn graphs. In: Algorithms in Bioinformatics, pp. 296-310. Springer (2014)

35. Lin, Y., Nurk, S., Pevzner, P.A.: What is the difference between the breakpoint graph and the de Bruijn graph?
BMC Genomics 15, 6 (2014)

36. Loman, N.J., Quick, J., Simpson, J.T.: A complete bacterial genome assembled de novo using only nanopore
sequencing data. bioRxiv 015552 (2015)

37. Loman, N.J.; Quick, J., Simpson, J.T.: A complete bacterial genome assembled de novo using only nanopore
sequencing data. Nature methods 12, 733-735 (2015)

38. Minkin, I., Patel, A., Kolmogorov, M., Vyahhi, N., Pham, S.: Sibelia: a scalable and comprehensive synteny block
generation tool for closely related microbial genomes. In: Algorithms in Bioinformatics, pp. 215-229. Springer
(2013)

39. Myers, E.W.: Efficient local alignment discovery amongst noisy long reads. In: Algorithms in Bioinformatics, pp.
52-67. Springer (2014)

40. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21, 79-85 (2005)

41. Nurk, S., Bankevich, A., Antipov, D., Gurevich, A., Korobeynikov, A. et al.: Assembling single-cell genomes and
mini-metagenomes from chimeric MDA products. Journal of Computational Biology 20, 714-737 (2013).

42. Peng, Q., Alekseyev, M., Tesler, G., Pevzner, P.A.: Decoding the Genomic Architecture of Mammalian and Plant
Genomes: Synteny Blocks and Large-Scale Duplications. In: Algorithms in Bioinformatics, pp. 220-232. Springer
(2009)

43. Pevzner, P.A.: I-tuple DNA sequencing: computer analysis. Journal of Biomolecular Structure and Dynamics 7,
63-73 (1989)

44. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proceedings
of the National Academy of Sciences 98, 9748-9753 (2001)

45. Pevzner, P.A., Tang, H., Tesler, G.: De novo repeat classification and fragment assembly. Genome Research 14,
1786-1796 (2004)

46. Pham, S.K., Pevzner, P.A.: Drimm-synteny: decomposing genomes into evolutionary conserved segments. Bioin-
formatics 26, 2509-2516 (2010)

47. Prjibelski, A.D., Vasilinetc, 1., Bankevich, A., Gurevich, A., Krivosheeva, T., et al.: ExSPAnder: a universal
repeat resolver for DNA fragment assembly. Bioinformatics 30, 293-301 (2014)

48. Raphael, B., Zhi, D., Tang, H., Pevzner, P.: A novel method for multiple alignment of sequences with repeated
and shuffled elements. Genome Research 14, 2336-2346 (2004)

49. Risse, J., Thomson, M., Patrick, S., et al.: A single chromosome assembly of Bacteroides fragilis strain BE1 from
Nlumina and MinION nanopore sequencing data. Gigascience 4, (2015)

50. Rizk, G., Lavenier, D., Chikhi, R.: DSK: k-mer counting with very low memory usage. Bioinformatics 29, 652-653
(2013)

51. Roberts, R.J., Carneiro, M.O., Schatz, M.C.: The advantages of SMRT sequencing. Genome Biol 14, 405 (2013)

52. Ronen, R., Boucher, C., Chitsaz, H., Pevzner, P.: SEQuel: improving the accuracy of genome assemblies. Bioin-
formatics 28, 188-196 (2012)

53. Salzberg, S.L., Sommer, D.D., Schatz, M.C., et al.: Genome sequence and rapid evolution of the rice pathogen
Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9, (2008).

54. Safonova, Y., Bankevich, A., Pevzner, P.A.: dipSPAdes: assembler for highly polymorphic diploid genomes. Jour-
nal of Computational Biology 22, 528-545 (2015).

55. Schornack, S., Moscou, M.J., Ward, E.R., Horvath, D.M.: Engineering plant disease resistance based on TAL
effectors. Annu Rev Phytopathol 51, 383-406 (2013).

56. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J., Birol, I.: Abyss: a parallel assembler for short
read sequence data. Genome Research 19, 1117-1123 (2009)

57. Treangen, T.J., Sommer, D.D., Angly, F.E., Koren, S., Pop, M.: Next generation sequence assembly with AMOS.
Curr Protoc Bioinformatics 11, (2011)

58. Vasilinetc, 1., Prjibelski, A.D., Gurevich, A., Korobeynikov, A., Pevzner, P.A.: Assembling short reads from
jumping libraries with large insert sizes.. Bioinformatics 31, 3261-3268 (2015)

59. Vyatkina, K., Wu, S., VanDuijn, M.M., Liu, X., et al.: De Novo Sequencing of Peptides from Top-Down Tandem
Mass Spectra.. J Proteome Res. 14, 4450-4462 (2015)

60. Ummat, A., Bashir, A.: Resolving complex tandem repeats with long reads. Bioinformatics 30, 3491-3498 (2014)

61. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome
Research 18, 821-829 (2008)

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

14

7 Supporting Information

SI1: Additional details on the ABruijn algorithm. Below we provide additional details on the ABruijn
algorithm.

Bubbles in A-Bruijn graphs. Figure S1 provides an example of a bubble in an ABruijn graph.

Fig. S1. A small subgraph of the A-Bruijn graph constructed from 76 (15,8)-mers appearing in segments of 55 reads
covering a short 100-nucleotide region (starting at position 2,100,000 in E. coli genome). Three out of 55 read-paths
are highlighted in blue, red, and green.

Fast heuristic for finding a common jump-subpath with mazimum span. We define Predecessors jymp(v)
as the set of all jump-predecessors of a vertex v in paths P; and P». A vertex w in Predecessors ymp(v)
is called dominant if it is not a jump-predecessor of any other vertex in Predecessors;ymp(v). If paths
Py and P, traverse Predecessorsjump(v) in the same order, then there is only one dominant vertex in
Predecessors jump(v), denoted as w, and span;ump(v) = {span;umy(w) + dp, (w,v)}. To speed-up the dynamic
programming algorithm based on the recurrence in the main text, ABruijn checks only the dominant vertices
in Predecessors jump(v).

Detecting chimeric reads. BLASR alignments of reads against a genome reveal alignable and unalignable
regions of each read. A read has a low-quality end if either its long suffix or its long prefix does not align to the
genome. A read is called chimeric if it is formed by a concatenation of distant regions of the genome or has a
long unalignable prefix or suffix (of length at least jump+mazrOverhang). BLASR alignments revealed 1,983
chimeric reads in the ECOLI dataset (19% of all reads) and 19 chimeric reads in the ECOLI,, 4, dataset
(0.3% of all reads).

The traditional way to identify a chimeric read in the de Bruijn graph framework (when the reference
genome is not known) is to detect a chimeric junction in this read, i.e., a junction that improperly connects
two parts of the genome. The existing assembly algorithms often classify a a position in the read as a chimeric
junction if it is not covered by (or poorly covered by) alignments of this read with other reads. However,
while this approach works for accurate reads, it needs to be modified for inaccurate reads since alignment
artifacts make it difficult to identify the chimeric junctions.

Traditional de Bruijn assemblers classify a read as chimeric if one of the edges in its read-path in the
assembly graph has low coverage. They further remove the chimeric reads and corresponding edges from the
assembly graph (see [41] for more advanced approaches to the detection of chimeric reads). To generalize
this approach to A-Bruijn graphs we need to re-define the notion of coverage for A-Bruin graphs.

