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Abstract 

Genome-wide association studies (GWAS) with metabolite ratios as quantitative traits have 
successfully deepened our understanding of the complex relationship between genetic variants 
and metabolic phenotypes. Usually all ratio combinations are selected for association tests. 
However, with more metabolites being detectable, the quadratic increase of the ratio number 
becomes challenging from a statistical, computational and interpretational point-of-view. 
Therefore methods which select biologically meaningful ratios are required. 

We here present a network-based approach by selecting only closely connected metabolites in 
a given metabolic network. The feasibility of this approach was tested on in silico data derived 
from simulated reaction networks. Especially for small effect sizes, network-based metabolite 
ratios (NBRs) improved the metabolite-based prediction accuracy of genetically-influenced 
reactions compared to the ‘all ratios’ approach. Evaluating the NBR approach on published 
GWAS association results, we compared reported ‘all ratio’-SNP hits with results obtained by 
selecting only NBRs as candidates for association tests. Input networks for NBR selection 
were derived from public pathway databases or reconstructed from metabolomics data. NBR-
candidates covered more than 80% of all significant ratio-SNP associations and we could 
replicate 7 out of 10 new associations predicted by the NBR approach. 

In this study we evaluated a network-based approach to select biologically meaningful 
metabolite ratios as quantitative traits in GWAS. Taking metabolic network information into 
account facilitated the analysis and the biochemical interpretation of metabolite-gene 
association results. For upcoming studies, for instance with case-control design, large-scale 
metabolomics data and small sample numbers, the analysis of all possible metabolite ratios is 
not feasible due to the correction for multiple testing. Here our NBR approach increases the 
statistical power and lowers computational demands, allowing for a better understanding of the 
complex interplay between individual phenotypes, genetics and metabolic profiles. 
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Introduction 

Genome-wide associations studies (GWAS) provide valuable insights into genetic influences 
on complex diseases and phenotypes. Many risk loci were identified in recent studies [1], the 
mechanistic interpretation of their results, however, is often difficult [2]. Effects which cause a 
specific phenotype are often a mixture of many underlying processes. To overcome these 
limitations, GWAS with quantitative metabolic traits (mGWAS) were introduced to analyze 
genetic factors that have an effect on intermediate processes which are then referred to as 
genetically-influenced metabotypes (GIM) [3]. When applied for instance to selected metabolic 
pathways in plants [4,5] and large-scale data from human population cohorts [6–12], the 
mGWAS approach yielded new metabolite quantitative trait loci (mQTL), i.e. genetic regions 
which affect the levels of metabolites. Recent studies revealed direct associations between 
metabolic traits and genetic variants located near to genes encoding metabolite-specific 
enzymes or transporters [6,7]. For example, a single-nucleotide polymorphism (SNP) in the N-
acetyltransferase 8 (NAT8) locus was reported to associate with N-acetylornithine [13]. 

Using metabolite concentration ratios as quantitative traits in addition to single metabolite 
concentrations further improved the results and interpretation of SNP-metabolite associations. 
It was shown that ratios between metabolite concentrations pairs reduced the overall biological 
variability in population data and resulted in robust statistical associations [5,14]. For instance, 
the level of a nutritional metabolite, but also the respective breakdown products, might be 
elevated in specific subjects. The metabolite ratio between these metabolites accounts for this 
inter-individual variation. In a biochemical interpretation, the ratio between product-substrate 
metabolite pairs can be interpreted as a proxy of the corresponding enzymatic reaction rate 
[15]. For example, Suhre et al. [13] reported that the association of a genetic variant in the 
FADS1 locus and the ratio between fatty acids 20:3 and 20:4 is much stronger compared to 
the association with the respective single metabolite levels. The FADS1 locus encodes for a 
fatty acid delta-5 desaturase with fatty acids 20:3 and 20:4 as substrate and product, 
respectively. The increase in association strength due to the ratio between reaction substrate-
product pairs thus matches the biological function of the enzyme [16]. In previous studies all 
possible ratio combinations were tested for genetic associations. This “all-ratios” approach 
yielded associations that were of many orders of magnitude stronger compared to testing only 
individual concentrations [6,7,13]. 

However, taking all possible metabolite ratio combinations into account can be challenging 
from a statistical, computational and interpretational point-of-view, since inevitably many 
biochemically unrelated metabolite pairs are tested. In addition, the effect of a specific genetic 
variant on metabolites that are within a pathway might often be quite similar. Thus, 
conventional multiple testing approaches (like Bonferroni correction) might be too stringent for 
GWAS and possibly reduce the statistical power. While for large GWAS cohorts the limited 
power problem might be only an issue for small effect sizes, it can be beneficial for the design 
of case-control studies with small sample numbers. Additionally, the increasing number of 
measured variables will lead to a quadratic increase in the number of tests when dealing with 
ratios. Current methods allow for the detection of a few hundred metabolites, but this number 
will increase rapidly [17]. On a practical level it will be becoming computationally demanding to 
conduct association tests for up to 30 millions SNPs from several thousand individual genomes 
in multiple cohorts across millions of metabolite ratio combinations. The functional 
interpretation of the high-dimensional and complex data is also challenging for such study 
designs due to the vast amount of results produced. Preselecting meaningful ratio candidates 
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based on biological network information thus is advantageous to overcome the above-
mentioned limitations. 

We asked whether it is beneficial to include prior information about the dependency between 
metabolites for the selection of biologically meaningful ratio candidates (network-based 
metabolite ratios, NBRs, see Fig. 1). Incorporating network information into the analysis of 
biological data has shown to be successful for example in proteomics and genomics 
applications [18–21]. On the level of a single pathway, we successfully applied the ratio 
approach for metabolomics data from a human challenging study, where we analyzed the 
beta-oxidation activity during a fasting period of 36 hours [22]. Here we could show that 
specific metabolite ratios which we derived from a model of fatty-acid breakdown revealed 
stronger associations to anthropometric and biochemical parameters such as BMI, body fat 
mass or insulin. 

For GWAS studies the metabolite dependencies need to be considered on a larger scale. This 
information can be obtained, for example, from metabolic pathways which are available from 
various sources such as KEGG, BiGG, EHMN and MetaCyc [23–26]. However, many 
measured metabolites are not annotated and the derived pathway information might be 
incomplete [27]. Statistical approaches like correlation-based methods, which purely rely on 
measured metabolomics data, can provide network information for all detected metabolites 
[28–30]. As metabolites in population data are highly correlated [31], we used partial 
correlations from Gaussian Graphical models (GGM) instead of normal correlations. Here 
indirect interactions between metabolites are removed before using the data-driven network for 
selecting ratio candidates. 

Using metabolite concentrations or ratios as quantitative traits has generated novel 
hypotheses for biological functions of genetic loci. In the present article, we show how 
metabolic networks can be used to analyze the mGWAS data and facilitate the functional 
characterization of the respective results. The manuscript is organized as follows: First we test 
the NBR approach on simulated population data. We then evaluate whether ratio-SNP 
association hits reflect metabolic pathway reactions based on mGWAS results of a human 
population cohort. To this end, we test if metabolites that have a significant ratio-SNP 
association are more closely connected in metabolic networks reconstructed using GGM. In 
addition, we compare mGWAS results that were obtained using the ‘all ratio’ approach with our 
NBR method. For this comparison we first consider NBRs that were selected based on 
metabolic networks from databases. Since such derived networks are incomplete due to 
missing annotations, we also use networks reconstructed in a purely data-driven fashion from 
metabolomics measurements using Gaussian graphical modeling. Furthermore, we discuss 
newly predicted associations and their replication in an independent study cohort. In addition, 
we analyze associations which are not detected by the NBR approach in the context of 
pathway-related metabolites that are all affected by the same genetic locus.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 13, 2016. ; https://doi.org/10.1101/048512doi: bioRxiv preprint 

https://doi.org/10.1101/048512


 Krumsiek, Stückler et al, Network-based ratios, p.4

Results 

Network‐based metabolite ratios improve mGWAS analysis of simulated reaction networks 

Simulated reaction networks are useful tools to investigate the properties of biological systems 
and to examine new approaches in a well-defined setup [31,32]. We used such a framework to 
address whether selecting network-based metabolite ratios improves the SNP-ratio 
associations results, compared to taking all possible ratios. To this end, we computationally 
generated metabolomics measurements resembling features of a real population (see Fig. 2 A 
for a scheme of the simulation and methods for a detailed description of the model 
parameters). 

Our model incorporates genetic variation that has an effect on the respective enzyme 
activities. Such variation has been reported for example in a GWAS study that found an 
association between several SNPs in the ACE structural gene and ACE activity [33]. The 
reactions that we studied followed mass-action kinetic rate laws and were implemented as 
ordinary differential equations [31]. In order to account for variation between individuals, each 
reaction rate was drawn from a log-normal distribution [34] and then used to calculate 
individual steady state metabolite concentrations. Metabolites involved in SNP-affected 
reactions and their corresponding ratios showed genotype-specific levels with linear 
dependency, which is in accordance with previous studies on real data [6,7,13,35,36] (see S1 
File for an example of simulated genotype-dependent metabolite ratios). 

For all association tests, metabolite ratio candidates were selected by three different 
approaches: 1) all possible ratio combinations between all metabolites (‘all ratios’), 2) only 
ratios between connected metabolites in the network assuming that we know all true pathway 
reactions (network-based metabolite ratios from pathway information, PW-NBR) and 3) only 
ratios between neighboring metabolites in the network reconstructed from simulated 
metabolomics data using Gaussian Graphical modeling (network-based metabolites ratios 
from GGM information, GGM-NBR) [31]. Results for the evaluation of approach 2 can be found 
in Fig. 2; results for further network topologies are discussed in S2 File. 

We tested for SNP-ratio associations using a linear model with genotype as independent 
variable and the respective metabolite ratio as response. All SNP-ratio associations were 
adjusted for multiple testing using Bonferroni correction based on the approach-specific 
number of ratio candidates. A ratio was counted as true positive if the best SNP-ratio 
association hit (lowest p-value) matched the underlying network, meaning that the simulated 
SNP was affecting the direct reaction between the two ratio metabolites. For instance, if the 
ratio M1/M2 in the metabolic network as depicted in S1 File shows the best association to SNP 
A, this SNP-ratio association is true positive, since SNP A directly affects the reaction between 
M1 and M2. As a quality measure the fraction of truly predicted associations (%TP) compared 
to all predictions was calculated. 

Using this simulation framework, we tested several network topologies with different SNP-
affected reactions and varying population sizes (N), minor allele frequencies (MAF) and SNP 
effect sizes (∆ES). The schematic workflow is depicted in Fig. 2 A for a linear reaction network 
consisting of three metabolites connected by reversible reactions. For each species we 
introduced exchange reactions, reflecting interactions with other metabolic pathways. The 
overview of all integrated scenario results in Fig. 2 B reveals that the network-based metabolite 
ratio approach performs equally well or even better compared to the ‘all ratios’ approach. NBR 
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improves the prediction of SNP-reaction associations especially for scenarios with small effect 
sizes (∆ES = 0.4) in combinations with sample numbers of 500 and 1000. In order to detect 
small effects usually one has to increase the sample size, which is often a limiting factor. The 
improvement of the results is based on the different choice of ratio candidate sets. By only 
taking ratios of connected metabolites into account for the linear association model, we reduce 
the number of tests and increase the power of our analysis. Further examples for which the 
results of approach 1 and approach 2 are compared for different network topologies can be 
found in S2 File. 