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

15

rightSupport pains(Pa) = 1, le ft Support pagns (Py) = 3, Support pans(Py) = 1
Py

Tight Supportpains (Ps) = 2, leftSupport pains(Ps) = 2, Supportpatns(FPs) =2

3

rightSupport pawns (P1) = 4, leftSupport payns(Pr) = 0, Support pagps (P1) = 0

GrowingPath =—— —— —— —— — — ——— —— — — — — — —

Fig. S2. An example of rightSupportpains(P),leftSupportpains(P) and Supportpains(P). A GrowingPath and 5
paths {P1, P2, P, Ps, Ps} above it (extending this path) to the right that form the set Paths.

An edge (v,w) in a path P is called internal (strongly internal) if the distances from v to the start of
P and from w to the end of P exceed jump (jump+mazxOverhang). Given overlapping paths P and P,
we define the P-spread of P’ as the sub-path of P starting and ending at the first and last vertices of
Pathjump(P, P').

To check if a path P in the A-Bruijn graph is chimeric, we consider all paths Paths that overlap with
this path and further trim non-internal edges of these paths, resulting in a set of paths that we refer to as
TrimmedPaths. The coverage of an edge in path P is defined as the number of paths in TrimmedPaths
whose P-spread contain this edge. A path is called chimeric if one of its strongly internal edges has coverage
below a threshold minCoverage (the default value of minCoverage is 10% of the average coverage).

After A-Bruijn constructs the A-Bruijn graph, it runs the chimeric read detection procedure and deletes
the detected chimeric reads from the A-Bruijn graph. ABruijn removes 1,931 out of 1,983 chimeric reads in the
ECOLI dataset. Although 52 chimeric reads (0.5% of all reads in the ECOLI dataset) are not removed prior
to constructing the genomic path in the A-Bruijn graph, no assembly errors (caused by selecting chimeric
reads for path extensions) are triggered bacause the notion of a most-consistent path allows ABruijn to avoid
using the chimeric reads as candidates for path extensions.

While the notion of a most-consistent path allows ABruijn to avoid selecting chimeric paths for path
extensions, there is a small (0.5%) chance that it selects a chimeric read at the very first step. To make sure
that ABruijn does not start from a chimeric read, we apply an additional more stringent check for chimerism
to the initially selected read (i.e., increasing the value of minCoverage from 10% to 20% of the average
coverage).

Most-consistent paths. Given overlapping paths P, and P, we say that P is right-supported by P, if the
Py-distance from the last vertex in Pathjymp(Pi1, P2) to the end of P; is smaller than the P>-distance from
the last vertex in Pathjymp(Pr1, P2) to the end of Ps. Similarly, P is left-supported by P, if the P;-distance
from the start of P; to the first vertex in Pathjymp(P1, P2) is smaller than the P>-distance from the start of
P, to the first vertex in Pathjymp(P1, P2). Depending on the direction of extension, the set OverlapPaths
in the ABruijn algorithm contains all the paths in ReadPaths that right-support or left-support ReadPath
(the default direction is “right”).

Given a path P in a set of paths Paths, we define rightSupportpains(P) as the number of paths in
Paths that right-support P; leftSupportpains(P) is defined similarly. We also define Supportpains(P) as
the minimum of rightSupportpains(P) and le ftSupport pains(P).

Given a parameter minSupport (the default value is 2), we say that a path P from Paths is consistent
with the set Paths if Supportpains(P) > minSupport. A consistent path is most-consistent if it maximizes
SupportPaths(P)-

Given a set of paths Paths overlapping with ReadPath, ABruijn selects a most-consistent path for
extending ReadPath. It further classifies the set Paths as consistent if there exists a path P in this set
such that nearly all other paths in Paths are right-supported by P. Note that while the simplified ABruijn
pseudocode above only describes the path extension process in one direction (“right”), the ABruijn tool
attempts to extend the path to the “left” if the path extension to the “right” halts.

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

16

SI2: Choice of parameters in the ABruijn algorithm.
Given parameters k, ¢, and jump, we define the following statistics (Table S1):

— Prt(k,t, jump), the probability that two overlapping SMRT reads share a (k,t)-mer along a region
of length jump in their overlap. To ensure that the notion of a common jump-subpath indeed detects
overlapping reads, ABruijn selects parameters k, t, and jump in such a way that Prt(k,t, jump) is large.

— Pr=(k,t,jump), the probability that two regions of length jump from two non-overlapping SMRT
reads share a (k,t)-mer. To ensure that the notion of the common jump-subpath does not detect non-
overlapping reads, ABruijn selects parameters k,t, and jump in such a way that Pr—(k,t, jump) is
small.

In selecting optimal parameters k, t, and jump, we note that the error rates in SMRT reads vary
across reads and across various regions within a single read. Since the variable error rates in reads affect
Prt(k,t, jump) and Pr~(k,t, jump), we further analyzed which parameters work the best across a range of
error rates and selected the most stable ones.

ABruijn uses parameters k = 15, t = 8, and jump = 2000 (giving Pr*(15,8,2000) = 0.98 and
Pr—(15,8,2000) = 0.003) as well as maxOverhang = 3000 and minOverlap = 7000. Since most repeats in
bacterial genomes have length below 7000 nt, this parameter ensures that most reads from different regions
of the genome are not classified as overlapping even if they share a long repeat.

Table S1. The empirical estimates of Pr(k,t, jump) and Pr~ (k, t, jump) under different choices of parameters k, ¢,
and jump. The estimates are based on statistics from 100,000 pairs of overlapping reads (to estimate Pr+ (k,t, jump))
and 100,000 pairs of non-overlapping reads (to estimate Pr~ (k,t, jump)) from ECOLI dataset. The estimates do not
significantly change for other datasets containing Pacific Biosciences reads but do change for datasets containing
Oxford Nanopore reads.

k t jump Pr'(ktjump) Pro(ktjump) | k t jump Pr'(kt jump) Pr (k1 jump)
15 7 2000 0.98 0.003 15 7 3000 0.99 0.006
15 8 2000 0.98 0.003 15 8 3000 0.99 0.006
15 9 2000 0.98 0.003 15 9 3000 0.99 0.006
15 10 2000 0.98 0.003 15 10 3000 0.99 0.006
17 6 2000 0.97 0.0002 17 6 3000 0.98 0.0005
17 7 2000 0.97 0.0002 17 7 3000 0.98 0.0005
17 8 2000 0.97 0.0002 17 8 3000 0.98 0.0005
17 9 2000 0.97 0.0002 17 9 3000 0.98 0.0005
19 5 2000 0.94 <0.0001 19 5 3000 0.96 0.0001
19 6 2000 0.94 <0.0001 19 6 3000 0.96 0.0001
19 7 2000 0.94 <0.0001 19 7 3000 0.96 0.0001
19 8 2000 0.94 <0.0001 19 8 3000 0.96 0.0001

SI3: Additional details on analyzing necklaces.

Using the draft genome for constructing mini-alignments. Figure S3 shows the distribution of the lengths
of necklaces constructed by aligning all reads in the ECOLI dataset to the draft genome.

To evaluate how errors in the draft genome affect alignments of SMRT reads, we corrupted the reference
E. coli genome by introducing random single-nucleotide errors at randomly chosen positions (10,000 mis-
matches, deletions, and insertions) and aligned all SMRT reads against the corrupted genome. A segment in
the corrupted genome is called corrupted if it has been changed by an error and correct otherwise. Figure S4
shows the distribution of the local match and insertion rates (for both corrupted and correct simple 4-mers)
and illustrates that 77% of all correct simple 4-mers are (0.8, 0.2)-solid. Remarkably, none of the corrupted
simple 4-mers are (0.8, 0.2)-solid.