Fig. 2 shows the results for the NBR analysis with the given network structure from the 
simulated model (PW-NBR, see approach 2 above). As we are using a simulation framework, 
we know the underlying metabolic network and can easily determine neighboring metabolites 
for ratio selection. Since in reality most metabolic networks are not fully annotated and the PW-
NBR approach may not be applicable, we also tested the third method (GGM-NBR) using 
reconstructed networks on the basis of the simulated steady state metabolite concentrations 
(S2 File). For linear cascades, PW-NBR and GGM-NBR show similar performance results. For 
more complex, branched reaction networks the prediction accuracy of PW-NBR is slightly 
better compared to GGM-NBR. Estimating the network based on the metabolomics data as 
done in the GGM-NBR approach here still performs better than the ‘all ratio’ approach. The 
simulation study shows that preselecting ratio candidates based on metabolic network 
information in most of the cases only improves the ratio-SNP predictions. These NBR 
improvements can especially facilitate the detection of small effects in studies with small 
sample numbers. 

Metabolite ratios significantly associated to specific SNPs are also closely connected  in the 
metabolic network 

We have shown on simulated metabolomics data that using network information about 
metabolite dependencies improves the analysis of genetically-influenced metabotypes. Next 
we tested the NBR approach on metabolomics and genotyping data based on 1,768 fasting 
serum samples from the German population study KORA [37] (“Kooperative 
Gesundheitsforschung in der Region Augsburg”), previously published in a genome-wide 
association study [13]. After quality control and stringent filtering the dataset contained 
measurements of 218 metabolites and 655658 genetic variants. 

As discussed above, metabolite pairs whose ratio is significantly associated to a SNP should 
be closely connected in metabolic networks. In order to test this, we decided not to use 
networks based on pathways from databases due to missing or incomplete pathway 
annotations of many metabolites (122 out of the 218 metabolites could be mapped to KEGG, 
BIGG and EHMN [23–25]). Instead we used Gaussian Graphical modeling (GGM) to infer a 
pathway network for all 218 measured metabolites. Briefly, each edge in the network 
corresponds to a partial correlation coefficient above a certain threshold. Partial correlations 
represent pairwise correlations between metabolites after the confounding effects of all other 
metabolites and covariables have been removed. This approach has previously been shown to 
reconstruct pathways from blood serum metabolomics data in the same cohort [31,38]. Further 
information about the procedure, the metabolomics dataset and the obtained GGM can be 
found in [38]. 

Fig. 3 A shows the network representation of partial correlations in the GGM. Here metabolites 
which belong to a significant ratio-pair are marked red. We observe a clear grouping of pairs of 
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red nodes in the network. For instance, the amino acids leucine, valine and glutamine are 
closely connected within the GGM, and are also part of ratios which are significantly 
associated to a SNP. We further asked whether metabolite pairs, which are both affected by 
the same genetic variant, are also closely connected in the metabolic network. To address this 
question, we compared the distribution of all pairwise metabolite shortest path lengths with the 
distribution of shortest path lengths between metabolite pairs whose ratio was significantly 
associated to a SNP (Fig. 3 B). To calculate the shortest paths, partial correlation coefficients 
were transformed to distance measures such that high partial correlation values then have low 
distances, meaning they are closely connected, and low partial correlation values are far apart 
(see Methods). 

Significantly associated metabolite pairs tend to have smaller shortest path distances, i.e. 
higher partial correlation coefficients, compared to all shortest path distances in the GGM. The 
mean distance between all metabolite pairs is 1, reflecting in our distance measure that most 
metabolites are not interconnected and have partial correlation coefficients close to 0. On the 
other hand, the average distance for metabolite pairs with significant ratio-SNP associations is 
0.9 and thus more closely connected. ROC analysis [39] was used to quantify this separation, 
resulting in an AUC score of 0.84. In order to test whether this finding was only observed by 
chance or does indeed depend on the metabolite network structure, we compared our results 
to results obtained from randomized networks yielding AUC scores of 0.55 ± 0.04 (empirical p-
value < 10-7). The ROC-analysis results for the original and randomized GGM network are 
shown in Fig. 3 C. This highly significant non-random AUC shows that most of the significantly 
associated metabolite pairs are in close distance. Our findings further suggest that we can use 
metabolic network information to preselect metabolite pairs for association studies of 
genetically-influenced metabotypes. 

Network‐based metabolite  ratios  facilitate  the  analysis  of mGWAS  results  by  integrating 
genomic and metabolomics network information 

The results from the toy simulation and the overall analysis of reported metabolite ratio–SNP 
associations demonstrated that network information can be used to select biologically 
meaningful ratio candidates for genetic association studies. In the following, we will address 
the question how to use this information in order to improve the analysis and interpretation of 
genetically-influenced metabotypes from mGWAS data. Since we want to focus our analysis 
on association hits at genetic locus level, we combined ratio-SNP associations that are within 
linkage disequilibrium of 0.8 or higher and only report the strongest hit (see Methods). 
Analogously to our simulation study, we used three approaches to select metabolite ratios for 
further association tests: ‘all ratios’, PW-NBR and GGM-NBR (see Fig. 4 A for a comparison of 
the results and S1 Table for a full list of all associations). 

For the selection of meaningful network-based metabolite ratios we first used a pathway-based 
network (PW-NBR) that was built by combining information from KEGG, BIGG and EHMN [23–
25]. Since not all metabolites are annotated in these databases, the network contains only 122 
out of the 218 originally measured metabolites. Contrary to the in silico simulation study shown 
in Fig. 2, we do not have the full information about the true underlying reaction network to 
apply the PW-NBR approach for the mGWAS data set. We accounted for possible missing 
network connections by considering not only directly connected metabolites as ratio 
candidates, but also those with a network distance of one or two steps. The PW-NBR 
approach reveals only few significant SNP-ratio associations (13) and the overlap with the ‘all 
ratios’ approach is rather small (9 out of 113). 
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The GGM network on the other hand is purely data-driven and has the advantage of obtaining 
network dependencies for all 218 measured metabolites. The network was built by taking only 
metabolite pairs into account that showed an absolute partial correlation score of 0.1 or higher. 
We also tested other partial correlation cutoffs (S3 File), which however did not lead to a 
notable change of results. Similar to the PW-NBR analysis we also accounted for missing 
connections by selecting metabolites as ratio candidates that were connected in the network 
via one or two steps. The GGM-NBR approach reveals 81 significant SNP-ratio associations, 
which highly overlap with the results from the approach taking all possible ratios. 