ABruijn finds all (0.8, 0.2)-solid /-mers (the default value of [is 10) and combines them into solid regions.
It further uses the landmarks (the middle points of gold and simple 4-mers) within the solid regions as the
boundaries of necklaces to ensure that single homonucleotide runs in reads do not split into two consecutive

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

17

5000

4000 A

3000

2000

1000

number of necklaces

0 20 40 60 80 100
necklace length

Fig. S3. Histogram of the lengths of 135,417 necklaces formed by aligning all reads in the ECOLI dataset to the draft
genome and constructing the A-Bruijn graph for that alignment. 2,914 necklaces that are longer than 100 bp are not
shown.

necklaces and are not adjacent to the boundaries of necklaces. This condition is important for the subsequent
genome polishing step.

Selecting landmarks. A 4-mer is called gold if all its nucleotides are different and simple if all its consecutive
nucleotides are different. For example, CAGT is a gold (and simple) 4-mer, ATGA is a simple 4-mer, and
GTTC is not a simple 4-mer. We further select a gold 4-mer within each solid region or, if there are no
gold 4-mers, a simple 4-mer (some regions have neither gold nor simple 4-mers). We further use the middle
points (i.e., a point between its 2nd and 3rd nucleotides) of selected simple 4-mers as landmarks. 135,417
out of 141,658 solid regions contain simple 4-mers resulting in 135,417 mini-alignments. ABruijn analyzes
each mini-alignment and error-corrects each segment between consecutive landmarks.

Generating necklace consensus using Partial Order Graphs. ABruijn builds a partial order graph (POG) [32)
for each necklace and classifies vertices in the POG as reliable and unreliable. It further constructs the path
formed by reliable vertices and selects a sequence spelled by this path as the inferred consensus sequence
for all reads contributing to this necklace (Figure S5). Since most necklaces are short (the average bubble
length is 35 nucleotides for the ECOLI dataset), the POG construction step is fast.

We note that the Quiver algorithm [16] also uses POGs to generate consensus sequences for further
polishing. However, since some details of Quiver (i.e., its scoring function) have not been published in a
refereed paper yet, the differences between Quiver and ABruijn remain unclear. We thus decided to describe
how ABruijn constructs and scores POGs.

Given a necklace formed by a set of segments Segments from reads, the pairwise alignments between the
segment from the draft genome and other segments in Segments suffer from the fact that the draft genome is
an inaccurate template for this region. While one can try to switch from this inaccurate template to another
(hopefully more accurate) segment contributing to the necklace, some necklaces have no accurate segments,
making such a switch problematic.

To bypass this problem, we construct a partial order graph POG(Segments), instead of relying on any
single segment from one read. Each segment from Segments corresponds to a segment-path in the POG.
The multiplicity of a vertex in POG(Segments) is defined as the number of segment-paths that pass through
this vertex.

Given the alignment of the (unknown) reference genome to the partial order graph POG(Segments),
the shared vertices between the path representing the reference genome and POG(Segments) are classified
as the reference vertices. Intuitively, reference vertices are expected to have higher multiplicities than other

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

18

Correct simple 4-mer +

Corrupted simple 4-mer (mismatch) *

Corrupted simple 4-mer (insertion) u]
Corrupted simple 4-mer (deletion)

MarchRate

Fig. S4. Distribution of local match and insertion rates as a 2-D plot for correct simple 4-mers (green), corrupted
simple 4-mers with mismatches (blue), corrupted simple 4-mers with insertions (red) and corrupted simple 4-mers
with deletions (orange).

vertices in POG(Segments). Indeed, our analysis of POGs constructed for the necklaces in a corrupted
genome revealed that the lion’s share of reference vertices have multiplicity above |Segments|/2 and the
lion’s share of vertices with multiplicity above |Segments|/2 are reference vertices.

We thus call a vertex in POG(Segments) reliable if its multiplicity exceeds |Segments|/2. Since the
reliable vertices are totally ordered in POG(Segments), the path formed by these vertices spells out a
unique sequence consensus(Segments) that we use as an initial consensus sequence of the necklace.

Breaking long necklaces into shorter ones. Since POG(Segments) contains pairwise alignments of all
segments to consensus(Segments), we combine them into a multiple alignment and identify (0.8, 0.2)-solid
l-mers (the default value of [is 10) in consensus(Segments). Using landmarks within gold and simple 4-mers
within these resulting solid regions in consensus(Segments), ABruijn further decomposes POG(Segments)
into shorter necklaces. This decomposition reduces the average length of necklaces from ~35 nucleotides to
~17 nucleotides and reduces the number of long necklaces from 2,914 to 135. Since the running time of the
partial order alignment is quadratic in the total length of sequences that are being aligned, reducing the
number of long bubbles results in significant reduction of the running time.

SI4: Draft ECOLI assembly. Table S2 presents the positions of 735 reads contributing to the draft genome
for the ECOLI dataset.

SI5: Statistical analysis of errors in reads. Below we provide additional details on errors in Pacific
Biosciences reads.

Statistics of homonucleotide runs. Table S3 presents the statistics for all read segments covering the
homonucleotide runs AAAAAA and AAAAAAA. Interestingly, when we apply the statistical parameters
derived from the older P5-C3 protocol to our P6-C4 ECOLI dataset, the number of ABruijn errors remains
small (62 errors after a single iteration of error correction) illustrating that our probabilistic framework is
not subject to over-training.

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

19

sega G A T
segs G A C

T G T G T G A
¢c T G G T G A

H QO

POG(seg1. sega)

POG(seg1. sega, segs)

POG(Segments)

Fig.S5. Constructing the partial order graph for Segments = {seg1, segs, segs, segs}. Reliable vertices in
POG(Segments) (shown in bold) reveal the inferred consensus sequence GACTGGTGA.

Statistical parameters of P6-C4, P5-C3 and P4-C2 datasets. Table S4 presents the statistical parameters
of the P6-C4, P5-C3 and P4-C2 datasets.

SI6: Differences between the genome that gave rise to the ECOLI dataset and the reference
E. coli K12 genome. Both PBcR [7,16] and ABruijn assemblers suggest that the ECOLI dataset was
derived from a strain that differs from the reference E. coli K12 genome by a 1798 bp inversion, two in-
sertions (776 and 180 bp), and one deletion (112 bp). To avoid confusion, we removed these regions before
benchmarking ABruijn and PBcR [7,16]. We have also clipped the PBcR assembly by ~35 kb from the end
due to a large duplication that represents a PBcR artifact when reporting the assembly of a circular genome.

PBcR assembly results in a 34,600 bp duplication at the both ends of the resulting contig which pre-
sumably represents a circularization artifact. The prefix (resp., suffix) has 54 (resp., 30) differences in this
duplicated region as compared to the FE. coli K12 reference genome assembled using short Illumina reads,
5 of these differences are shared between prefix and suffix. Also the prefix (but not the suffix) contains the
1798 bp long inversion from the reference genome. Thus only counting the prefix would lead to a count of
2925 differences whereas only counting the suffix would lead to a count of 1103 differences from the reference.
We include the prefix and exclude the suffix in the PBcR assembly for comparison purposes because the
reads are more consistent with the presence of the 1798 bp long inversion. If we ignore the large indels and
the inversion in the E. coli K12 reference genome, then there are 45 and 59 positions with differences and
ABruijn and PBcR agree on 5 of them.