The comparison between ‘all ratios’, PW-NBR and GGM-NBR is shown in Fig. 4 A. The GGM-
NBR approach yields considerably more significant ratio-SNP associations compared to the 
PW-NBR (81 vs. 13). This results from incomplete or missing annotations in pathway 
databases for almost 100 metabolites. In contrast, the full network information can be obtained 
for all measured metabolites using Gaussian Graphical modeling. 

Though the overlap between ‘all ratios’ and GGM-NBR results is remarkably high (71 cases, 
set [A] in Fig. 4 A), there are some associations which are not observed using GGM-NBR (set 
[B], 39 cases). We inspected these cases in more detail by asking whether we could explain 
these effects by other effects of related metabolites. We hypothesized that in many cases the 
same underlying factor (e.g. genetic variation in one enzyme) influences metabolites in 
subsequent or neighboring reaction paths. To test this hypothesis, we calculated the shortest 
paths within the GGM network between the two metabolites of a not observed ratio-SNP 
association. On these paths we checked if there are other ratio pairs associated to SNPs in 
close genetic distance to the original ratio-SNP association. Two examples are shown in Fig. 
5, one related to fatty acid metabolism and one related to sugar metabolism. Two SNP variants 
in the locus of ACADM, an enzyme of mitochondrial fatty acid beta-oxidation, for example are 
associated to different metabolite ratios (hexanoylcarnitine / acetylcarnitine and 
hexanoylcarnitine / oleate). On the basis of the data-driven reconstructed network, we can see 
that these metabolites are closely related. The effect of a genetic variant might affect specific 
metabolites, but also alter other metabolite concentrations within a pathway, both detected in 
mGWAS results. Using the GGM network context thus helps to understand these pathway 
effects, especially if no pathway dependencies for the metabolites of interest can be obtained 
from databases. In total we found 20 associations that could be explained by other 
associations within the same metabolic pathways, reducing the number of ‘all ratios’ only 
associations from 39 to 19. Hence by taking the network connections of metabolites into 
account we do not miss hits, but rather find the more direct associations, which point to the 
underlying biological mechanism.  

Replication of associations predicted by the NBR approach 

The GGM-NBR approach predicts 10 new ratio-SNP associations that were not found using 
the regular ‘all ratios’ approach (set [C] in Fig. 4 A and Manhattan plot in Fig. 4 B, see also 

Table 1). This results from a higher Bonferroni significance level (3.2210-12 for ‘all ratios’ 

compared to 2.0110-11 for GGM-NBR) due to fewer association tests. In S4 File we discuss 
the relationship between the number of measured metabolites and the number of ratios that 
have to be tested using the ‘all ratios’ and the NBR approach. 7 out of the 10 new ratio-SNP 
associations predicted by the GGM-NBR approach were replicated in the TwinsUK cohort data 
reported in [12], while none of the four associations predicted by PW-NBR could be replicated 
(Table 1 and S1 Table). Fig. 6 shows one example of a replicated genetically-influenced 
metabotype in the leucine metabolism. Using both the ‘all ratios’ and GGM-NBR approach, the 
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ratio isovalerylcarnitine / isovalerate was found to be associated to the OCTN2/SLC22A5 
locus, which codes for an organic cation transporter with short-chain acyl esters of carnitine as 
substrates [40]. GGM-NBR analysis additionally revealed an association between 
isovalerylcarnitine / leucine and a SNP in the ACSL6 locus. ACSL6 catalyzes the formation of 
acyl-CoA species, possibly also isovaleryl-CoA, which is a degradation product of leucine but 
was not measured in the mGWAS study. While these associations might be based on indirect 
effects as isovalerylcarnitine is the transport form of isovaleryl-CoA, the network context in the 
GGM-NBR analysis helps to understand the interplay between different association loci and 
metabolite ratios. Table 1 displays further associations that were only found using GGM-NBR 

 

Discussion 

Genome-wide association studies with metabolite ratios as quantitative traits have deepened 
our understanding of the complex relationship between genetic variants and observed 
phenotypes. It has been shown that ratios between metabolite concentrations pairs reduce the 
overall biological variability in population data resulting in robust statistical mQTL associations 
[14]. In previous studies, metabolite ratios were either manually selected with respect to 
specific enzymatic reactions [8] or all possible ratio combinations were used [6,7,13]. 
Especially due to the large number of all possible ratios for studies with many metabolites it is 
important to narrow down the number of association tests. We argue that the proper selection 
of ratio candidates based on metabolic network information will improve the analysis of 
association studies with metabolic traits from a statistical, computational and interpretational 
point-of-view. 

In this work we propose to choose biologically meaningful metabolite ratios based on 
metabolic networks. In a study on the dynamics of human metabolism, we applied this concept 
on the level of a single pathway and used a fatty acid beta-oxidation model to infer metabolite 
ratios reflecting enzymatic activity [22]. For the analysis of mGWAS results, we here extended 
this approach by going from local pathways to global metabolic interaction networks to select 
network-based ratios (NBRs) for further association tests. 

Before applying NBRs on human population GWAS data, we used simulated reaction 
networks. Our model simulates differences in metabolite levels, which result from genetic 
variation affecting enzyme activities. Such effects have been reported for several SNPs in the 
ACE structural gene and the ACE activity [33]. It is to be noted that the in silico model is 
obviously an oversimplified model of gene-metabolite interactions. The primary goal of the 
presented analysis was to test our hypothesis in a well-defined and comprehensible 
environment before going to noisy experimental data. Our in silico results show that the NBR 
approach is applicable for small sample size studies and, even more important for practical 
applications, for genetic variants with small effect sizes. 

We further analyzed mGWAS results from two different study cohorts as an additional 
evaluation of the NBR approach. Initially the mGWAS results were obtained by using all 
possible metabolite ratio combinations as traits. We compared the associations detected using 
all ratios with associations observed after testing only ratio candidates derived from metabolic 
networks. Data-driven metabolic networks (GGM-NBR) gave similar results as the ‘all ratios’ 
approach. 7 out of 10 new associations predicted by the GGM-NBR approach could be 
replicated in a much larger study, suggesting that information about metabolite dependencies 
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from data-driven networks allows for detecting associations in studies with smaller sample 
size. Networks obtained from pathway annotations in the literature (PW-NBR) could not reveal 
many associations. The limited results from PW-NBR are certainly based on the sparseness of 
metabolite annotations and network information in databases like KEGG, BiGG and EHMN. 
Data-driven reconstruction methods provide the opportunity to measure relations between all 
measured metabolites. It is important to acknowledge that results from statistical inference 
methods like Gaussian Graphical models should not be confused with a perfect reconstruction 
of metabolic pathways [42]. For instance, if intermediate metabolites cannot be detected, 
connections in reconstructed networks do not necessarily represent direct biochemical 
pathway reactions. With advanced metabolite detection techniques and network reconstruction 
methods, both the annotation and the data-driven pathway information will further improve and 
the two network sources can be combined to enhance our understanding of metabolism by 
finding more genetically-influenced metabotypes. For new datasets, ratio candidates then can 
be selected both from established candidate sets of previous studies, as well from de-novo 
calculated networks based on the new data. 

Narrowing down the size of ratio candidate sets is also important for small, phenotype-specific 
studies. For example, studies investigating rare variants or small effect sizes often have to deal 
with small case numbers. For such studies it is essential to reduce the number of tests in order 
to improve the statistical power and lower computational demands. Moreover, advanced 
metabolomics methods will soon allow for the detection of several thousand metabolites. At 
this point it will not be feasible anymore to test all possible ratio combinations against genetic 
variants in order to find genetically-influenced metabotypes. Testing only for selected ratios 
circumvents these dimensionality problems, since the number of network-based ratios does 
not increase so rapidly (see S4 File). In addition, we could show that genetic effects in one 
locus have an impact on the concentration levels of biochemically related metabolites. It is 
important to understand at this point that measuring the distance between metabolites is not 
straightforward, both in reconstructed and literature-based metabolic networks [43,44]. 
Nevertheless, the network context helps to find the more direct associations which point to the 
underlying biological mechanism. 

The NBR approach may also be combined with methods accounting for the inherent 
correlation between SNPs due to linkage disequilibrium [45,46], thus reducing the number of 
both ratios and SNPs for multiple testing correction. The presented approach is not restricted 
to association studies with metabolic traits and can be extended to other quantitative omics 
data, also in case-control studies. For such studies the sample size is usually much smaller 
and our preselection of ratios could improve statistical power. Moreover, NBRs can be used for 
other quantitative biomolecular data such as gene expression measurements or epigenetic 
modifications [47]. Here the interactions between gene products might be both inferred from 
data or obtained from biological pathways, well-established protein-protein or gene-regulatory 
networks [20,21,48]. 

 
Conclusions 

GWAS with metabolite ratios as quantitative traits have deepened our understanding of 
genetic effects on metabolic functions. Usually all metabolite ratio combinations are tested for 
associations to genetic variants, which can be challenging from a statistical, computational and 
interpretational point-of-view. For data with many metabolites, taking metabolic network 
information into account is of great benefit for the analysis and interpretation of association 
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results. Our network-based metabolite ratio approach reveals nearly the same associations 
compared to the ‘all ratios’ approach and we could replicate 7 out of 10 new associations 
predicted by the NBR approach. Using NBR allows for the detection of weaker effects, since 
considering only biologically meaningful ratio candidates increases the statistical power. For 
upcoming studies with large-scale metabolomics data and small sample numbers, our NBR 
approach provides a valuable tool to increase the statistical power, lower computational 
demands and facilitate the interpretation of the results. Network-based analysis will then help 
to better understand the complex interplay between individual phenotypes, genetics and 
metabolic profiles. 

 

Methods 

In silico simulation of SNP effects on metabolic reaction networks 

Metabolic reaction networks were simulated using mass-action kinetics. A dynamical system 
with m metabolites and r reactions can be represented using the stoichiometric matrix ܵ௠	ൈ	௥, 
where each row represents a compound and each column a reaction. Negative entries in ܵ 
represent educts, positive products of one specific reaction. The change of one metabolite 
over time is then described by a system of linear equations 

݀ ௜ܺ

ݐ݀
ൌ෍ݏ௜௝ݒ௝

௥

௝ୀଵ

			for			݅ ൌ 1,… ,݉ 

with rate ݒ௝ for the jth reaction and ൫ݏ௜௝൯ ൌ ܵ for the entries of the stoichiometric matrix. The 

topology of the reaction network thus is fully represented by ܵ, while the dynamical properties 
are determined by the reaction rates ݒ  according to the law of mass action kinetics [31]. 
Steady state metabolite concentrations are obtained either by solving the system of linear 
equations (i.e. setting all equations to zero) for linear systems or by simulating the dynamical 
system until it has reached its equilibrium. 

Using this framework, different scenarios for reaction networks topologies, altered reaction 
rates due to SNP effects, allele frequencies and population size were investigated. The allele 
frequencies were calculated following Hardy-Weinberg equilibrium model with chosen minor 
allele frequency between 0.05 and 0.5. To account for variability in the simulated population, 
the reaction rates for each individual were randomly and independently drawn from log-normal 
distributions with mean 3 and standard deviation 1. The effect of a specific SNP was modeled 
by adding the effect size once (heterozygote case) or twice (homozygote minor allele case) to 
the mean log-normal parameter of the affected reaction rate. For example ∆ES = 0.4 indicates 
that the rates for the major allele homozygote, heterozygote and minor allele homozygote case 
are drawn from log-normal distributions with mean 3.0, 3.4 and 3.8, respectively. The 
population size was chosen to be between 50 and 10,000. We used a multiplicative error 
model in order to take technical noise into account, which arises during the measurement of 
metabolomics samples. To this end, calculated metabolite steady state concentrations were 
multiplied with random factors drawn from a log-normal distribution with mean 1 and standard 
deviation 0.05. As a result we obtained all metabolite concentrations for each individual in the 
population depending on its genetic background. 
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Reconstruction of metabolic networks using Gaussian Graphical modeling 