SI7: Additional details on assembling Oxford Nanopore reads. Below we provide additional details
on assembling Oxford Nanopore reads.

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

20

Modifying ABruijn to ssemble Ozford Nanopore reads. ABruijn also assembled ECOLI,, 4., into a single
circular contig structurally concordant with the E. coli K12 genome) using the following parameters: k = 15,
t = 4, and jump = 2500 (giving Pr+(15,4,2500) = 0.97 and Pr~(15,4,2500) = 0.003). The parameters
mazxQverhang and minQuverlap for assembling ECOLL,,,, are the same as the default parameters for
ECOLI. The A-Bruijn graph was constructed from 5,997 reads, all longer than 9 kb.

To account for the specifics of Oxford Nanopore reads, we made the following changes in ABruijn as
compared to assembling Pacific Biosciences reads.

— Since the ECOLIL, 4., dataset contains only a tiny fraction of chimeric reads, we did not remove the
chimeric reads at the pre-processing stage. Instead, we relied on the notion of consistent paths to deal
with chimeric reads. To avoid an accidental selection of a chimeric read at the very first step of ABruijn,
we select an initial read-path that is both left-supported and right-supported by at least 3 other read-
paths.

— If the set of overlapping paths with respect to a path P is empty (a common situation for low coverage
datasets), ABruijn selects a path P’ that shares a common jump-subpath of maximum span with P and
ensure that the right and left overhangs of P and P’ do not exceed maxzOuverhang.

Constructing and error-correcting necklaces. While the algorithm for error-correcting necklaces described
in the main text is adequate for Pacific Biosciences reads, additional steps must be taken to error-correct less
accurate Oxford Nanopore reads. We thus modified our polishing algorithm to account for the conservation
of k-mers rather than the conservation of individual nucleotides (the likelihood approach described in the
main text). We use k=5 since base-calling for Oxford Nanopore reads is based on 5-mers [37].

Given a k-mer in the current assembly (along with aligned reads that span this k-mer), we define its
support as the number of reads for which this k-mer is completely conserved over the span of the alignment
(i.e., the alignment contains no insertions, deletions, or substitutions over the span of the k-mer). We calculate
the support of each k-mer in the current assembly and classify a k-mer as weakly supported if its support is
below the lower support threshold and strongly supported if its support is above the upper support threshold.
We observed that the lion’s share of errors are located within or nearby weakly supported k-mers.

For each weakly supported k-mer, we find the closest strongly supported k-mers to its left and and to
its right and consider a weak necklace defined by reads spanning these two strongly supported k-mers. A
mini-alignment consists of a segment of the current assembly (containing at least one weakly supported
k-mer) and all read segments that are aligned to this segment. Since weak necklaces are typically very short,
they often contain at least one error-free read within the span of the necklace.

ABruijn attempts to correct potential errors within each weak neaklace by analyzing alternative candidate
consensus sequences. We consider two types of candidates: (i) all sequences arising from a single mutation
(insertion, deletion, or substitution) in the assembled sequence, and (ii) all reads within the span of the
necklace (since weak necklaces often have error-free reads).

Given a k-mer in a candidate sequence for a necklace, its unaligned support is defined as the number of
read segments of that necklace that contain this k-mer. Unlike the previously defined (aligned) support score,
the unaligned support score does not take the alignment into account in order to mitigate the problem of
poorly-aligned reads within a necklace. The candidate support score of a candidate sequence is defined as the
average value of the unaligned support scores of its k-mers. The algorithms selects the candidate sequence
with the highest candidate support score and iterates.

Error-correcting homonucleotide runs. The main challenge with error-correcting less accurate Oxford
nanopore reads is the deterioration of the alignment of reads against the pre-polished genome. As a result
of this deterioration, the read segments that contribute to computing the consensus of a segment are not
necessarily the reads that have arisen from this segment. Thus, given a segment in the pre-polished genome,
we first recruit the reads that align well to this segment and only use the well-aligned reads (rather than all
reads as before) for computing the likelihood. While this procedure reduces the number of reads participating
in the likelihood estimation, the accuracy of the resulting consensus improves since the recruited reads are
more accurate.

For each run LZ ... ZR of a nucleotide Z in the genome flanked by the nucleotides L (on the left) and
R (on the right) distinct from Z, we limit analysis to all reads that are well-aligned against LZ ... ZR. A
read is well- aligned against L ... ZR if the flanking L (R) nucleotide forms either a match with the read or

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

21

is aligned against a nucleotide Z in the read. We represent the segment of the well-aligned read simply as
the count of the nucleotides contained in the run and the count of all other nucleotides (see Figure S7).

read |[CAAT—AG|CAAT—-AA|CAAAAAT
FITs LD (=l (P
genome| CAAAAAG|CAAAAAG|CAAAAAG
3A1X 4A1X (not counted)

Fig. S6. Well-aligned reads (the first two examples) and a poorly aligned read (the last example). The well-aligned
reads are represented as 3A1X and 4A1X in the likelihood estimate (X stands for an arbitrary nucleotide.

After generating all well-aligned read-segments for all homonucleotide runs, we compute the conditional
probability that a homonucleotide run of a given length results in a read-segment of a given type (e.g.,
Pr(read-segment=4A1X | genome-segment=5A)=0.0585) as well as the probability of each homonucleotide
run (e.g., Pr(genome-segment=5A)=0.0075) (see Table S5). We further use the resulting probabilities to
compute the likelihood function for all well-aligned reads in each necklace (frequencies below a threshold
0.001 are ignored). Our analysis revealed tha these probabilities hardly change when one changes the dataset
of reads, coverage, or the reference genome. Given a read-segment from a well-aligned read, we define
Pr(read-segment, run-length)
= Pr(read-segment—run-length) - Pr(run-length)

Given a set of read-segments Segments from all well-aligned reads, we select the run-length of a homonu-
cleotide run in a necklace as the run-length that maximizes the formula above.

For example, if Segments={3A, 4A, 4A1X, 4A1X, 5A}: Pr(Segments,4A) = Pr(Segments|4A)- Pr(4A)
=0.3512-0.3593 - 0.035 - 0.035 - 0.0153 - 0.0204 = 4.878
Pr(Segments,5A) = Pr(Segments|5A) - Pr(5A)
=0.2559 - 0.3106 - 0.0585 - 0.0585 - 0.1259 - 0.0075 = 2.777
Since Pr(5A|Segments) > Pr(4A|Segments), we select AAAAA over AAAA as the length of the homonu-
cleotide run.

SI8: Assembling Xanthomonas genomes. Since HGAP 2.0 failed to assemble the BLS256 genome,
Booher et al., 2015 [10] developed a special PBS algorithm for “local tal gene assembly and applied Minimo
assembler [57] to address this deficiency in HGAP. They further proposed a workflow that first launches PBS
and uses the resulting local tal gene assemblies as seeds for a further HGAP assembly with custom adjustment
of parameters in HGAP /Celera workflows (this workflow was used for assembling the PXO99A genome as
well). While HGAP 3.0 resulted in an improved assembly of BLS256 (as compared to HGAP 2.0), Booher et
al., 2015 [10] commented that the PBS algorithm is still required for assembling other Xanthomonas genomes.
We further comment that PBS represents a customized assembler for tal genes that is not designed to work
with other types of tandem repeats. Thus, development of a general SMRT assembly tool that accurately
reconstruct arbitrary tandem repeats remains an open problem.