Gaussian graphical models (GGM) are calculated using full-order partial correlation 
coefficients, i.e. each pairwise correlation is corrected against all remaining (n-2) variables to 
remove indirect effects. For data with more samples than variables, full-order partial 
correlations can be calculated by a matrix inversion operation. A more detailed description of 
GGM calculation based on metabolomics data can be found in [31]. Since in our simulated 
data there are for some cases less samples than variables (metabolites), we used the R-
package GeneNet [49] which calculates a regularized version of partial correlation coefficients. 
This method yields also for cases with more samples than variables robust estimates of partial 
correlation coefficients. All computations were performed on log-transformed metabolite 
concentrations, as testing for normality revealed that for most cases the log-transformed 
concentrations were closer to a normal distribution than the untransformed values [13]. 

Association between metabolite ratios and SNP effects for simulated reactions networks 

The simulated metabolite concentrations showed log-normal distributions and were therefore 
log-transformed for further statistical analysis. For all association tests, metabolite ratio 
candidates were selected by three methods: 1) all possible ratio combinations between each 
metabolite in the underlying reaction network, 2) only ratios between neighboring metabolites 
in the reaction network and 3) only ratios between neighboring metabolites in the network 
structure reconstructed from metabolomics data using GGMs. The third approach represents a 
purely data-driven approach that does not require known pathway interactions as input and is 
thus independent of functional annotations of the measured molecules (see description 
above). We used a linear regression model based on additive genetic effects to test for the 
association between metabolite ratios and genetic background in the simulated concentrations, 
as previously reported in several GWAS studies [6,13,35], with genotype as independent 
variable and the respective metabolite ratio as response. Regression coefficients were tested 
for significant deviation from zero. To account for the number of tests for each ratio candidate 
set, Bonferroni correction was applied. If the best SNP-ratio association (lowest p-value) 
matched the underlying reaction networks, the test was counted as true positive. In this case 
the simulated SNP was affecting the direct reaction between the two ratio metabolites. The 
fraction of truly predicted associations (%TP, number true positive cases divided by all cases) 
was used to assess the quality of each ratio candidate selection method. 

Analysis of metabolic distances in Gaussian Graphical models 

The distance di,j between metabolites Mi and Mj in the GGM was calculated based on the 
respective partial correlation coefficient ζi,j, which was transformed by di,j = exp(-ζi,j). Closely 
connected metabolites with high partial correlation coefficients have small distances. Based on 
this distance measure we calculated shortest paths between all metabolite pairs. We 
compared the distribution of all pairwise metabolite shortest path lengths with the distribution of 
shortest path lengths between metabolite pairs whose ratio was significantly associated to at 

least one SNP (adjusted Bonferroni threshold p<3.224110-12). ROC analysis [39] was used to 
quantify the separation of the two distributions. To assess the significance of this observed 
AUC score, we performed graph randomization by edge rewiring on the distance-weighted 
graph as described in [50]. During each randomization step the target nodes of two randomly 
chosen edges are exchanged. In order to achieve sufficient graph randomization, the 
exchange step is repeated five times the number of edges in the graph, as suggested in [51]. 
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For the empirical p-value calculation we performed the distance-based ROC analysis for 107 
randomized graphs. 

NBR for GWAS data 

We established our network-based ratio approach on data from the KORA population cohort. 
Details about the sample acquisition, metabolomics measurements and genotyping can be 
found in [13]. Briefly, we used metabolomics measurements of 295 metabolites and 
genotyping data for 655,658 SNPs from 1,768 fasting serum samples of the KORA study. 
Quality control of metabolomics data and stringent filtering resulted in 218 metabolites that 
were used for further analysis. Since all metabolomics data were transformed to log-scale for 
further statistical tests, we calculated metabolite ratios by taking the difference between the 
log-transformed concentrations, yielding 23,653 metabolite ratios for the ‘all ratios’ case. Since 
we want to focus our analysis on association hits at genetic locus level, we combined ratio-
SNP associations that were within linkage disequilibrium of r2=0.8 or higher, based on LD data 
from HapMap derived from the SNAP server [52]. For cases where several SNPs within one 
locus were associated to the same metabolite ratio we only used the most significant 
association. No evidence of population stratification could be found in the population cohorts. 
Lambda values ranged from 0.965 to 1.024 (median 1.006) in KORA [6,13]. All participants in 
both TwinsUK and KORA have given written informed consent, and local ethics committees, 
the Guy’s and St. Thomas’ Hospital Ethics Committee for TwinsUK and Bayerische 
Landesärztekammer for KORA, approved the studies. 

For the selection of ratio candidates based on network information we used two metabolic 
network sources: a pathway-based network (PW-NBR) and a GGM-based network (GGM-
NBR). The first network was constructed by combining metabolite reaction information from 
three independent databases: 1) H. sapiens Recon 1 from the BiGG databases (confidence 
score of at least 4) [24], 2) the Edinburgh Human Metabolic Network reconstruction [25] and 3) 
the KEGG PATHWAY database [23]. Due to missing annotations, only 122 out of 218 
measured metabolites were found in the combined pathway-based network. The GGM-based 
network is based on the network reported in [38] and was built by taking only metabolite pairs 
into account that showed an absolute partial correlation score of 0.1 or higher. In order to 
account for missing metabolic connections in the networks, we chose metabolites that were 
connected via one or two steps as ratio candidates for GGM-NBR and PW-NBR, resulting in 
3,786 and 879 metabolite ratios, respectively. 

As described above, a linear regression model based on additive genetic effects was used to 
test for the association between metabolite ratios and genetic background. The model was 
adjusted for age and gender as covariates. We applied Bonferroni correction to account for the 
large number of association tests. The p-value threshold was calculated by 0.05/(number of 
selected ratios * number of SNPs). Thus the adjusted threshold for genome-wide significance 

for the ‘all ratios’, GGM-NBR and PW-NBR analysis was p<3.224110-12, p<2.014210-11 and 

p<8.675710-11, respectively. 