Since BLS256 and PXO99A have various high-multiplicity repeats, k-mers from these repeats have very
high frequencies. Since ABruijn excludes high-frequency k-mers from the construction of the A-Bruijn graph
(Figure 2), k-mers from TAL and IS repeats in Xanthomonas genomes become invisible in the A-Bruijn
graph. This makes finding common jump-paths in reads containing TAL and IS repeats problematic and
makes it difficult to identify overlapping reads from these regions. To address this challenge, we modified
ABruijn for assembling tandem repeats with high copy numbers as follows.

The modified ABruijn assembler does not remove all k-mers with high frequencies exceeding ¢ - t (the
default ¢=3) from the set of solid strings in the construction of the A-Bruijn graph. Instead, it down-samples
all high frequency k-mers (with frequencies exceeding ¢ - t). This down-sampling randomly selects at most
¢ -t occurrences of a frequent k-mer in reads (rather than excluding all frequent k-mers) when forming read-
paths, thus preventing fragmentation in the resulting assembly caused by overly-aggressive removal of high-
frequency k-mers in TAL and IS repeats. An additional challenge is the potential misalignment of SMRT reads
spanning tandem TAL repeats in the A-Bruijn graph (which may erroneously align the i-th and j-th copies

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

22

of a tandem TAL repeat for i # j). To minimize the effects of such misalignments, we added an additional
constraint on vertices in common jump-subpaths by requiring that |dp, (v;, vi+1) — dp, (Vi, viy1)| < jump/2
for all adjacent vertices v; and v;41 in all common jump-subpaths between read-paths P; and P;.

We launched ABruijn with the following parameters to assemble the BL.S256 and PXO99A datasets: k=15,

t=8, jump=2000, maxOverhang=1500 and minOverlap=8000. ABruijn assembled the BLS256 genome into
a single circular contig structurally concordant with the BLS256 reference genome. It also assembled the
PXO0O99A genome into a single circular contig structurally concordant with the PXO99A reference genome
but, similarly to the initial assembly in Booher et al., 2015 [10], it collapsed a 212 kb tandem repeat.
SI9: ORF-based error-correction. While the likelihood-based approaches to error-correction (described
in the main text) corrects the lion’s share of errors in the draft genomes, some errors remain uncorrected,
particularly with respect to the errors in estimating the lengths of homonucleotide runs. We thus comple-
ment the likelihood-based approaches with a new ORF-based error-correction approach that analyses Open
Reading Frames (ORFs).

Note that while the average length of a protein-coding gene in most bacterial genomes exceeds 800 [11],
the average ORF length in a randomly generated string of nucleotide is only 64. Thus, every error that
represents an indel within a gene (a frameshift) may introduce a premature stop codon and has the potential
to significantly reduce the length of the ORF corresponding to this gene.

If we are deciding between two alternative lengths of a homonucleotide run within a gene (correct and
incorrect), the correct choice results in an ORF that corresponds to the gene length while the incorrect
choice results in a frameshift that may introduce a premature stop codon. Such frameshift mutations usually
shorten the length of the longest ORF that spans over the homonucleotide run with incorrectly defined
length.

Given a position in the genome, we compute its ORF-length as the maximum length of all six ORF's
covering this position. If the genome is assembled without errors then ORF-lengths are large for most
positions that belong to genes. Since genes typically cover over 85% of bacterial genomes, most positions in
the entire genome have large ORF-lengths. However, if a genome is assembled with errors, the ORF-lengths
for positions with indels are typically smaller than the ORF-length of this position in the error-free genome
(see Figure S7).

Since in some cases, the likelihood values for alternative choices for the length of a homonucleotide run
are nearly the same, we develop an additional decision rule that analyzes the ORF-lengths between two
alternatives and gives preference to the choice that results in a significantly longer ORF-length.

Given two candidate lengths of a homonucleotide run with a small difference in their homonucleotide
likelihood score (smaller than a threshold A), we compute the difference between their ORF-lengths and
select the candidate with larger ORF-length if the difference between ORF-lengths exceeds a threshold (the
default value is 128 bp). If the difference between the ORF-lengths is smaller than the threshold, we retain
the length of the run that maximizes the homonucleotide likelihood score described in the main text.

SI110: Running time of ABruijn. The construction of the A-Bruijn graph (using k-mer counting program
DSK [50] and naive k-mer indexing) and finding a genomic path in this graph together take under 30 min
using modern 8-core desktop computer with 32 Gb memory (for all genomes we analyzed). We estimate that
using a fast rather than naive k-mer indexing algorithm would significantly reduce the time for constructing
the draft genome.

Since the ABruijn assembly step is very fast, its running time is dominated by the polishing step that is
currently implemented in Python; it takes about 6 hours on the ECOLI dataset (similar to the time taken
by Quiver error correction step in PBcR). We estimate that the running time of the polishing step wil be
reduced by an order of magnitude after we complete the transition from Python to C++.

ABruijn assembler is freely available from https://sites.google.com/site/abruijngraph

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

23

Table S2. Summary of the positions of 735 reads contributing to the draft genome for the ECOLI dataset. The
order of reads (from 0 to 734) corresponds to the order that ABruijn used to execute the path extension paradigm.
Each read is represented by the starting and ending position of its alignment to the reference genome (rounded to
the nearest 1000). For example, read 0 is aligned to positions between 2,340 kb and 2,361 kb in the reference genome.
Note that the length of a read may be longer than the span of the alignment since many reads have low-quality ends
that do not align to the genome.

[0] 2340-2361 [1] 2350-2368 [2] 2355-2375 [3] 2364-2384 [4] 2369-2390 [5] 2373-2393 [6] 2380-2402 [7] 2390-2409 [8] 2397-2415 [9] 2402-2421
[10] 2407-2428 [11] 2415-2434 [12] 2420-2441 [13] 2425-2448 [14] 2436-2456 [15] 2442-2461 [16] 2448-2469 [17] 2455-2475 [18] 2461-2481 [19] 2470-2488
[20] 2476-2496 [21] 2482-2502 [22] 2485-2509 [23] 2496-2516 [24] 2503-2522 [25] 2506-2527 [26] 2515-2534 [27] 2523-2543 [28] 2528-2550 [29] 2534-2559
[30] 2547-2567 [31] 2552-2572 [32] 2558-2578 [33] 2564-2583 [34] 2569-2591 [35] 2576-2595 [36] 2583-2604 [37] 2588-2607 [38] 2593-2615 [39] 2602-2622
[40] 2606-2628 [41] 2615-2635 [42] 2619-2639 [43] 2626-2646 [44] 2633-2651 [45] 2641-2658 [46] 2643-2663 [47] 2645-2665 [48] 2650-2669 [49] 2654-2674
[50] 2662-2684 [51] 2671-2692 [52] 2679-2698 [53] 2684-2706 [54] 2692-2713 [55] 2701-2722 [56] 2706-2725 [57] 2711-2733 [58] 2718-2738 [59] 2725-2746
[60] 2735-2752 [61] 2742-2763 [62] 2747-2766 [63] 27532773 [64] 2760-2780 [65] 2767-2785 [66] 2771-2791 [67] 2775-2797 [68] 2783-2803 [69] 2790-2809
[70] 2796-2815 [71] 2805-2822 [72] 2808-2827 [73] 2815-2836 [74] 2822-2842 [75] 2829-2848 [76] 2834-2855 [77] 2842-2862 [78] 2851-2870 [79] 2858-2877
[80] 2861-2882 [81] 2868-2888 [82] 2875-2894 [83] 2883-2003 [84] 2889-2909 [85] 2896-2915 [86] 2899-2920 [87] 2907-2928 [88] 2916-2934 [89] 2919-2940
[90] 2923-2945 [91] 2933-2953 [92] 2940-2960 [93] 2947-2967 [94] 2949-2969 [95] 2954-2975 [96] 2961-2982 [97] 2970-2988 [98] 2976-2994 [99] 2981-3000
[100] 2986-3004[101] 2989-3009 [102] 2994-3012 [103] 3000-3020 [104] 3007-3027 [105] 3014-3032 [106] 3019-3040 [107] 3024-3042 [108] 3024-3045 [109] 3032-3055
[110] 3044-3064[111] 3048-3067 [112] 3053-3072 [113] 3059-3079 [114] 3066-3086 [115] 3071-3091 [116] 3078-3099 [117] 3088-3107 [118] 3093-3113 [119] 3096-3118
[120] 3106-3126 [121] 3112-3133 [122] 3119-3143 [123] 3129-3149 [124] 3133-3153 [125] 3137-3157 [126] 3147-3167 [127] 3155-3175 [128] 3159-3178 [129] 3163-3184
[130] 3172-3193 [131] 3179-3199 [132] 3185-3205 [133] 3193-3212 [134] 3198-3218 [135] 3202-3223 [136] 3213-3230 [137] 3215-3238 [138] 3226-3245[139] 3229-3250
[140] 3233-3256 [141] 3244-3264 [142] 3250-3267 [143] 3251-3273 [144] 3263-3283 [145] 3270-3288 [146] 3275-3295 [147] 3281-3302 [148] 3289-3308 [149] 3293-3314
[150] 3301-3320 [151] 3305-3326 [152] 3314-3336 [153] 3325-3345 [154] 3330-3350 [155] 3338-3360 [156] 3344-3364 [157] 3347-3367 [158] 3355-3374 [159] 3361-3382
[160] 3370-3388 [161] 3373-3395 [162] 3383-3404 [163] 3392-3411 [164] 3396-3414 [165] 3398-3419 [166] 3404-3423 [167] 3406-3426 [168] 3411-3431[169] 3417-3442
[170] 3428-3448 [171] 3437-3456 [172] 3442-3462 [173] 3448-3467 [174] 3453-3473 [175] 3460-3478 [176] 3467-3488 [177] 3475-3496 [178] 3482-3502 [179] 3488-3509
[180] 3496-3515[181] 3500-3520 [182] 3507-3528 [183] 3514-3534 [184] 3522-3540 [185] 3529-3550 [186] 3535-3555 [187] 3542-3560 [188] 3545-3565 [189] 3554-3574
[190] 3559-3580 [191] 3566-3587 [192] 3574-3593 [193] 3577-3596 [194] 3583-3602 [195] 3587-3606 [196] 3592-3614 [197] 3599-3616 [198] 3604-3624 [199] 3613-3632
[200] 3619-3640 [201] 3625-3642 [202] 3628-3649 [203] 3636-3656 [204] 3644-3665 [205] 3653-3672 [206] 3657-3678 [207] 3663-3682 [208] 3670-3686 [209] 3672-3692
[210] 3678-3698 [211] 3683-3706 [212] 3695-3715 [213] 3702-3722 [214] 3708-3725 [215] 3714-3735 [216] 3721-3741 [217] 3727-3748 [218] 3735-3753 [219] 3739-3759
[220] 3744-3762[221] 3748-3768 [222] 3753-3773 [223] 3759-3778 [224] 3767-3787 [225] 3773-3792 [226] 3781-3801 [227] 3788-3808 [228] 3794-3815[229] 3799-3819
[230] 3803-3824[231] 3810-3830 [232] 3816-3834 [233] 3816-3841 [234] 3828-3846 [235] 3833-3854 [236] 3838-3857 [237] 3843-3866 [238] 3852-3872 [239] 3857-3879
[240] 3862-3884 [241] 3868-3893 [242] 3880-3901 [243] 3885-3906 [244] 3889-3911 [245] 3897-3918 [246] 3903-3921 [247] 3907-3928 [248] 3912-3932 [249] 3915-3936
[250] 3919-3941 [251] 3932-3953 [252] 3940-3958 [253] 3946-3967 [254] 3952-3974 [255] 3958-3978 [256] 3965-3985 [257] 3969-3990 [258] 3974-3993 [259] 3980-3999
[260] 39864004 [261] 3994-4013 [262] 3999-4019 [263] 4006-4027 [264] 4012-4032 [265] 4018-4039 [266] 4025-4047 [267] 40334053 [268] 4035-4057 [269] 4047-4067
[270] 4051-4072[271] 4057-4078 [272] 4065-4086 [273] 4074-4094 [274] 4080-4099 [275] 4087-4107 [276] 4092-4113 [277] 4097-4117 [278] 4104-4123 [279] 41144128
[280] 4114-4135[281] 4123-4143 [282] 4131-4149 [283] 41374157 [284] 4143-4165 [285] 4149-4169 [286] 4154-4175 [287] 4159-4179 [288] 4170-4188 [289] 4170-4191
[290] 4177-4198 [291] 4183-4203 [292] 4187-4207 [293] 4192-4212 [294] 4201-4221 [295] 4210-4229 [296] 4214-4235 [297] 42234243 [298] 42284248 [299] 4235-4254
[300] 42434264 [301] 4250-4269 [302] 4254-4274 [303] 4259-4281 [304] 4267-4286 [305] 4274-4293 [306] 4279-4299 [307] 4282-4300 [308] 4285-4306 [309] 4295-4315
[310] 4300-4319 [311] 4308-4327 [312] 4311-4333 [313] 43164337 [314] 4324-4345 [315] 4333-4354 [316] 4341-4360 [317] 4346-4366 [318] 4353-4373[319] 43614381
[320] 4364-4387 [321] 4375-4395 [322] 43804400 [323] 43854407 [324] 4394-4413 [325] 44024422 [326] 4406-4427 [327] 44134435 [328] 44224442 [329] 4431-4448
[330] 4436-4455[331] 4438-4458 [332] 4444-4463 [333] 4448-4470 [334] 44574478 [335] 4464-4484 [336] 4470-4490 [337] 4475-4491 [338] 4483-4501 [339] 4483-4505
[340] 4487-4510 [341] 4494-4513 [342] 4501-4520 [343] 4509-4531 [344] 4517-4539 [345] 4525-4545 [346] 4530-4551 [347] 4538-4558 [348] 4548-4565 [349] 4549-4568
[350] 4553-4573 [351] 4560-4582 [352] 4570-4592 [353] 4576-4597 [354] 4584-4604 [355] 4588-4608 [356] 45974616 [357] 46024622 [358] 4604-4628 [359] 46174635