For SNP-ratio associations that were not discovered using the GGM-NBR approach we 
checked whether these effects could be explained by related metabolites. Based on the edge 
weights of the underlying GGM network we calculated shortest paths between the two 
metabolites of the ratio pair [53]. On these paths we checked if there are other ratio pairs 
which are associated to any SNP in close genetic distance to the original SNP, that was not 
found using GGM-NBR. 
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Replication of associations predicted by the NBR approach was performed using the data from 
the TwinsUK cohort results reported in [12]. In this study, we performed a genome-wide 
association analysis of metabolite ratio-SNP associations for 6,065 adult individuals similar to 
the analysis of Suhre et al. [13] in the KORA cohort which we used for the evaluation of the 
NBR approach (see above). The metabolomics data used for the replication has been 
measured on the same metabolomics platform as the data that we used for predicting new 
associations with our NBR approach. The replication was performed as follows: For each ratio-
SNP association found in the KORA cohort we checked in the TwinsUK results for significant 
(p<2.0142⋅10-11, same cutoff as for GGM-NBR) associations between the ratio and SNPs with 
LD r2=0.8 or higher. For cases where several SNPs within one locus were associated to the 
same metabolite ratio, we only report the most significant association. As the replication was 
only performed for associations predicted by the NBR approach, it is to be noted that for a 
specific locus the here presented replicated association may not be the strongest association 
for this locus as reported in [12]. 
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Fig.  1. Network‐based metabolite  ratios  (NBRs)  for  the  analysis  of  genome‐
wide association studies with metabolic traits (mGWAS). 

Considering all possible metabolite ratios (red dots) as traits in mGWAS (A) has proven valuable in 
finding new functional insights about underlying biological processes [13]. Selecting network-based 
metabolite ratios instead of all possible ratios reduces the number of association tests and therefore 
results in a less stringent significance threshold after correction for multiple testing (B). Testing only for 
selected NBR (C) reveals new significant associations (blue dots). Due to incomplete metabolic network 
information or unknown complex regulatory effects some hits might not be found (grey circles). 
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Fig. 2. Network‐based metabolite ratios (NBR) on simulated reaction networks. 

The NBR approach improves the analysis of ratio-SNP associations. A: Scheme of in silico simulation of 
SNP effects in metabolic reaction networks. For specific population sizes (N), minor allele frequencies 
(MAF), SNP effect sizes (ES) and reaction network topologies with different SNPs, steady state 
metabolite concentrations were simulated. Based on selected metabolite ratio sets (all ratios or PW-
NBR) SNP-ratio associations were calculated. For true positive prediction, the best association hit 
matches the underlying reaction in the network. The fraction of truly predicted associations (%TP) was 
evaluated from 500 iterations. Since less association tests are needed using NBR, this approach is 
more sensitive, reflected by higher %TP values. B: Differences in %TP between PW-NBR and ‘all ratios’ 
analysis (∆TP). The simulation was based on the reaction network depicted in A with one SNP-affected 
reaction between M1 and M2 (SNP A). A more detailed view of specific scenarios is given in subfigures 
C, D and E. Especially for small sample numbers in combination with small effect sizes the NBR 
approach improves the association analysis. C, D, E: Simulation results for selected scenarios as 
marked in B, with varying population size (C), effect size differences (D) or minor allele frequencies (E). 
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Fig.  3.  Analysis  of GWAS with metabolite  traits  in  the  context  of metabolic 
networks. 

Metabolite ratios that are significantly associated with specific SNPs are also closely 
connected in reconstructed metabolic networks. A: Network representation of a Gaussian 
Graphical model (GGM) reconstructed from large-scale metabolomics data as shown in 
[31,38]. Nodes represent metabolites and edges represent partial correlation values higher 
than 0.15. Zooming into the network reveals that the reconstruction puts metabolically related 
metabolites in a network context. Metabolites which belong to a ratio pair that is significantly 
associated to a SNP as reported in [13], are colored red. Line widths represent partial 
correlation strengths. B: Metabolite pairs, which are both affected by the same genetic variant, 
are also closely connected in the metabolic network. This can be seen using partial-correlation 
based shortest path distances between metabolites in the GGM. Compared to all distances in 
the GGM, significantly associated metabolite pairs tend to have smaller distances, i.e. higher 
partial correlation coefficients. C: ROC analysis of the distance separation seen in B. The area 
under the curve is 0.84 (orange line), compared to random networks (grey lines). The result is 
highly significant (empirical p-value < 10-7) and thus depends on the underlying GGM network 
used for the distance analysis. 
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Fig. 4. Comparison between results for different ratio candidate sets. 

A: Network-based ratio analysis yields similar associations compared to the ‘all ratios’ 
approach. Using reconstructed networks (GGM-NBR) performs much better compared to 
pathway-based networks (PW-NBR) due to the incomplete annotation of many metabolites. 
[A]: The overlap between the all-ratio and GGM-NBR approach associations is remarkably 
high. [B]: 20 out of 39 hits not identified by the network approach can be explained by pathway 
analysis of the underlying GGM network (see also Fig. 5 for two examples). [C]: Due to the 
reduced number of association tests and the resulting less stringent Bonferroni significance 
level, GGM-NBR reveals additional associations (see also Fig. 6). B: Manhattan plot of the 
results revealed by ‘all ratios’ and GGM-NBR approach. The strength of association for 
metabolite ratios is indicated as the negative logarithm of the p-value of the linear model. Only 
ratio-SNP associations with p-values below 10-7 are plotted. Triangles represent ratio-SNP 
associations with p-values below 10-13. Same ratio-SNP associations that are within linkage 
disequilibrium of 0.8 or higher are combined and only the strongest hit is shown. Significant 
mGWAS hits that were found by the ‘all ratios’ and GGM-NBR approach are marked in red 

(threshold after Bonferroni correction α = 3.22⋅10-12). Associations which are not detected by 

GGM-NBR are colored grey, while additional GGM-NBR results are marked as blue dots 

(threshold α = 2.01⋅10-11). Note that for our analysis we only considered reported associations 

between ratios and SNPs. 
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Fig. 5. Metabolic network information reveals the interplay between different 
association loci. 