[360] 46204640 [361] 46274641 [362] 012 [363] 018 [364] 626 [365] 10-31 [366] 14-39 [367] 2848 [368] 33-52 [369] 39-59
[370] 47-66 [371] 5272 [372] 59-78 [373] 60-81 [374] 67-86 [375] 7594 [376] 80-100 [377] 85-105 [378] 87-107 [379] 92-112
[380] 99-115 [381] 106-126 [382] 111-131 [383] 117138 [384] 127-143 [385] 129-149 [386] 136-157 [387] 146-165 [388] 147-170 [389] 151-172
[390] 164-185 [391] 172-191 [392] 176-195 [393] 181-202 [394] 189211 [395] 194-217 [396] 204-224 [397] 207-226 [398] 213-232 [399] 217-238
[400] 227-246 [401] 233-253 [402] 239-259 [403] 245-265 [404] 250-270 [405] 257-277 [406] 263-283 [407] 269-291 [408] 278-299 [409] 284-306
[410] 293-312 [411] 298-316 [412] 299-320 [413] 305-326 [414] 314-335 [415] 322-343 [416] 328-347 [417] 331-351 [418] 338-357 [419] 343-363
[420] 347-369 [421] 355-374 [422] 361-381 [423] 368-390 [424] 374-395 [425] 384403 [426] 386-406 [427] 390411 [428] 398418 [429] 404424
[430] 409-428 [431] 417437 [432] 425444 [433] 432452 [434] 438458 [435] 445464 [436] 449469 [437] 455473 [438] 462-482 [439] 469487
[440] 475494 [441] 482-502 [442] 491-511 [443] 498-516 [444] 502-521 [445] 507-529 [446] 515-535 [447] 521-541 [448] 525-545 [449] 533-554
[450] 541-561 [451] 548-568 [452] 555-573 [453] 560-581 [454] 567-587 [455] 572-591 [456] 575-596 [457] 586-605 [458] 589-609 [459] 594-614
[460] 602-623 [461] 611-630 [462] 619-638 [463] 624-644 [464] 631-650 [465] 637-657 [466] 643-663 [467] 651-672 [468] 660-680 [469] 663-684
[470] 672-693 [471] 681-698 [472] 684-705 [473] 694-715 [474] 698-721 [475] 704-725 [476] 712-732 [A77] 718-737 [478] 720-739 [479] 729-747
[480] 733-754 [481] 738-757 [482] 744-764 [483] 750-770 [484] 758-778 [485] 766-785 [486] 770-790 [487] 779-799 [488] 786-805 [489] 793-812
[490] 797-816 [491] 802-822 [492] 806-828 [493] 816-835 [494] 817-839 [495] 830-849 [496] 839-859 [497] 845-864 [498] 847-868 [499] 855-875
[500] 862-881 [501] 869-888 [502] 874-896 [503] 882-902 [504] 888-908 [505] 892-912 [506] 900-919 [507] 903-923 [508] 906-927 [509] 914-934
[510] 919-943 [511] 933950 [512] 936-954 [513] 941-959 [514] 944-964 [515] 955-973 [516] 961-982 [517] 968-989 [518] 976-995 [519] 984-1002
[520] 987-1009 [521] 1000-1017 [522] 1005-1025 [523] 1009-1030 [524] 1016-1036 [525] 1021-1041 [526] 1027-1047 [527] 1034-1054 [528] 1040-1061 [529] 1047-1067
[530] 1056-1076 [531] 1061-1078 [532] 1065-1086 [533] 1067-1088 [534] 1074-1093 [535] 1083-1103 [536] 1090-1109 [537] 1095-1115 [538] 1103-1123 [539] 1108-1128
[540] 1113-1134[541] 1119-1140 [542] 1128-1147 [543] 1135-1154 [544] 11371158 [545] 1145-1170 [546] 1156-1176 [547] 1164-1186 [548] 1174-1193 [549] 1177-1197
[550] 1183-1205 [551] 1190-1210 [552] 1193-1214 [553] 1201-1221 [554] 1204-1224 [555] 1207-1227 [556] 1211-1232 [557] 1221-1240 [558] 1226-1246 [559] 1235-1255
[560] 1242-1262 [561] 1246-1267 [562] 1254-1274 [563] 1261-1283 [564] 1269-1287 [565] 1273-1292 [566] 1280-1299 [567] 1285-1305 [568] 1288-1309 [569] 1293-1313
[570] 1302-1322[571] 1310-1330 [572] 1315-1335 [573] 1321-1339 [574] 1328-1349 [575] 1335-1357 [576] 1341-1365 [577] 1351-1373 [578] 1358-1378 [579] 1365-1385
[580] 1372-1392[581] 1379-1396 [582] 1382-1405 [583] 1391-1410 [584] 1398-1417 [585] 1403-1421 [586] 1405-1426 [587] 1417-1436 [588] 1422-1442 [589] 1425-1446
[590] 1432-1452[591] 1441-1461 [592] 1447-1467 [593] 1453-1472 [594] 1457-1479 [595] 1464-1484 [596] 1472-1493 [597] 1479-1499 [598] 1487-1507 [599] 1492-1512
[600] 1498-1518 [601] 1502-1521 [602] 1506-1526 [603] 1514-1534 [604] 1523-1543 [605] 1529-1547 [606] 1531-1552 [607] 1543-1561 [608] 1544-1566 [609] 1554-1576
[610] 1564-1583 [611] 1572-1593 [612] 1577-1597 [613] 1586-1606 [614] 1590-1610 [615] 1593-1615 [616] 1605-1624 [617] 1610-1628 [618] 1611-1630 [619] 1616-1635
[620] 1621-1640 [621] 1624-1646 [622] 1633-1650 [623] 1637-1657 [624] 1643-1664 [625] 1652-1671 [626] 1655-1680 [627] 1670-1689 [628] 1677-1696 [629] 1679-1699
[630] 1683-1703 [631] 1684-1704 [632] 1691-1711 [633] 1699-1716 [634] 1704-1722 [635] 1711-1731 [636] 1717-1735 [637] 1723-1743 [638] 1730-1750 [639] 1736-1758
[640] 1743-1765 [641] 1751-1772 [642] 1760-1780 [643] 1764-1787 [644] 1773-1793 [645] 1778-1799 [646] 1784-1806 [647] 1793-1813 [648] 1802-1822 [649] 1810-1828
[650] 1815-1833 [651] 1815-1835 [652] 1822-1842 [653] 1828-1847 [654] 1835-1856 [655] 1843-1862 [656] 1848-1867 [657] 1854-1874 [658] 1860-1879 [659] 1866-1887
[660] 1874-1894 [661] 1878-1897 [662] 1886-1905 [663] 1894-1915 [664] 1898-1918 [665] 1904-1926 [666] 1916-1932 [667] 1921-1941 [668] 1926-1947 [669] 1929-1951
[670] 1940-1960 [671] 1948-1965 [672] 1951-1971 [673] 1957-1976 [674] 1961-1982 [675] 1968-1988 [676] 1976-1997 [677] 1984-2003 [678] 1986-2006 [679] 1990-2010
[680] 1994-2014 [681] 2001-2020 [682] 2011-2029 [683] 2015-2037 [684] 2026-2045 [685] 2031-2051 [686] 2036-2058 [687] 2044-2063 [688] 2052-2070 [689] 2058-2080
[690] 2062-2084 [691] 2071-2092 [692] 2079-2098 [693] 2085-2105 [694] 2093-2114 [695] 2098-2118 [696] 2102-2123 [697] 2110-2130 [698] 2116-2135 [699] 2119-2140
[700] 2128-2149 [701] 2133-2151 [702] 2135-2155 [703] 2141-2162 [704] 2147-2165 [705] 2155-2177 [706] 2160-2181 [707] 2168-2187 [708] 2173-2194 [709] 2179-2200
[710] 2185-2203 [711] 2189-2208 [712] 2193-2216 [713] 2203-2221 [714] 2205-2226 [715] 2210-2232 [716] 2220-2240 [717] 2226-2245 [718] 2232-2252 [719] 2241-2259
[720] 2247-2267 [721] 2253-2274 [722] 2258-2276 [723] 2260-2283 [724] 2272-2293 [725] 2276-2296 [726] 2281-2301 [727] 2291-2310 [728] 2298-2314 [729] 2298-2315
[730] 2299-2320 [731] 2305-2327 [732] 2311-2336 [733] 2324-2345 [734] 2331-2350

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

24

Table S3. The counts and frequencies of segments from reads spanning 6-nucleotide runs AAAAAA (left) and 7-
nucleotide runs AAAAAAA (right) in E. coli genome. Only the combinations with frequencies exceeding 0.001 are
shown.

AAAAAA Count Frequency| AAAAAAA Count Frequency

6A 42522 0473 6A 3455 0.154
5A 13970 0.155 5A 1104 0.049
TA 8997 0.100 TA 9360 0.418
4A 3538 0.039 8A 2339 0.104
6A1T 2139 0.024 TA1T 569 0.025
6A1G 2075 0.023 TA1G 545 0.024
5A1C 1824 0.020 9A 510 0.023
6A1C 1785 0.020 6A1C 486 0.022
8A 1512 0.017 TA1C 401 0.018
5A1T 1265 0.014 6A1T 372 0.017
5A1G 1169 0.013 6A1G 302 0.013
3A 845 0.009 4A 300 0.013
4A1C 498 0.006 5A1C 150 0.007
TA1G 426 0.005 8A1G 133 0.006
TA1T 407 0.005 10A 114 0.005
TA1C 316 0.004 8ALT 111 0.005
6A1TIG 261 0.003 8A1C 100 0.004
9A 259 0.003 5A1T 91 0.004
4A1T 238 0.003 5A1G 76 0.003
4A1G 214 0.002 3A 74 0.003
6A1C1G 210 0.002 TA2G 68 0.003

6A2C 197 0.002 TA1TIG 65 0.003
6A2G 196 0.002 7TA1C1G 65 0.003

6A2T 183 0.002 6A2C 48 0.002
6A1C1T 175 0.002 TA1C1T 46 0.002
2A 172 0.002 TA2T 45 0.002

5A2C 151 0.002 6A1C1G 40 0.002
3A1C 131 0.001 6A1C1T 39 0.002

5A1TIG 114 0.001 TA2C 38 0.002
5A1C1T 113 0.001 6A1TIG 36 0.002
4A2C 110 0.001 4A1C 35 0.002
5A1C1G 107 0.001 5A2C 32 0.001
5A2G 101 0.001 9A1G 32 0.001
1A 94 0.001 9A1T 28 0.001
6A2G 27 0.001

2A 25 0.001

5A1C1IT 24 0.001
8A1T1G 23 0.001

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

25

Table S4. Comparison of statistical parameters of the P6-C4 protocol with the statistical parameters of the older
P5-C3 and P4-C2 protocol (derived from the P5-C3 and P4-C2 SMRT datasets in [27]).

P6-C4 | P5-C3 | P4-C2
Match(A) | 0.958 | 0.962 | 0.953
Match(C) | 0944 | 0.935 | 0.946
Match(G) | 0.950 | 0.946 | 0.920

Match(T) | 0.956 | 0.958 | 0.936

Sub(A — C)| 0.005 | 0.004 | 0.006
Sub(A— G) | 0.002 | 0.002 | 0.002
Sub(A—T) | 0.002 | 0.002 | 0.003
Sub(C — A) | 0.008 | 0.012 | 0.010
Sub(C' — G) | 0.004 | 0.006 | 0.002

Sub(C — T) | 0.004 | 0.004 | 0.003
Sub(G — A) | 0.004 | 0.004 | 0.006
Sub(G — C) | 0.003 | 0.003 | 0.006
Sub(G —T) | 0.004 | 0.004 | 0.006
Sub(T — A) | 0.004 | 0.004 | 0.006
Sub(T — C) | 0.003 | 0.002 | 0.007
Sub(T — G) | 0.004 | 0.003 | 0.004
Del(A) 0.032 | 0.030 | 0.036
Del(C) 0.041 | 0.043 | 0.038
Del(G) 0.039 | 0.043 | 0.062
Del(T) 0.033 | 0.033 | 0.047
Ins(A) 0.027 | 0.028 | 0.024
Ins(C) 0.019 | 0.016 | 0.031
Ins(G) 0.022 | 0.024 | 0.016
Ins(T) 0.021 | 0.020 | 0.016

Nolns 0.912 0.912 0.913

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

26

Table S5. The counts and frequencies of segments from Oxford Nanopore reads spanning 4-nucleotide runs AAAA
(left) and 5-nucleotide runs AAAAA (right) in E. coli genome. Only the combinations with frequencies exceeding
0.001 are shown. X stands for an arbitrary nucleotide.

AAAA Frequency|AAAAA Frequency
4A 0.35933 4A 0.3106
3A 0.3512 3A 0.25587

3A1X 0.06323 5A 0.12594
2A 0.04287 | 4A1X 0.05851

4A1X 0.03499 | 3A1X 0.04688

3A2X 0.01884 2A 0.02769

2A1X 0.01699 | 5A1X 0.0245

4A2X 0.01579 | 3A2X 0.02316
5A 0.0153 | 4A2X 0.02158
5A1X 0.01186 | 5A2X 0.01238

2A2X 0.01121 | 2A1X 0.01072

3A3X 0.00631 | 4A3X 0.00799

4A3X 0.00615 | 3A3X 0.00749
5A2X 0.00534 | 2A2X 0.00698
1A1X 0.00433 | 6A1X 0.00691

1A 0.00414 | 5A3X 0.00582
1A2X 0.00378 | 2A3X 0.00459

2A3X 0.00348 1A 0.00367

1A3X 0.00266 | 1A1X 0.00359
4A4X 0.00257 | 6A2X 0.00349
5A3X 0.00239 | 4A4X 0.00314
3A4X 0.00204 | 5A4X 0.00294
6A1X 0.00144 | 1A2X 0.00229
2A4X 0.00131 | 3A4X 0.00216
4A5X 0.00119 | 6A3X 0.00178
5A4X 0.00112 | 5A5X 0.00149
1A3X 0.0014
2A4X 0.00134
4A5X 0.00127
1A4X 0.00126

Pr(AAAA) Pr(AAAAA)

0.0204 0.0075

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048413,; this version posted April 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

27

200

Correct Positions ==

150

frequency

w1
o

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ORF-length

Incorrect Positions ===

o

200

150

frequency

w
o

T T
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ORF-length
ORF-length(Correct) - ORF-length(Incorrect) =

0

500

400 4

w

o

o
I

frequency

100 4

0 = T

T T T T T T T
-2000 -1600 -1200 -800 -400 0 400 800 1200 1600 2000

ORF-length Difference

Fig. S7. Distribution of ORF-lengths for correct positions in the error-free E. coli genome (top) and incorrect positions
in the error-prone E. coli genome (middle), and the difference between the ORF-lengths of corresponding correct and
incorrect positions (bottom). The error-prone E. coli genome was generated by deleting or inserting a single (randomly
chosen) nucleotide with probability 0.0005 at each position. The vast majority of indels in the error-prone genome
result in a significant reduction of ORF lengths. On average, there is a 276 nucleotide reduction in the ORF-length
for the error-prone genome.

https://doi.org/10.1101/048413
http://creativecommons.org/licenses/by-nc-nd/4.0/