Analyzing associations within GGM-based metabolic paths helps to find the more direct 
associations which point to the underlying biological mechanism. Two examples are shown for 
fatty acid metabolism (A) and sugar metabolism (B). Genetic variants often affect related 
metabolite pairs. Two SNP variants in the ACADM locus for example are associated with 
different metabolite ratios. The respective metabolites are closely connected in the GGM 
network. Genetic effects within the ACADM locus thus have an impact on several metabolite 
concentrations within certain metabolic pathways. Line widths represent strength of partial 
correlation in GGM networks. 
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Fig. 6. Example of an additional association found by the NBR approach. 

Both the ‘all ratios’ and NBR approach find an association between isovalerylcarnitine / 
isovalerate and the OCTN2/SLC22A5 locus (rs274570), which codes for an organic cation 
transporter. Additionally, NBR-GGM analysis revealed an association between 
isovalerylcarnitine / leucine and a SNP in the ACSL6 locus (rs10040809). ACSL6 catalyzes the 
formation of acyl-CoA species like isovaleryl-CoA, which is a degradation product of leucine 
but was not measured in the mGWAS study (dashed circle). Metabolite relationships, which 
are obtained from known biochemical pathways or GGM networks, allow for a better 
understanding and interpretation of indirect effects and observed ratio-SNP associations. See 
Table 1 for a full list of all additional associations found by the NBR approach. 

 

 
 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 13, 2016. ; https://doi.org/10.1101/048512doi: bioRxiv preprint 

https://doi.org/10.1101/048512


 Krumsiek, Stückler et al, Network-based ratios, p.22

Table 1: List of all additional SNP‐ratio associations found using the GGM‐NBR 
approach. 

The associations between SNP rs9393903 and DHA/EPA ratio, as well between rs7200543 
and 1-eicosatrienoylglycerophosphocholine/1-linoleoylglycerophosphocholine have been 
reported previously. However, this result was only obtained after increasing the sample size by 
combining two cohorts in a meta-analysis of two GWAS studies. Beta and p-value were 
derived from published association results of the KORA cohort [13] using a linear regression 
model based on additive genetic effects (using log10-scaled metabolic traits, genotype is 
coded as 0-1-2, major-hetero-minor genotype). X : Association was replicated in the TwinsUK 
cohort [12]. *: The two reported SNPs are both in the ELOVL2 locus, but with linkage 
disequilibrium smaller than 0.8 (0.398) and therefore not combined. See also Fig. 6 for an 
example of a newly predicted association. 

Locus 
(SNP id) 

Metabolite ratio p-value  beta Functional interpretation  Replication 

ACSL6 
(rs10040809) 

isovalerylcarnitine / leucine 1.7010-11 -0.033 ACSL6 catalyzes the formation of 
acyl-CoA species; isovaleryl-CoA is 
involved in leucine metabolism (see 
also Fig. 6) 

X 

COX6A1 
(rs2076022) 

butyrylcarnitine / propionylcarnitine 1.4010-11 -0.046 COX6A1 is a terminal oxidase in 
mitochondrial electron transport; 
fatty acids are transported into 
mitochondria as acylcarnitines; 
ratio also associated to ACADS 
locus (observed by both all ratio 
and GGM-NBR) 

X 

ELOVL2* 
(rs9393903 
and 
rs3734398) 

docosahexaenoate (DHA; 22:6n3) / 
eicosapentaenoate (EPA; 20:5n3) 

1.2310-11

and 
5.7610-12 

-0.030
and 

-0.026 

EPA is substrate of ELOVL2, DHA 
biochemically related by 
desaturase reactions 

X 
and 
X 

ZNF655 
(rs1581492) 

androsterone sulfate / 
dehydroisoandrosterone sulfate 

1.3510-11 -0.119 gene encodes for a zinc finger 
protein; potential link to regulatory 
elements; ratio also associated to 
AKR1C isoforms (involved in 
androgen metabolism) 

X 

HEATR7B1 
(rs10203853) 

bilirubin (E;E) / oleoylcarnitine 1.0110-11 -0.047 potential link to regulatory 
elements; ratio also associated to 
UGT1A, which has bilirubin as a 
substrate 

X 

SLC7A6 
(rs6499172) 

acetylcarnitine / glutaroyl carnitine 1.3010-11 -0.040 SLC7A6 is involved in the transport 
of amino acids and also associated 
to glutaroyl carnitine/ lysine ratio; 
possible pathway interaction 

- 

PRMT7 
(rs2863978) 

acetylcarnitine / glutaroyl carnitine 1.9910-11 -0.034 PRMT7 is a arginine 
methyltransferase for protein 
modification; potential link to 
regulatory elements 

- 

SLC22A1 
(rs456598) 

gamma-glutamylvaline / 
isobutyrylcarnitine 

4.6510-12 0.064 SLC22A1 is a transporter for many 
organic cations; SNP associated to 
serum concentrations of total 
cholesterol and low-density 
lipoprotein cholesterol [41] 

- 

PDXDC1 
(rs7200543) 

1-eicosatrienoylglycerophosphocholine / 
1-linoleoylglycerophosphocholine 

1.22⋅10-11 -0.035 Association suggests that PDXDC1 
is involved in the 
glycerophosphocholine-metabolism 

X 
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Supplementary Materials 

 

 Supplementary Material 1 –  
Genotype-specific metabolic traits in simulated reaction networks 
 

 Supplementary Material 2 –  
Additional results for simulated reaction networks of different topologies 
 

 Supplementary Material 3 –  
Evaluation of different GGM-NBR parameter settings 
 

 Supplementary Material 4 –  
Estimating the number of ratio candidates for the ‘all ratios’ and GGM-NBR 
approach 
 

 Supplementary Material 5 –  
List of all associations found in the KORA data and replication results based on 
TwinsUK data. 
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